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Abstract: We prepared poly(3,4-ethylenedioxythiophene) (PEDOT)-coated sulfonated polystyrene
copolymer particles as efficient heat-shielding agents, which showed strong near-infrared
(NIR) absorption, with high solid contents and good solution stability. The poly(styrene
sulfonate-co-styrene) (P(SS-co-St)) copolymers were successfully synthesized via radical solution
polymerization, and PEDOT-coated P(SS-co-St) (PEDOT:P(SS-co-St)) was synthesized via
Fe+-catalyzed oxidative polymerization. PEDOT:P(SS-co-St) was characterized by nuclear magnetic
resonance and Fourier transform infrared spectroscopies. The particle size and morphology of
PEDOT:P(SS-co-St) were examined using transmission electron microscopy, dynamic light scattering,
and zeta potential measurements. The maximum NIR-shielding efficiency of the film was 92.0% with
40% transmittance. The high solution stability of PEDOT:P(SS-co-St) make it an ideal candidate for
heat-insulating materials that find application in semi-transparent heat-insulator-coated windows.

Keywords: conducting polymer; poly(3,4-ethylenedioxythiophene); PEDOT; core-shell particles;
polystyrene; NIR shielding film

1. Introduction

Energy crisis is one of the most urgent problems threatening the society, and extensive
effort is being devoted to improve energy efficiency and the responsible use of energy resources.
Therefore, recent research has focused on the application of green technology in the fields of architecture
and transportation to address these concerns. Semi-transparent heat insulation coatings are an essential
next-generation green technology. Importantly, semi-transparent heat-insulator-coated windows serve
distinct roles under different conditions. Transparent windows that are commonly used in buildings
and transportation readily permit bi-directional heat flow. The energy distribution in solar irradiation
consists of 5% in the ultraviolet range (UV; 280–400 nm), 45% in the visible range (400–780 nm),
and 50% in the near-infrared range (NIR; 780–2700 nm). Heat-shielding windows can not only block
most of the NIR light from passing into a structure and keep it cool during summer, but also reduce heat
loss during winter. NIR protection is required in many applications, as NIR light causes thermal aging
and can lead to adverse health effects in humans [1,2]. Thus, the development of infrared-shielding
materials has implications in energy use reduction and human health.

Heat-insulating materials usually block heat transfer by absorbing or reflecting infrared (IR)
light. As NIR-shielding materials, conducting polymers (CPs), including conjugated polythiophene
(PT), polyaniline (PANI) [3], and polypyrrole (PPy) [4], have attracted significant attention in
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recent years. Compared with some transparent thermal insulation coatings based on metals
(such as Ni, Ag, and Au), semiconducting oxides (such as tin-doped indium oxide (ITO) and
antimony-doped tin oxide (ATO)) [5,6], and tungsten oxides (MXWO3) [7], CPs are more promising for
commercialization as NIR-shielding films due to their excellent processability, high flexibility, and low
cost. CPs are frequently used in optoelectronic devices, including light emitting diodes (LEDs),
solar cells, and touch panel displays, as they are relatively inexpensive, lightweight, and easily
processable [8–10]. The unique properties of CPs implicate them in a nearly unlimited range of
potential applications. CPs have long been studied in electrical and electronic applications for their
ease of manufacture and excellent physical and electrical properties [11–13]. Among them, CPs,
especially poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has attracted a great
deal of attention in various applications such as transparent electrodes, solar cells, light-emitting
diodes, and thermoelectric devices for reducing the processing cost or replacing expensive oxides.

