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Abstract: Robust superhydrophobic surfaces are fabricated on different substrates by a scalable
spray coating process. The developed superhydrophobic surface consists of thin layers of surface
functionalized silica nanoparticle (SiO2) bound to the substrate by acrylate-polyurethane (PU) binder.
The influence of the SiO2/PU ratio on the superhydrophobicity, and the robustness of the developed
surface, is systematically analyzed. The optimized SiO2/PU ratio for prepared superhydrophobic
surfaces is obtained between 0.9 and 1.2. The mechanism which yields superhydrophobicity to the
surface is deduced for the first time with the help of scanning electron microscopy and profilometer.
The effect of mechanical abrasion on the surface roughness and superhydrophobicity are analyzed
by using profilometer and contact angle measurement, respectively. Finally, it is concluded that the
binder plays a key role in controlling the surface roughness and superhydrophobicity through the
capillary mechanism. Additionally, the reason for the reduction in performance is also discussed
with respect to the morphology variation.

Keywords: robust superhydrophobic surface; surface assembly mechanism; surface
disintegration mechanism

1. Introduction

Recently, studies regarding biomimetic have been actively carried out as attempts to advance
material technology. Super-strong fibers mimicking spider fibers and anti-reflective displays mimicking
moth eyes are representative examples. Among them, smart surfaces, which mimic the self-cleaning
ability of the lotus, have attracted scientific attention for the past few decades [1–3]. It is generally
accepted that superhydrophobic surfaces—contact angle >150◦ and hysteresis <10◦—are able to bounce
off water droplets without wetting its surface [4–7]. Efforts to mimic natural superhydrophobicity has
lead researchers to fabricate artificial superhydrophobic surfaces which can be applied for a variety of
applications, including self-cleaning window and panels, anti-icing, water-resistant fabrics, anti-fouling,
drag reduction, corrosion resistance, etc., [8–12]. These properties are used to provide waterproof
properties to electronic devices [10], or to provide self-cleaning and anti-fouling functions that remove
dirt, viruses, and bacteria from medical apparatuses [13].

The essential requirements for a surface to be superhydrophobic is that it should have low
surface energy and complex nano-scale surface morphology as suggested by the Cassie-Baxter
model [14–18]. Studies have demonstrated that solid surface with increased surface roughness can
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enhance superhydrophobicity [6,19]. The rough structure can trap air inside, and pushes off the
water droplets which comes in contact with the surface. The underlying mechanism is based on the
extreme reduction in contact surface area due to the nanostructure, which helps easy sliding of water
droplets [20,21]. Thus, it is necessary to tailor a rough structure for achieving superhydrophobicity.

In order to control surface roughness, several methods have been adopted, including the sol–gel
process, chemical etching, layer-by-layer assembly, electrostatic spinning, chemical vapor deposition,
and lithographic process [2,17–23] However, these methods have issues, such as vulnerable mechanical
strength, process complexity, high investment costs, limited substrate selection, and difficulty in
mass production. These issues have been raised, but in particular, poor durability in mechanical
strength have been emphasized. Remarkable methods have been proposed for enhancing the
mechanical properties of superhydrophobic surfaces [24]. One of these methods is the protection of
fragile fine-scale surface topographies against mechanical wear by assembling larger scale sacrificial
micro-pillars on the polymer surfaces. When the micro-scale structures are built upon surfaces
with nano-level roughness, the durability of compression could be improved up to 120 kPa [25].
However, the production process for such structures is complicated, as the self-cleaning function
is affected by the ratio and patterns of the hierarchical structures. Meanwhile, studies using the
pyramid structure have indicated that superhydrophobicity is retained after mechanical abrasion.
When mechanically worn, the nano-roughness is ensured by sacrificing the tips of pyramids [26].
However, the surface is vulnerable under large and continuous stress. To date, the demand for
the robustness of the superhydrophobic surface has not subsided. Recently, a smart approach to
increase mechanical durability has been proposed by applying superhydrophobic paint on commercial
adhesives to implement properties on various substrates, and to promote robustness [27,28]. This is
a simple and flexible method that can be used for mass-production. Even though there are plenty of
reports about spray-coating of superhydrophobic surfaces on various substrates [29–31], the study
lacks knowledge about the assembly mechanism in the early stage of surface formation. In this
work, we synthesized superhydrophobic surfaces by spray coating surface treated SiO2 agglomerates
on dissolved polyurethane (PU) (binder) which are deposited on various substrates. In order to
investigate the assembly mechanism, the morphology of the superhydrophobic surfaces was controlled
systematically by adjusting the weight ratio of the sprayed particles and the binder. The prepared
samples were mechanically abraded by using a rubbing machine. The surface with optimal SiO2/PU
ratio presented robustness that maintained its superhydrophobicity after many cycles of mechanical
abrasion. The assembly mechanism responsible for superhydrophobicity in these coatings were studied
with the help of scanning electron microscopy and roughness analysis. Furthermore, the degradation
in superhydrophobicity (as a result of the collapse of the micro-protuberances) is due to the applied
stress is also discussed through roughness analysis. The underlying phenomenon for the formation of
the superhydrophobic surface is the creation of two-length scale rough surface on the spray-coated
substrate. All of the previous studies analyzed only the effect of particle/polymer ratio on the creation
of such surfaces, could not shed light into the mechanism of how these micro/nano roughness are
created on the surface of dissolved binder. In this article we report the experimental evidence of
binder penetration through the porous SiO2 agglomerates, and through capillary mechanism, which is
responsible for the formation of a robust rough surface. The systematic investigation on the assembly
mechanism and the behavior of the sprayed SiO2 particles presented here will help industrialists to
develop mechanically durable superhydrophobic surfaces.

