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Abstract: Without the addition of inorganic acids, 2,5-Diaminobenzenesulfonic acid (DABSA)
molecules form an acid environment, and are then electrochemically copolymerized with AN
monomers to generate a self-doped polyaniline (SPAN) film on mild steel substrates. These SPAN
deposition films are employed to test the protection efficiency for mild steel in a corrosion environment
of HCl and NaCl, respectively. Electrochemical impedance spectroscopy (EIS) and polarization were
used to determine the charge transfer resistance (Rct) and corrosion current (Icorr), respectively.
The above two parameters Rct and Icorr are combined to evaluate the protection efficiency of SPAN
film on mild steel. Experimental results show that the SPAN thin film with the AN/DABSA ratio of
8.8 has the optimal corrosion resistance in 1 M HCl and 1 M NaCl aqueous solutions, respectively.
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1. Introduction

Corrosion occurs in consecutive oxidation reactions when metal is exposed to an erosive species,
such as O2 and H+, resulting in the deterioration of metal. Corrosion causes material defects, holes,
and even cracks. Therefore, anti-corrosion is a very common and important issue in material science.
Various methods have been developed to resist corrosion, for example, chrome treatment of steel
surfaces, pickling inhibitors, sacrificial zinc layers, etc. [1]. All of the above methods of corrosion
protection are involved in one of the following ways: (i) in cathodic protection, an electron is donated
to the steel from a sacrificial material; (ii) in anodic protection, an electron is withdrawn from the
steel; or (iii) the steel surface is sealed off from corrosive attacks by a surface layer of another material.
Cathodic protection of protective coating is widely used [2–4]. On the other hand, organic and
polymeric coatings have been also employed to protect metals against corrosion. These coatings are
employed to form a barrier between erosive species and metals, preventing metals from contacting
these erosive species, reducing oxidation [5]. Because conductive polyaniline (PAN) coatings have
been demonstrated to have better anticorrosion properties than other polymers, PAN-functionalized
anticorrosion coatings have been extensively studied in the past decades [6–8]. Although the
mechanism for enhanced corrosion protection has been attributed to an increase in the corrosion
potential and the redox catalytic capability of PAN in the formation of a passive metal oxide layer [9–11],
the precise mechanism of this corrosion control on metals via PAN films has yet to be fully clarified [12].
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A galvanic interaction occurs between metal and PAN with the oxidized and conducting form of PAN,
emeraldine salt (ES), which is usually formed by doping the reduced form of leucoemeraldine base
(EB) with a doping acid. The galvanic interaction between PAN ES and the metal substrate leads to the
polarization of the metal substrate to more positive potentials with the formation of PAN EB and the
subsequent release of the dopant anion. The galvanic interaction forms a protective PAN-film-induced
oxide layer generated via the cyclic reduction of PAN ES to PAN EB, with the subsequent re-oxidation
of the latter species by O2, the formation of a passivating salt film at the PAN metal interface, and the
suppression of O2 reduction as a result of a shift to more positive potentials. On an iron substrate,
the nature of the dopant determines the characteristics of the PAN-induced layer, forming perhaps
an oxide or a salt layer. Dopants would not assist in the formation of an oxide layer where there
are defects.

There are various processes to synthesize polyaniline derivatives, such as chemical oxidation
polymerization and electrochemical polymerization. There are several problems with the direct
application of conducting polymer coatings. Their application for corrosion protection on active metals
becomes difficult because conducting polymers are insoluble and non-fusible [5]; electrochemical
polymerization is an alternative method to directly deposit polyaniline film on the surface of the
metal piece. However, the electrochemical deposition of polyaniline is usually performed in a strong
inorganic acidic solution, limiting its usefulness for metal protection. To avoid the erosive effect of the
strong acid environment on the metal substrate, in this study we alternatively adopted self-doping
aniline monomers in the electrochemical polymerization. Self-doped monomers will participate in
electrochemical polymerization to deposit a self-doped polyaniline film on metal substrates. Sulfonate
groups were incorporated into the polymer backbone of polyaniline, which altered the ion exchange
properties of the polymer, giving rise to a self-doping effect. There are several advantages to the
increased solubility of monomers in aqueous solution and the remaining conductivity in a wider pH
range [13]. Furthermore, the product of self-doped polyaniline possesses chemical stability, thermal
stability, etc. [13–17], greatly increases the applicability of self-doped polyaniline.