In this paper, we report the synthesis of PEDOT:P(SS-co-St) (PEDOT = poly(3,4-ethylenedioxythiophene))
with a 50:50 molar ratio of poly(styrene sulfonate) to styrene for use as a metal-free NIR-shielding material.
The hydrophobic styrene was first incorporated into the sodium salt of 4-styrenesulfonic acid (NaSS),
yielding the amphiphilic copolymer P(SS-co-St). P(SS-co-St) can be easily polymerized via its vinyl functional
groups, as well as processed as a monomer with styrene via radical polymerization and emulsifier-free
copolymerization [14,15]. The amphiphilic copolymer P(SS-co-St) was readily synthesized via polymerization
in aqueous solution. Then, the obtained P(SS-co-St) copolymer was used as a polymeric template in the
oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT), and the conductive dispersion product
PEDOT:P(SS-co-St) exhibited colloidal stability and a high solid content. Furthermore, the heat-shielding
properties of PEDOT:P(SS-co-St) composite films were evaluated. The maximum NIR-shielding efficiency of
the film was 92.0% with 40% transmittance.

2. Materials and Methods

2.1. Materials for P(SS-co-St) and PEDOT:P(SS-co-St) Synthesis

4-Styrenesulfonic acid sodium salt hydrate (NaSS), styrene (St; 99%) and 3,4-ethylenedioxythiophene
(EDOT; 97%) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were used without further
purification. Sodium persulfate (NaPS) and iron(III) sulfate pentahydrate (Fe2(SO4)3·5H2O) were obtained
from Sigma-Aldrich and used without further purification as reaction initiators. Double-distilled deionized
water was used in all experiments.

2.2. Preparation of P(SS-co-St) Copolymers

In the first step, a series of P(SS-co-St) copolymers containing one styrene per polymer chain were
prepared via radical copolymerization in the presence of the water-soluble initiator NaPS. The styrene
content in P(SS-co-St) was controlled by adding 50 mol% styrene to the poly(styrenesulfonate) (PSS)
polymers. Polymerization was performed in a four-necked double-jacketed glass reactor (150 mL)
equipped with a mechanical stirrer, and was carried out at 80 ◦C for 12 h. In the reactor, NaSS was
dissolved in 100 mL of ultra-pure water (UPW) and stirred at 250 rpm. The initiator solution was
prepared by dissolving 0.065 g NaPS in 2 mL UPW, and was added to the reaction vessel within 15 min.
After the reaction period, the solution-phase copolymer product was ion-exchanged by mixing it with
31 g of positive ion exchangers for 1 h at room temperature to remove unreacted initiator, and was
then filtered through a 30 µm mesh.

2.3. Synthesis of PEDOT:P(SS-co-St)

The reactor was purged with nitrogen gas (N2; 99.999%) and mixed at 300 rpm. The initiators,
0.772 g NaPS dissolved in 2 mL UPW and 0.0053 g Fe2(SO4)3 dissolved in 3 mL UPW, were added
to the reactants. After adding the EDOT monomer, the color of the solution gradually changed from
yellow transparent to dark blue. The reaction was allowed to proceed for 24 h at 15 ◦C, with stirring
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at 300 rpm. After approximately 24 h of polymerization, PEDOT:P(SS-co-St) was purified via ion
exchange by mixing the solution with positive and negative ion exchangers for 2 h at room temperature,
followed by filtering it through a 30 µm mesh.

2.4. Characterization of P(SS-co-St) and PEDOT:P(SS-co-St)

The chemical structures of PSS and P(SS-co-St) were analyzed by 1H nuclear magnetic
resonance (NMR) spectroscopy (Biospin Avance II, Bruker, Billerica, MA, USA) at 400 MHz and
by Fourier-transform infrared spectroscopy (FT–IR) (Vortex 70, Bruker) over the wavenumber range of
2000–400 cm−1 and with a resolution of 2 cm−1. The samples used for FT–IR and NMR were dried at
60 ◦C in a vacuum oven. NMR analysis was performed on solutions of PSS and P(SS-co-St) diluted in
DMSO-d6. FT–IR analysis was performed using PSS and P(SS-co-St) in powder form mixed with KBr
powder and palletized. The FT–IR absorption spectrum was recorded in transmittance mode.