2. Materials and Methods

2.1. Preparation of Hydrophobic Solution

A superhydrophobic solution was prepared through different steps. Initially, 2 g of SiO2 powder
(5–15 nm, Sigma Aldrich, Saint Louis, MO, USA) and 40 mL of absolute ethanol were mixed in
a beaker. Since SiO2 is hydrophilic in nature, surface treatment should be done to make it hydrophobic.
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It was done by adding 2 mL of Octadecyltrimethoxysilane (OTS, 90%, Sigma Aldrich) into the stirring
solution, and the stirring was continued for 2 h. The mixed solution was then poured on to a glass
dish and allowed to dry at room temperature for 8 h. The superhydrophobic solution was obtained by
dispersing the dried powder in 100 mL of absolute ethanol for 3 h.

2.2. Preparation of Superhydrophobic Coating

Glass slide, aluminum sheet, alumina plate, and artificial fibers were used as the substrate for
fabricating superhydrophobic surfaces. For cleaning, all substrates were ultra-sonicated successively
for 10 min in ethanol and distilled water, then dried with nitrogen gas. The acrylic polyurethane
(PU) resin and curing agent (HS Clear, KCC, Seoul, Korea) prepared in a ratio of 2:1 was stirred
manually. The substrate was then spin-coated at 200 RPM with the dissolved PU for 30 s. Immediately,
the hydrophobic solution was spray-coated on the surface of the PU coated substrate. In addition,
each surface was constructed by systematically adjusting the amount of spray of the superhydrophobic
solution. The sample was then cured for 30 min in a hot air oven. The weight of the binder and the
sprayed particles was measured after drying completely.

2.3. Characterization

For particle size analysis, the solution was diluted in ethanol and evaluated by measuring
contact angle using laser scattering particle size distribution analyzer (LA-950V2, HORIBA, Kyoto,
Japan). Superhydrophobicity of the spray-coated substrates were confirmed by contact angle analyzer
(Phoenix-10, SEO, Kromtek Sdn Bhd, Shah Alam, Malaysia). The advancing and receding angles of
the water droplets on each surface were measured, and the hysteresis was calculated. The surface
morphology of each sample was characterized by SEM (SM-300, TOPCON, Tokyo, Japan). Furthermore,
the surface roughness measurement of each sample was carried out by Surface Profilometer (Dektak,
VEECO, Plainview, NY, USA). For the evaluation of the mechanical durability of superhydrophobic
surfaces, the abrasion rubbing machine (KP-M4250, KIPAE, Gyeongju, Korea) was used. The coated
substrates under test were fixed on a leveling plate and loaded with a regulated load using a home-made
device. We controlled the pressure on coated substrates and measured the changes in contact angle
after the abrasion. Ultimately, the durability of the coated surface was identified.