In this work, the self-doped polyaniline (SPAN) was co-deposited on a mild steel substrate
using electrochemical polymerization in 2,5-diaminobenzenesulfonic acid (DABSA) and aniline (AN)
co-monomers. Here, DABSA is designed to perform both roles of a di-functional (di-amono-)monomer
and a doping acid. The acidity of DABSA is relatively low compared to inorganic acids, and it is
desirable to reduce the occurrence of erosive reactions and to make polyaniline adhere better to
the mild steel substrate during electropolymerization. An electrochemical impedance test and the
polarization method were employed to evaluate the substantial anti-corrosion effect of the SPAN films
on mild steel in 1 M HCl and 1 M NaCl solutions, respectively.

2. Materials and Methods

2.1. Materials

Reagent grade aniline (Merck, Kenilworth, NJ, USA) was doubly distilled and the resulting
colorless liquid kept under nitrogen in darkness at 5 ◦C. Reagent grade 2,5-diaminobenzenesulfonic
acid (Aldrich, Milwaukee, WI, USA), hydrochloride (Scharlau, Mas d’en Cisa, Spain), and sodium
chloride (Showa, Kyushu, Japan) were used as received. Mild steel (model SPCC, China Steel
Corporation, composition (wt %) of mild steel: C ≤ 0.15, Mn ≤ 0.60, P ≤ 0.10, and S ≤ 0.05) was kindly
provided by the China Steel Corporation (Kaohsiung, Taiwan). Indium-tinoxide (ITO)-coated glass
(8 Ω/�) was purchased from Merck (Kenilworth, NJ, USA).

2.2. Preparation of Test Samples

Mild steel (4 × 1.5 cm2) was used as the corrosion-test substrate. The surface rust of the mild
steel was sequentially removed using abrasive papers (Models 400, 600, and 800). The impurity
on the surface was thoroughly washed using acetone, alcohol and distilled water. The surface of
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indium-tinoxide (ITO)-coated glass was thoroughly washed using acetone, alcohol and distilled water.
A test piece of 1 cm2 area was employed to perform the subsequent experiments.

2.3. Electrochemical Polymerization of SPAN on Mild Steel

Electrochemical experiments were performed using an electrochemical analyzer (PGSTAT 30,
Metrohm Autolab, Utrecht, The Netherlands). All measurements were carried out at room temperature
with a conventional three-electrode configuration consisting of a pre-treated mild steel piece, a platinum
plate auxiliary electrode, and an aqueous Ag/AgCl reference electrode. SPAN was deposited
electrochemically at 25 ◦C by cyclic voltammetry on a mild steel electrode in aqueous solutions
(70 mL) containing constant molarities (0.2 M) of –NH2 with three AN/DABSA molar ratios of 3.4, 8.8,
and 10. The potential range was swept from −200 to 800 mV at a scan rate of 25 mV/s. To compare the
different composition polymers, the reaction times were chosen to control the approximately same
amount of polymer deposited on the electrode corresponding to the respective comonomer feed ratio.
After completing the electropolymerization, the SPAN-deposited mild steel piece was washed using
distilled water to remove residual monomers and then placed in the oven to dry at 60 ◦C for 12 h.

2.4. Materials Analysis

The microstructure of the sample was investigated by scanning electron microscopy (SEM, S-4800,
Hitachi, Tokyo, Japan). Infrared spectra were recorded on an FTIR spectrometer (Agilent Technologies,
Cary 630, Santa Clara, CA, USA) to check the functional groups on polymer films.