The particle size and size distribution were measured using dynamic laser scattering (DLS;
Zetasizer Nano S, Malvern Instruments, Worcestershire, UK). The morphology of the particles was
observed using transmission electron microscopy (TEM; JSM 100CXII, UHR, JEOL, Tokyo, Japan).
The NIR-shielding films were prepared by first filtering PEDOT:P(SS-co-St) through a nylon syringe
filter (5.0 µm) to remove impurities. The purified PEDOT:P(SS-co-St) solution was then directly coated
on A4-sized PET substrates using the Mayer rod coating technique. First, the PEDOT:P(SS-co-St)
solution was dropped onto the upper surface of the substrate, and the Mayer rod was quickly rolled
over the PEDOT:P(SS-co-St) solution. Finally, the wet film of PEDOT:P(SS-co-St) spread over the surface
of the substrate was dried at 150 ◦C for 2 min in a convection oven. Transmittance at 550 nm and
absorption between 350 and 2000 nm were measured using a UV–VIS–NIR spectrophotometer (V-770,
JASCO Corporation, Tokyo, Japan). Infrared bulbs (250 W, Philips, Amsterdam, The Netherlands),
black boxes, and thermometers were used to obtain temperature variation curves for the heat-shielding
films. Briefly, a box measuring 300 mm × 210 mm × 150 mm made of black acrylate was prepared,
and a thermometer was placed in the black box and used to measure variations in temperature.
NIR-shielding film was used to cover a glass window on the upper side of the box. The distance
between the black box and the infrared lamp was 500 mm.

3. Results and Discussion

3.1. Synthesis and Characterization of P(SS-co-St) Copolymers

The hydrophobic styrene monomer influenced the water-solubility of PSS polymers in the
continuous phase. The solution of the synthesized polymer with added styrene was translucent,
and the originally hydrophilic polymer became amphiphilic upon addition of the styrene.
The solubility of the copolymers in water controlled the core-shell morphology, via the introduction
of hydrophobic styrene and hydrophilic NaSS monomers. Furthermore, the 1H NMR spectra of the
PSS and P(SS-co-St) (Figure 1) were analyzed in order to determine the copolymerization mechanism.
The aromatic region of the spectra, along with the polymer structures (inset) and the peak assignments,
indicate that peak b (Figure 1) corresponds to the styrene in the copolymer [16,17]. The effect of styrene
incorporation into the PSS polymer backbone is, thus, clearly exhibited in the NMR spectra. Analysis of
the relative peak intensities of the NMR spectra of the polymers also provides information on the
reactivity of the monomers during copolymerization.
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Figure 1. 1H NMR spectra of (a) PSS and (b) P(SS-co-St).

A comparison of the FT–IR spectra of the PSS and P(SS-co-St) polymers is shown in
Figure 2. The peaks in the 2800–3100 cm−1 region represent various vibration bands of polystyrene.
The characteristic vibration bands of polystyrene are present in the spectrum of the P(SS-co-St)
copolymer [16]. In addition, a previous study has reported that benzene ring stretching modes are
observed at 1491 cm−1, out-of-plane ring deformation vibrations appear at 698 cm−1, and that the peak
at 750 cm−1 is characteristic of the out-of-plane bending vibration of C–H groups in mono-substituted
benzene rings [18]. The peaks at 698, 750, and 1491 cm−1 increased in intensity as the styrene was
added to the polymerization. These observations provide evidence that the synthesized P(SS-co-St)
copolymer contained polystyrene. Both the spectra of PSS and P(SS-co-St) exhibited vibration bands
at 1650 cm−1, which were assigned to water bound to the sulfonic groups of PSS. The intensity of
this peak was much lower in P(SS-co-St) compared to that in pristine PSS, implying a relatively
lower amount of absorbed water in the copolymer. The peak at 1182 cm−1 was assigned to an
asymmetric stretching vibration in –SO3 resulting from the sulfonic acid hydrates (–SO3

−H3O+) [19].
However, the intensities of these two peaks 1650 and 1182 cm−1 decreased when St was added to the
polymer. These aforementioned peaks were identifiable in the spectra of both PSS and P(SS-co-St),
meaning that the polymers contained –SO3 groups with different ionization states.