3. Results and Discussion

The fabrication process for hierarchical superhydrophobic surfaces was schematically shown
in Figure 1. [32,33]. Particle size analysis of the surface treated and dried SiO2 agglomerates are
shown in Figure 1a. In order to make SiO2 hydrophobic, the agglomerated powder should be
surface functionalized with some suitable agent. Sriramulu et al. has investigated the mechanism
of functionalization of silane coupling agent, such as OTS on SiO2 nanoparticles, for application in
superhydrophobic surfaces. They demonstrated that surface functionalization of silica nanoparticle
reduces the adsorption of water [34]. The alkylalkoxysilanes like OTS can replace the alkoxy group
with –OH in the polar solvent. It requires hydroxylated surface as a substrate for their association.
The silanes on the surface of SiO2 replaced with –OH is adsorbed on the substrate, and then they
form Si–O–Si bonds through dehydration and polymerization [35,36]. Through the reaction with
OTS, the surface energy of the SiO2 reduced and hydrophobicity is increased [7]. These surface
functionalized SiO2 agglomerates are sprayed onto the dispersed binder film on the substrate and
then cured at 60 ◦C for 30 min. Applying this technique, the surfaces were fabricated by controlling
roughness and hydrophobicity on various substrates.
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Figure 1. (a) Schematic for the evolution of rough surface using the spray-coating technique,
(b–d) Surface morphology of the superhydrophobic surface structure at different magnifications,
(e–g) Digital images of water droplets on the various superhydrophobic surfaces.

Figure 1b–d shows the surface morphologies of the superhydrophobic surface at different
magnifications. It is clear from the figure that fine nanoparticles are clustered to form a surface with
higher roughness, which is considered as one of the essential requirements for superhydrophobicity.
Additionally, the observed porosity inside the structure can trap air and thereby reduce the contact
area of water drops with the surface, which is critical for enhancing superhydrophobicity. In short,
superhydrophobicity could be achieved by using hierarchical arrangements of micro/nano-sized
structure. Ironically, poor dispersion of SiO2 nanoparticle is preferably effective in making such
a rough hierarchical surface. The proposed technique for making superhydrophobic surface has greater
advantages over conventional methods—in this case, there is a wider possibility of application of any
type of solid substrate. It is believed that superhydrophobicity is only affected by the assembly of
the binder and surface modified particles. For example, on a variety of substrates made of materials,
such as metal, ceramic, and polymers, superhydrophobicity was successfully obtained, and is shown
in Figure 1e–g. There is no shape change observed for ceramic substrates, due to its inherent rigidity
and stiffness. This method is applicable to any substrate to which the binder has good adhesion.
In our work, we used acrylate-containing PU as a binder, which has many advantages, including good
mechanical properties, low-temperature curability, solvent resistance, etc., [37,38].

We systematically investigated the influence of filler and binder on the roughness of the coated
substrates by controlling the powder to binder weight ratio. Figure 2a–d shows the SEM image and
roughness profile of the spray-coated substrates with different SiO2/PU ratio (denoted as R_0.03, R_0.15,
R_0.3, R_0.9). The weight of the PU coating was measured in an indirect way—by subtracting the
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weight of the substrate before coating from that of the substrate after coating. The same procedure was
adopted for measuring the weight of the SiO2 nanopowder. It should be noted that all the weights were
taken on dried samples. After analyzing the SEM images (Figure 2a), it is clear that the low SiO2/PU
weight ratio (R_0.03) is not enough to achieve a high roughness for getting superhydrophobicity.
The measured roughness for R_0.03 is 0.116 µm, the corresponding contact angle is 74.7◦, which is well
below the par level to achieve superhydrophobicity. Also, the particles are seen almost immersed in
the binder matrix, as a result of the action of binder to minimize its surface energy [19,39]. Moving on
to Figure 2b, the increased weight ratio (R_0.15) has improved the surface roughness to a much higher
value of 3.921 µm, still, the contact angle is very low (90.8◦) to provide superhydrophobicity. Increasing
weight ratio to higher values, for example, to 0.3 and 0.9, could enhance the surface roughness to
13.165 µm for R_0.3 and 15.517 µm for R_0.9, respectively. Corresponding contact angles are 148.2◦ and
158◦, which clearly indicates that the surface is superhydrophobic. In Figure 2d, a large scale-roughness
with 15.517 µm was detected, but the change of the contact angle and Ra was reduced. The stage of R_0.3
and R_0.9 show the surface completely covered by particles. Thus, the surface roughness increases by
the number of the sprayed particle, but tends to be no longer increased above a certain level.
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ratios of the particles to the binder of (a) R_0.03, (b) R_ 0.15, (c) R_ 0.3, and (d) R_0.9.