2.5. Electrochemical Measurements

Two methods of electrochemical impedance and polarization were employed to study the corrosion
protection in the test solutions of 1 M HCl and 1 M NaCl, respectively. After electropolymerization,
the test piece of SPAN-deposited mild steel was immersed in the test solution for 15 min to perform the
above electrochemical measurements. AC impedance was measured in the frequency range of 10 kHz
and 10 mHz with an AC amplitude of 10 mV. The data on the AC impedance were plotted in a Nyquist
plot including the real and the imaginary parts. The charge transfer resistance (Rct) was obtained from
the semicircular diameter in the real part of the Nyquist plot. The Rct value was substituted into the
following equation to obtain the protection efficiency [2]:

Protection efficiency (%) = {[1/Rct − 1/Rct(c)]/(1/Rct)} × 100 (1)

where Rct and Rct(c) are the blank test and the SPAN-deposited test pieces, respectively.
The polarization measurement was within the potential range of −200 ~ +200 mV (open-circuit

potential, OCP) at a scanning rate of 1 mV/s. The polarization curve consists of anodic and cathodic
polarization curves. The intersection of these two curves corresponds to the corrosion potential.
The corrosion current can be evaluated by the method of Tafel extrapolation. In the linear regions of the
cathodic–anodic Tafel area, corresponding to the corrosion potential ±70 ~ 120 mV, the slopes of the
two linear regions are extended to the intersection point that corresponds to the corrosion current [18].
The corrosion rate (C.R.) can be obtained by substituting the corrosion current into the following
equation [2]:

C.R. (mm/year) = [3.27 × 10−3 × Icorr ×M]/(nρ) (2)

where Icorr is the corrosion current (µA/cm2), M is the molecular weight of the metal, ρ is the metal
density (g/cm3), and n is the metal valence.
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3. Results and Discussion

3.1. Electrodeposition of SPAN

Figure 1 shows the cyclic voltammogramms (CVs) of DABSA-AN electropolymerization on
an ITO electrode in 1 M HCl. In this acidic solution, the current gradually increases with the
increasing cycling number of the electropolymerization (refer to Figure 1a–c), due to the increase of
the conductive polymer. The electropolymerization of polyaniline requires attachment and chain
extension between the active intermediates of the diradical dications [19] generated from the monomers
and the propagating oligomer chains, as shown in Scheme 1. The diradical dication is an energetic
electrophile, thus polymerization is generally performed in the presence of a strong acid (e.g., 1 M
HCl) to deposit polyaniline on the electrode. Since DABSA has two amino groups (–NH2) in the ortho
and para position on the benzene ring, DABSA molecules more readily generate diradical dications
(the bipolaronic form of pernigraniline) than AN molecules, which corresponds to peak B (~800 mV).
This species is an energetic electrophile, extracting an electron from aniline and becoming a radical
cation, which bonds with another radical, indicating by the increase in the intensity of peak A at
~250 mV (referring to the 15th cycle in Figure 1a), that these radical cations undergo bonding to
form the polymer deposited on the ITO anode surface. A comparison of Figure 1a–c reveals that the
intensity of peak A decreases with increasing the DABSA content and gives rise to more nucleation sites
(quinonediimines), increasing the possibility of attachment of these DABSA-generated nucleation sites.
This kind of DABSA attachment leads to a failure in the chain extension, resulting in the suppression
of the intensity of peak A (refer to Figure 1b,c). The electropolymerization of SPAN was performed on
an ITO substrate in 1 M HCl, consisting of AN and DABSA comonomers using cyclic voltammetry,
demonstrating that ITO can resist this strong acid environment and successfully deposit SPAN films on
it. In contrast, mild steel was used to replace the ITO substrate, because the strong acid environment
will directly corrode mild steel substrates and fail to deposit SPAN films on this steel. Therefore,
we tried to run the electropolymerization of DABSA and AN on an ITO electrode without adding
inorganic acid (HCl). The CVs of DABSA-AN electropolymerization on an ITO electrode obtained
in weak acidic solution are shown in Figure 2, revealing that the current tendency is opposite to the
situation illustrated in Figure 1. This result indicates that the monomers of DABSA and AN adsorb
on the ITO surface by driving electrochemical potential in the first sweep, which generate diradical
dications that are difficult to keep energetic in a weak acidic environment, leading to a failure of the
chain extension in later cycling sweeps. Consequently, these deposits are speculated to exist in the form
of oligomers with relatively low electrical conductivity, since these deposits possess low conductivity
and contain lone-pair electrons on nitrogen atoms in the SPAN oligomers, which are suitable for the
anti-corrosion coating of metals. However, a mild steel sheet cannot be used in a strong acid aqueous
solution as the electrode for depositing polyaniline, because this steel sheet is easily corroded so that
polyaniline cannot be successfully deposited on it. Therefore, we mixed the sulfonate-containing
DABSA with AN as the comonomer to make a weak acidic aqueous solution without adding inorganic
acid. This weak acidic comonomer solution did not corrode the steel sheet, and was then subjected to
SPAN electrodeposition on the mild steel electrode. The CVs of DABSA-AN electropolymerization
on a mild steel electrode obtained in weak acidic solution are shown in Figure 3, revealing that the
current tendency is opposite to the situation illustrated in Figure 1, and the electrodeposition behavior
is almost the same as that on an ITO electrode, as seen in Figure 2. In the present study, it is presumed
that these SPAN deposits on mild steel substrates can be further employed to test anti-corrosion in
HCl and NaCl.
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Figure 1. Cyclic voltammograms of SPAN deposited on an ITO electrode using electropolymerization 
in 1 M HCl with AN/DABSA mole ratio of (a) 10 (pH = −0.17), (b) 8.8 (pH = −0.19), and (c) 3.4 (pH = 
−0.21) at a scan rate of 25 mV/s. 