The size and morphology of P(SS-co-St) and PEDOT:P(SS-co-St) particles were determined from
TEM images (Figure 3a,b). P(SS-co-St) consisted of spherical particles with size ranging from 80 to
200 nm. Figure 3b shows a TEM image of PEDOT:P(SS-co-St) spheres; a uniform PEDOT layer was
observed on the surface of the P(SS-co-St) spheres. We obtained PEDOT:P(SS-co-St) core-shell particles
using sulfonated PS microspheres as templates in the reaction system. Compared with the particle size
shown in Figure 3a (200 nm), the size of the spherical PEDOT:P(SS-co-St) particles increased to 2 µm,
which is because the PEDOT polymerization occurred along the radial direction from the surfaces
of the P(SS-co-St) particles. This shows that the sulfonated PS microspheres served as templates.
As explained in a previous report [20], a PSS layer formed around the PS spheres when PS template
particles were first sulfonated with concentrated sulfuric acid. This is because sulfonation increased
the polarity of the surfaces of the PS spheres. Therefore, the surfaces of the sulfonated PS microspheres
exhibited negative charge when dispersed in water. After the introduction of the EDOT monomer,
the P(SS-co-St) spheres were surrounded by PEDOT+ with PSS−. PEDOT+ and the excess PSS then
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formed PEDOT:PSS around the PS spheres. Therefore, PEDOT:P(SS-co-St) core-shell microspheres
were obtained as a PEDOT:PSS layer covered the PS template.
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Figure 3c and Table 1 show the particle size and surface properties of the particles made of the
various synthesized polymers in H2O, as determined by DLS and zeta potential measurements [21].
The average diameter of P(SS-co-St) and PEDOT:P(SS-co-St) particles were 68.93 and 1695 nm,
respectively. Moreover, the P(SS-co-St) and PEDOT:P(SS-co-St) particles exhibited zeta potentials
of −74.9 and −70.4 mV, respectively. These results indicate that the surfaces of the P(SS-co-St) and
PEDOT:P(SS-co-St) particles were rich in sulfonyl groups [22]. On the other hand, PEDOT:PSS,
with a solid content of 2%, exhibited an irregular particle size distribution and zeta potential of
−40.4 mV, indicating relative instability in solution. The result of DLS measurements of PEDOT:PSS
indicated primary nanoparticles with traces of clusters. PEDOT:PSS with a solid content of 2%, which
is higher than that of commercial PEDOT:PSS, can be predicted to exist in an unstable cohesive form in
water due to its relatively low absolute zeta potential. This indicates that PEDOT:PSS with a 2% solid
content would exist in an unstable form one month after being synthesized. The first step in synthesis
of PEDOT:P(SS-co-St) composites involved preparation of a stable emulsion from surface-sulfonated PS
particles by self-assembly of PS particles at the water-monomer interface. The hydrophilicity of styrene
and NaSS was adjusted by controlling the composition of the particles; therefore, –SO3H groups on the
particle surfaces act as stabilizers for the template particles when dispersed in water [23–25]. The entire
preparation process is illustrated in Scheme 1.

Table 1. Z-average particle diameter, polydispersity index (PDI), and zeta potential for P(SS-co-St),
PEDOT:P(SS-co-St), and PEDOT:PSS.

Material Z-average d (nm) PDI Zeta Potential (mV)

P(SS-co-St) 68.93 0.236 −74.9
PEDOT:P(SS-co-St) 1695 0.261 −70.4

PEDOT:PSS 56.84 0.726 −40.4
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Scheme 1. Schematic of the formation of P(SS-co-St) and PEDOT:P(SS-co-St).