The schematics for the SiO2 nanoparticle assembly mechanism on PU are shown in Figure 3.
When agglomerated SiO2 nanoparticles sprayed on to the surface of the binder, the binder ascends
and holds the nanoparticles. As explained earlier, this occurs as a result of the action of binder to
minimize surface energy [40,41]. Meanwhile, to minimize the surface energy, it is confirmed that the
PU covers the particles (SEM image of Figure 2a). Creation of multimodal texture, is essential for
fabrication of superhydrophobic surface with particles having lower hydrophobicity, can be done
either by aggregation of particles directly on the substrate or by deposition of dispersed aggregates.
Conventionally, these dispersions are directly coated on the substrate. Thus, the peculiarities of
the formed structures are the result of the interplay between various forces, such as van der Waals
interactions, depletion interaction, ion-electrostatic repulsion and ultimately the image-charge forces
and the structural forces, particularly its polarity and magnitude determine the properties of the final
system. Since superhydrophobicity is a surface feature, which depends only on the nature of a few
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monolayers on the surface, we have the freedom to choose any material which can strongly bond the
surface layer with the substrate [32]. In our experiment, we used strongly adhering polyurethane
coating on the substrates and sprayed the highly agglomerated and surface functionalized SiO2

nanoparticles (Agglomerated average particle size = 10 µm) dispersed in ethanol (Figure 1). There is
a sharp rise in the binder level above its mean surface, as shown in the cross-sectional SEM image in
Figure 3, which let us attribute capillary action of the pre-coated binder as the responsible mechanism
for creating such a rough surface with plenty of micro-protuberances. Because of the fine space between
the sprayed particles, the binder can effectively infiltrate and surround. Due to the surface tension of
the penetrated binder, it was dragged up to the top of the SiO2 agglomerates. This continuous process
would finally yield a rough surface with plenty of hills and valleys, which can trap air inside, and,
thus, forms a perfect superhydrophobic surface.
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One of the obstacles preventing superhydrophobic surfaces from its application in many
fields is its poor stability against abrasive wear [42]. It is known that during the friction
cycle, the micro-protuberances are easily broken, the surface becomes smoother, and eventually
superhydrophobicity will be lost. Polyurethane (PU) based elastomers have a successful history of
application on improving mechanical properties of superhydrophobic surfaces, since they can retain
the structure even after abrasion. Changhong et al. have fabricated superhydrophobic surfaces on
porous Al template using PU elastomers, they could keep superhydrophobicity even after 10,000 cycles
of rubbing at 18 cm·s−1 with a load of 2945.7 Pa [43]. As evident from Figure 3, the SiO2 nanoparticles
are completely surrounded by PU binder. The presence of binder in the composite structure can
resist or partially absorb mechanical stresses applied to it. The durability of the superhydrophobic
surface was evaluated through abrasion testing. Milionois et al. and Bayer et al. have extensively
reviewed the available superhydrophobic materials and commented on their mechanical integrity.
There are various techniques to analyze mechanical durability of a superhydrophobic surface, such as
adhesion tape peeling, sand abrasion test and tangential abrasion test (Table 1) [11,44,45]. In this work,
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we performed a tangential mechanical abrasion test to evaluate the durability of coating over several
cycles of abrasion.

Table 1. Comparison of abrasion wears resistance with the previous reports on the superhydrophobic
surface based on spray coating of composited materials.