 

Scheme 1. The mechanism of the growing polyaniline. 

Figure 1. Cyclic voltammograms of SPAN deposited on an ITO electrode using electropolymerization
in 1 M HCl with AN/DABSA mole ratio of (a) 10 (pH = −0.17), (b) 8.8 (pH = −0.19), and (c) 3.4
(pH = −0.21) at a scan rate of 25 mV/s.
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with AN/DABSA mole ratio of (a) 10 (pH = 6.24), (b) 8.8 (pH = 6.12), and (c) 3.4 (pH = 5.86) at a scan
rate of 25 mV/s.
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3.2. Material Analysis

3.2.1. Morphology of SPAN Deposits

Figure 4 shows photos of mild steel surfaces before and after abrasion using sandpaper, as well
as SPAN deposited on the working area for the anti-corrosion test, demonstrating that there was
significant rust on the surface of the mild steel before abrasion using sandpaper, and that a bright
surface can be observed after abrasion. The pale purple SPAN-deposit on the surface of mild steel from
the CV electropolymerization should also be noted. SEM images of the mild steel and SPAN deposited
on mild steel substrates are shown in Figure 5. It is obvious that the surface of the mild steel substrate
has a flat appearance (Figure 5a). In Figure 5b–d, SPAN can be successfully deposited on the surface of
the mild steel substrate, demonstrating a substantial deposit. Figure 5e,f show that the SPAN films
are still attached to the surface after the AC impedance tests in the 1 M HCl and 1 M NaCl solutions,
respectively. To study the anti-corrosion characteristics of these SPAN films, each film deposition was
swept about fifteen cycles using cyclic voltammetry to control a thickness of 100 ± 10 nm (refer to
Figure 6).
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Figure 6. SEM cross-sectional image of SPAN deposited on a mild steel substrate with an AN/DABSA
ratio of 8.8 swept fifteen cycles using cyclic voltammetry.