The relatively higher solid content in the aqueous PEDOT:PSS in this study decreased its solution
stability, resulting in high viscosity and gelation. For this reason, the solid content in commercial
PEDOT:PSS (PEDOT to PSS ratio of approximately 1:2.5) is approximately 1.3%. The higher solid
content requires an extremely well-controlled coating processes in order to guarantee high-quality
film formation.

We synthesized CP dispersions under the same conditions with the PEDOT:PSS with a 2%
solid content to compare the solution stabilities of PEDOT:PSS and PEDOT:P(SS-co-St). After the
addition of 5% DMSO, the electrical conductivity of PEDOT:PSS was about 300 S/cm, whereas that of
PEDOT:P(SS-co-St) was 250 S/cm, which is lower than that of the PEDOT:PSS. The high-solid-content
PEDOT:PSS and PEDOT:P(SS-co-St) dispersions were stored for at least one month after synthesis,
and the aged dispersions were then poured into Petri dishes to compare the stabilities of the
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dispersions; results are shown in Figure 4. The PEDOT:PSS dispersion partially gelated, while the
PEDOT:P(SS-co-St) dispersion remained stable. The stability of PEDOT:P(SS-co-St) was, thus,
remarkably enhanced due to its relatively high solid content (2%).
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3.2. Heat-Shielding Efficiency of PEDOT:P(SS-co-St) NIR-Shielding Films

NIR-shielding films composed of organic materials are cost-effective and have simple
manufacturing processes. PEDOT has attracted much interest because of its high heat-shielding
efficiency, great thermal stability, and high transparency when used in thin films [26,27].
However, like other conjugated polymers, PEDOT is insoluble in common organic solvents and water.
In this study, this was resolved by using PSS as a charge-balancing dopant during polymerization of
EDOT, and thus the resultant PEDOT:PSS dispersions were stable and had high conductivity [28].
However, PSS is a strong acid with a pH of less than 2, which adversely affects its lifetime and
performance in many applications. Neutralization of PEDOT:PSS through the use of a base like NaOH
is, thus, necessary to improve its lifetime and performance [27,29].

Yuta et al. suggested that the structure and electrical conductivity of PEDOT:PSS are dependent
on pH [30]. Therefore, the NIR-shielding capability of an aqueous PEDOT:P(SS-co-St) dispersion
depends on pH. The optical properties of the aqueous dispersions were examined using UV–VIS–NIR
spectroscopy after adjusting the pH with 1 M NaOH (Figure 5). The NIR-shielding effect of
PEDOT:P(SS-co-St) in solution was confirmed over a pH range from 2 to 5; there were no significant
differences in the transmittance of the dispersions at different pH values. To determine the transmitted
efficiency (TE) in the visible region (400–780 nm) and shielding efficiency (SE) in the NIR region
(780–2700 nm), the standard solar spectrum is shown for comparison in Figures 5 and 6. In addition,
the transmittance in the NIR region slightly increased, to almost the same extent as NIR shielding
efficiency. This confirmed that the NIR-blocking capacity remained almost constant with increasing
pH. The PEDOT:P(SS-co-St) dispersion was, thus, considered suitable for use in practical applications.

The NIR-shielding efficiency of the PEDOT:P(SS-co-St) films with different transmittance profiles
were also examined by UV–VIS–NIR measurements; the results are presented in Figure 6 and Table 2.
We fabricated a heat-shielding film by varying the transmittance (40% and 50% at 550 nm) of the
film, and confirmed the thermal efficiency of the films. The absorption at 789 nm is due to polaronic
or bipolaronic absorption by the PEDOT shell [31,32]. As a result, the NIR-shielding effect of the
PEDOT:P(SS-co-St) film depends on the film thickness. The thermal barrier effect improved as the
transmittance at 550 nm was reduced from 50% to 40% and as the film thickness increased. In a previous
study, we described the method for determining the shielding efficiency and presented the results [3].
Using this method, the NIR-shielding efficiency of the films were calculated to be 92.0% for the
40%-transmittance film and 86.2% for the 50%-transmittance film. Chen et al. previously reported
that a polypyrrole–polyacrylic acid (PPy–PAA) film was able to block 92.1% of light in NIR region,
but transmitted 32.1% of visible light [4]. The PEDOT:P(SS-co-St) films exhibited good transparency in
the visible region and strong absorption in the NIR region.
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the pristine PET film are provided.