Superhydrophobic
Material/Method Total Abrasion Cycles Load Reference

MoS2/PU (spray coating) Over 100 m rubbing distance 500 g Tang et al. [46]
SiO2/Starch (spray coating) 17 1.1–2.1 kPa Milionis et al. [47]

SiO2/Siloxane (spray coating) 10 <10 kPa Chen et al. [48]
SiO2/EAC (spray coating) 10 40 kPa Tenjimbayashi and Shiratori [49]

Grephene/PU (spray coating) 30 15 kPa Naderizadeh et al. [45]
SiO2/PU (spray coating) 100 3.138 kPa Our study

For the evaluation, the advancing and receding contact angle was measured before and after
the abrasion. The rubbing test was conducted, as shown in the inset of Figure 4, applying 3.138 kPa
load on it. In Figure 4, the effect of abrasion on superhydrophobicity was plotted for surfaces with
varying powder/binder (R_) ratio. It is primarily understood from the figure that useful results are
obtained only for surfaces with R_ from 0.9 to 1.2. In the proposed range, the advancing contact angle
is 158◦–159◦, and the hysteresis is 4◦–5◦ before rubbing. Surprisingly, even after rubbing, the advancing
contact angle is between 153◦ and 154◦, and hysteresis between 7◦ and 9◦. One of the criteria for
superhydrophobic surfaces–hysteresis less than 10◦ is well maintained from 0.9 to 1.2. It is only possible
in a range of ensuring durability by compositing the surface structure mentioned above. For R_ values
less than 0.9 and greater than 1.2, there is a big difference between advancing and receding angle
before and after abrasion. In surfaces with lower R_ ratios, as clear from Figure 2, the roughness is
too low. For R_0.2, there was a sudden fall in advancing angle after abrasion from 147◦ to around
125◦, which cannot retain superhydrophobicity. After abrasion, the advancing angle of R_0.4 reduced
from 155.6◦ to 147.2◦ with a hysteresis of 4.6◦. Even a very small change in protuberance height can
offer a very high fall in contact angle. For higher R_ values, R_ greater than 1.2 all substrates showed
superhydrophobicity before rubbing (advancing angles ≥ 158◦, hysteresis ≤ 6◦). However, it cannot
maintain non-wetting after abrasion, and, consequently, the measured advancing angles of R_1.3
and R_2.1 reduced to 141◦ and 132◦, respectively. Loss of superhydrophobicity is expected due to
the poor attachment of SiO2 nanoparticles with the PU binder, since the spray-coated thickness is
above the penetration level of binder. Hence, any type of mechanical wear can wash away the surface
roughness and make it flatter. A second observation is that irrespective of the R_ ratio, abrasion has
reduced the contact angle of all substrates. In the given fabrication mechanism, even if the structure
is broken, due to the destruction of the binder by abrasion, the SiO2 particles can be exposed on the
surface, and the roughness and hydrophobicity can be maintained. Thus, the durability of the surface
against mechanical abrasion can be improved to higher levels than the conventional nanostructured
superhydrophobic surface. A comparison of the abrasion test with other available literature data are
presented in Table 1: The obtained results are promising and comparable with the literature data.
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Figure 4. Advancing and receding contact angles with different particle weight ratio surfaces, before
and after mechanical abrasion test.

For an in-depth investigation of mechanical abrasion on change in surface structure
and performance degradation, we analyzed the degraded surface by SEM and profilometer.
Generated roughness and degradation in superhydrophobicity can be evaluated by measuring
average surface roughness, Ra and skewness, Rsk. The Ra, average roughness, is the arithmetic average
of the absolute values of the profile heights over the evaluation length. Skewness is a measure of the
symmetry of height distribution and provides details about the number of hills and valleys on the
surface. Ra and Rsk can be calculated by the following equations [50],

Ra =
1
N

N∑
i=1

∣∣∣Zi −Z
∣∣∣ (1)