3.2.2. FTIR Spectra

Figure 7 shows FTIR spectra of SPAN electrodeposited on mild steel with an AN/DABSA
ratio of 8.8, revealing that the out-of-plane and in-plane C–H bonds appear at peaks of 837 and
1190 cm−1 [20], respectively, and that the vibration of the benzene rings and quinone rings are located
at the peaks of 1515 and 1626 cm−1 [20], respectively; whereas the peak of 3363 cm−1 corresponds to
N–H stretching [20]. In this work, self-doped polyaniline SPAN) was electrodeposited on a mild steel
substrate, and as a result the sulfonate on DABSA was involved in the spectra, which was centered at
1041 cm−1 corresponding to the S=O bond [21].
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3.3. Characterization of the Anticorrosion Properties of the Deposited Polymer Layers

3.3.1. Electrochemical Measurements

Corrosion Test in HCl

Electrochemical impedance is a common method used to study the mechanism of corrosion.
In corrosion tests, the Nyquist plot measured by electrochemical impedance shows a semicircle in the
testing media [22], corresponding to the equivalent circuit, as shown in Figure 8, in which Rs represents
the electrolyte resistance, Rct is the charge transfer resistance between the electrolyte and electrode,
and CPE stands for the double layer capacitance on the electrode surface [23–25].
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Figure 8. The equivalent circuit of corrosion tests.

The Nyquist plots obtained by the AC impedance test in 1 M HCl solution are shown in Figure 9,
revealing that the charge transfer resistance (Rct) of SPAN deposited on mild steels is several hundred
times higher than that of the blank sample (mild steel). The highest charge transfer resistance exists on
the SPAN film with AN/DABSA of 8.8. The charge transfer resistance and the protection efficiency are
listed in Table 1. An examination of Table 1 reveals that the protection efficiency (PE) of electrodeposited
SPAN films is more than 95% in 1 M HCl solution. In addition, the best efficiency of 97.4% corresponds
to the SPAN film with AN/DABSA ratio of 8.8. One possible explanation for this result arises from
the composition of the deposited film, which has a relatively dense structure covered in steel. At the
highest AN/DABSA ratio of 10, the corresponding SPAN film was suddenly extra-doped by 1 M HCl
to significantly increase the electrical conductivity (i.e., the lowest Rct value in Table 1), resulting in
lower protection efficiency.
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Table 1. Charge transfer resistance (Rct) derived from EIS measurements (Figure 9) and the protection
efficiency (PE) of bare and SPAN-deposited mild steels with different AN/DABSA ratios in 1 M HCl.

Sample Rct (Ω cm2) PE (%)

Bare 12.0 (0.16) –
AN/DABSA = 10 283.4 (1.51) 95.8 (0.51)
AN/DABSA = 8.8 453.5 (3.24) 97.4 (0.70)
AN/DABSA = 3.4 398.0 (2.16) 97.0 (0.53)

Note: The data in parentheses represent the standard deviation.

Figure 10 demonstrates the polarization curve obtained by polarization in 1 M HCl solution.
The electrochemical data obtained using the Tafel extrapolation method are listed in Table 2, revealing
that there is no significant difference in the corrosion potential (Ecorr). On the three SPAN films
with different ratios of AN/DABSA, the nitrogen atoms on the polyaniline molecular chains can be
completely doped by H+ in 1 M HCl (strong acid), so that the Ecorr values were almost the same.
It should also be noted that the corrosion current (Icorr) of the test piece with the SPAN-deposited film
was much lower corresponding to the increase in polarization resistance (Rp). It should further be
noted that the corrosion rate (C.R.) of the SPAN-deposited films was from 12 to 14 times lower than
that of the blank test piece (mild steel).
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Table 2. Electrochemical parameters obtained using polarization on bare and SPAN-deposited mild
steels with different AN/DABSA ratios in 1 M HCl.