Table 2. Transmittance in the visible region and shielding efficiency in the NIR region of selected
PEDOT:P(SS-co-St) films.

Sample Transmittance (%) (550 nm) NIR Shielding Efficiency (%)
(780–1440 nm)

T 50 50.05 86.25
T 40 39.89 92.05

Based on the aforementioned optical properties of the PEDOT:P(SS-co-St) films, it is reasonable to
suggest that these films show great potential for application as NIR-shielding films. Figure 7 illustrates
the thermal insulation experiment which was conducted, wherein a window of a sealed box was
covered with bare PET or PEDOT:P(SS-co-St)-coated PET films and placed under an IR lamp.
Figure 7b shows the temperature variations inside the box after irradiation for 2000 s, and indicates
the overall variation between the initial and final temperatures. When the box was covered with
a glass slide and a bare PET film was placed over the glass, the temperature increased significantly as
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irradiation time progressed (∆T1 = 20 ◦C). The bare PET film thus did not provide any NIR shielding.
This configuration was thus taken as a reference for comparison with the synthesized films. In contrast,
the heating rate in the box covered with the glass slide and a PEDOT:P(SS-co-St) film was much lower
than in the reference configuration. Further, the heating rate inside the box decreased distinctly as the
film thickness was increased. After irradiation for 2000 s, the overall temperature variation in the box
covered with the PEDOT:P(SS-co-St) film with 50% transmittance (T 50 in Figure 7b; ∆T2 = 12 ◦C),
was lower than that for the reference configuration. Further, the temperature change in the box covered
by the film with lower transmittance (40%; T 40) was even lower (∆T3 = 7 ◦C). All PEDOT:P(SS-co-St)
films were, thus, shown to provide good thermal insulation.
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Figure 7. (a) Schematic illustration of the thermal insulation experiment, wherein a window in a sealed
box was covered with a blank glass slide, commercial PET film, or PEDOT:P(SS-co-St)-coated PET
Film. (b) Temperature changes of the air inside the box under the PET and PEDOT:P(SS-co-St)-coated
PET films.

4. Conclusions

PEDOT:P(SS-co-St) dispersions were synthesized using a two-step process involving
emulsifier-free emulsion copolymerization and oxidative polymerization. The PEDOT:P(SS-co-St)
dispersions exhibited excellent multifunctional performance with high solid contents, stability,
and NIR insulation capacity. The FT–IR and NMR results for PSS and P(SS-co-St) confirmed their
successful polymerization. The size and morphology of the particles were determined via DLS
measurements, zeta potential measurements, and inspection of TEM images. It was more difficult to
stabilize the solution with higher solid content, which is an important factor in the coating process of
CP films. A comparison between the synthesized copolymers and existing CPs showed that the limits
of the existing CPs were exceeded by the polymers synthesized in this experiment. The UV–VIS–NIR
measurements revealed the specific NIR-blocking capacity of the solutions as functions of pH and
film thickness. A PEDOT:P(SS-co-St)-coated PET film was used as the window on a sealed black box
and was illuminated with IR light. The interior air temperature increased to a smaller extent (∆T2 and
∆T3 = 12 and 7 ◦C, respectively) than in the case wherein the window was covered with a bare PET
film (∆T1 = 20 ◦C). As a result of these properties, solution-stable PEDOT:P(SS-co-St) copolymers have
great potential for use as semi-transparent heat insulation coatings.
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