Rsk =
1

Rq
3

1
N

N∑
i=1

(
Zi −Z

)3
(2)

where N equal to 18,000, is the total number of measured points for a scan length of 2 mm, Rq is
root-mean-square (RMS) roughness which is calculated by the profilometer software from the measured
height data, Z is the mean-height distance, and surface height data Zi obtained from scan area.
SEM images of Figures 2a–d and 5c,d indicate that with an increase in the amount of sprayed articles,
the surface roughness also increases. Due to the increased roughness, the number of air pockets also
increases, and superhydrophobicity is achieved. However, surface roughness (Ra) itself is not a suitable
parameter to explain the superhydrophobicity—we should depend on other factors, such as skewness
(Rsk), for a complete interpretation. Negative skewness indicates a greater percentage of the profile
is above the mean line, and a positive value indicates a greater percentage is below the mean line.
When the absolute value of Rsk approaches zero, the shape of the surface tends to be regular and
symmetric. For example, if Rsk is a high positive value, it would tend to have a large number of hills,
and few valleys on the surface [50,51]. Since the basic strategy behind constructing superhydrophobic
surfaces are creating microscale rough structures with long range order and symmetry, skewness can
provide more information on this phenomenon.
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Figure 5a,b shows the roughness data of the surface of R_0.9 and R_2.1 before and after abrasion
test. For R_0.9, even though the roughness has undergone a threefold reduction from 15.517 to 5.842 µm,
due to the abrasion, the comparatively similar skewness tells us that the profile is still symmetric and
regular. Since the difference in Rsk before and after abrasion is negligible, the superhydrophobicity
could be maintained [52]. These observations are in well agreement with the surface morphology of
R_0.9 (Figure 5c). By contrast, R_2.1 shows a large change in Ra and Rsk after rubbing. A remarkable
reduction in Ra from 10.7 to 3.17 µm is observed, whereas Rsk reached a very low value of −2.74 after
prolonged rubbing. The reason for the decreased contact angle can be attributed to the value of
skewness. As described earlier, a negative Rsk means that the roughness parameter is tilted up.
Since Rsk shows high negative value, it could be predicted that the surface had few numbers of deep
valleys and relatively flat top surface. It is consistent with the SEM images of Figure 5d. In fact,
in the analysis by SEM observation, there are no more protuberances observed on the surface of
R_2.1 after rubbing (Figure 5d), and a flattened surface is obtained. The flat surface with few deep
valleys is not accounted for by the collapse of surface structures as reported previously. This flatness is
the result of the removal of particles from the top of the hills and its deposition in the deep valleys.
Since R_2.1 contains a quantity of SiO2 powder greater than its accommodation limit, there can be few
layers of particles which are ahead of the penetration limit of PU, are loosely attached. On rubbing,
these particles are easily removed from the top and deposited inside the deeper valleys. This process
reduces the number of air-pockets, and, hence, suppresses superhydrophobicity, as it depends on
the number of air cavities on the top surface. This observation is matching with the SEM image of
Figure 5d.

To summarize, the binder, as mentioned in the description of the mechanism, penetrated through
the particles, mixed, and combined to form a composite material, which could resist stress and support
the particles. With this mechanism, we fabricated a robust superhydrophobic surface based on the
penetration of polymer and organic solvent.

4. Conclusions

This paper discusses the fabrication of superhydrophobic surface by spray coating functionalized
SiO2 nanoparticle on PU binder on a different substrate. The robustness of the coating against
mechanical abrasions was tested, and its effect on superhydrophobicity is analyzed by contact
angle measurement with the support of surface profilometer and SEM analysis. We systematically
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investigated the influence of the weight fractions of surface functionalized SiO2 nanoparticle and PU
binder on the superhydrophobic performance of the surface. The capillary action of the dissolved
binder through the agglomerated particle is observed and is responsible for holding the particle
tightly and keep it protected against mechanical abrasion. This particular behavior of the binder is
first identified in our work. The samples with specific ratio demonstrated a contact angle greater
than 150◦ after 100 abrasion cycles, and the optimum ratio for maintaining the surface structure
against mechanical abrasion is obtained between 0.9 and 1.2. The relatively high abrasion resistance is
believed to be due to the influence of the mechanically strong PU binder employed here. In addition,
the principle of performance degradation and the collapse of the surface structure were studied through
the roughness analysis. Over the optimized particle ratio, interesting surface changes, due to collapse
is observed after rubbing. In particular, a flat surface structure was generated by the unsupported and
excessive particle lumps. As the structure changed, the superhydrophobic performance was lowered
as well. The design and manufacture with the proposed particle-to-binder ratio could increase the
mechanical durability of the superhydrophobic surface.
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