Sample Ecorr (mV vs. Ag/AgCl) Icorr (µA) Rp (Ω cm2) C.R. (mm year−1)

Bare −410 (4.14) 953.0 (9.62) 16.6 (0.17) 11.11 (0.11)
AN/DABSA = 10 −408 (6.16) 78.8 (1.19) 288.0 (4.34) 0.92 (0.01)
AN/DABSA = 8.8 −411 (5.59) 66.9 (0.91) 331.2 (4.50) 0.78 (0.01)
AN/DABSA = 3.4 −411 (2.68) 69.0 (0.45) 300.5 (1.96) 0.80 (0.05)

Corrosion is generally caused by an electrochemical inhomogeneity in a metal or its environment.
In contact with an electrolyte, corrosion happens in metal areas with higher free energy (or higher
potential), namely anodes, and those of lower free energy (or lower potential), namely cathodes,
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thereby generating a corrosion cell. Metal ions are produced at the anode and dissolve into the
electrolyte. The electrons pass through the metal to the adjacent cathode areas that have reacted
with the environment. Electrons flow from the anode to the cathode and the related charge transfers
through the electrolyte from the cathode to the anode creating the corrosion current. The corrosion
rate is, therefore, related to the corrosion current. The process of corrosion can be represented by the
following reactions [7]:

Reactions of carbon steel in acid solutions with dissolved oxygen [7,26]:

Anode (oxidation): Fe→ Fe2+ + 2e− (3)

Cathode (reduction): O2 + 4H+ + 4e− → 2H2O (4)

There are two steps in the oxidative rusting process of carbon steel in dissolved oxygen solution [7]:

Fe +
1
2

O2 + H2O→ Fe2+ + 2OH− → Fe(OH)2 (5)

2Fe(OH)2 +
1
2

O2 + H2O→ 2Fe(OH)3 (6)

Ferric hydroxide, Fe(OH)3, is known normally as red rust and forms in the initial stages of
corrosion, gradually changing to ferric oxy-hydroxide, FeOOH. Fe(OH)3 further dehydrates to become
ferric oxide:

2Fe(OH)3 → Fe2O3 + 3H2O (7)

SPAN coating can work as a barrier against the diffusion of the electrolyte (HCl) and aggressive
ions (Cl−), protecting the substrate metal. In addition, the oxidation of metal can give rise to the
reduction of SPAN (ES) to SPAN (EB) in the SPAN deposit film, leading to the anodic protection of a
passive, protective FeOOH layer [27,28]. Chloride ions easily pass through the protective layer and
reach the metal surface, thus accelerating the dissolution reaction. In the acidic solution, chloride ions
would be inhibited to slow down the dissolution and corrosion of mild steel [7]. There exists a galvanic
coupling between the metal and the SPAN (Scheme 2) when a scratch occurs on the SPAN-coated metal.
The cathodic reaction involves the reduction of the SPAN associated with the prominent activation
of the self-doping anions (−SO3

−), whereas the anodic reaction involves the oxidation of the metal.
On the other hand, the O2 reduction occurs simultaneously on both the SPAN layer and metal surface,
leading to the SPAN reoxidation and the production of OH−, respectively. A self-healing process
might be initiated, depending on the nature of the metal and doping anions. In general, metal oxide
formation is initiated by SPAN coatings, leading to the formation of a protective layer of metal oxides
on the metal surface, preventing corrosion (anodic protection mechanism [7,29]), or the self-doping
anions (−SO3

−) act as inhibitors (controlled inhibitor release mechanism [7,30,31]). It seems that the
sulfonate groups in SPAN act as inner doping anions, excluding an anion exchange process between
the SPAN film and the chloride-containing solution. Several investigations have also shown this
effect in the case of the polyaniline layer [30–33]. From Table 1, we can see that the anti-corrosion
ability of the SPAN film with an AN/DABSA ratio of 10 is lower than that of the SPAN film with
an AN/DABSA ratio of 8.8, because the content of the sulfonate anion in the former film is lower
than that in the latter film. The low content of sulfonate anions is not conducive to preventing the
Cl− anion from attacking the metal substrate through the deposited polymer layer, resulting in the
corrosion of the metal substrate. Although the highest content of sulfonate anion is in SPAN film with
an AN/DABSA ratio of 3.4, its hydrophilicity is also the highest, which offsets the effect of the high
sulfonate anion blocking the attack of the Cl− anion on the metal substrate. As a consequence, we infer
that the polymer film has the optimal AN/DABSA ratio for anti-corrosion. An AN/DABSA ratio of
8.8 is optimal.
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an anion, SO3

−, which acts as a corrosion inhibitor.

Corrosion Test in NaCl

Figure 11 shows Nyquist plots obtained by an AC impedance test in 1 M HCl solution, revealing
that the charge transfer resistance (Rct) of SPAN deposited on mild steels is several times higher than
that of the blank sample (mild steel). The highest charge transfer resistance still exists on the SPAN
film with an AN/DABSA of 8.8. The charge transfer resistance and the protection efficiency are listed
in Table 3. It is obvious that the protection efficiency (PE) of electrodeposited SPAN films ranges from
50% to 83% in 1 M NaCl solution. In addition, the best efficiency of 82.9% corresponds to SPAN film
with an AN/DABSA ratio of 8.8. This trend is consistent with that for 1 M HCl solution.

Figure 12 demonstrates the polarization curve obtained by polarization in 1 M NaCl solution.
The electrochemical data obtained using the Tafel extrapolation method are listed in Table 4, revealing
that there is significant increase in the corrosion potential (Ecorr) on SPAN-deposited samples,
as compared to bare mild steel. The Ecorr values of the three SPAN films were different in 1 M NaCl.
In this case, Na+ ions could not completely dope the nitrogen atoms on the polyaniline molecular
chains in the obtained SPAN films, because the radius of Na+ ion (149 pm) was much larger than
that of H+ (10 pm), leading to the difficult diffusion of Na+ ions into the SPAN films to dope the
nitrogen atoms of the polymer chains. As a result, the three films retained the doping degree of the
original sulfonate on the DABSA molecules in the SPAN chains. The doping degree of the SPAN films
with AN/DABSA ratio of 8.8 was greater than that with a ratio of 10, corresponding to the higher
Ecorr value of the former film. On the other hand, although the doping degree of the SPAN film with
an AN/DABSA ratio of 3.4 was theoretically the highest, its solubility in water was also relatively
high, resulting in an Ecorr value corresponding to that of SPAN film with an AN/DABSA ratio of
10. This indicates that the anti-corrosion ability increases in this SPAN-deposited mild steel, whereas
the highest corrosion potential of −523 mV was achieved on the SPAN film with an AN/DABSA
ratio of 8.8. The corrosion current (Icorr) of the test piece with the SPAN-deposited film was lower,
corresponding to the increase of polarization resistance (Rp). In addition, the corrosion rate (C.R.) of
the SPAN-deposited films was two times lower than that of the blank test piece (mild steel).
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Table 3. Charge transfer resistance (Rct) derived from EIS measurements (Figure 11) and protection
efficiency (PE) of bare and SPAN-deposited mild steels with different AN/DABSA ratios in 1 M NaCl.

Sample Rct (Ω cm2) PE (%)

Bare 246.5 (2.01) –
AN/DABSA = 10 494.0 (4.08) 50.1 (0.42)
AN/DABSA = 8.8 1437.5 (22.46) 82.9 (1.29)
AN/DABSA = 3.4 906.9 (17.10) 72.9 (1.37)

The data in parentheses represent the standard deviation.
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Figure 12. Polarization curves of bare and SPAN-deposited mild steels with different AN/DABSA
ratios in 1 M NaCl.

Table 4. Electrochemical parameters obtained by using polarization on bare and SPAN-deposited mild
steels with different AN/DABSA ratios in 1 M NaCl.

Sample Ecorr (mV vs. Ag/AgCl) Icorr (µA) Rp (Ω cm2) C.R. (mm year−1)

Bare −665 (13.04) 20.9 (0.41) 1184.4 (23.23) 0.24 (0.004)
AN/DABSA = 10 −604 (8.86) 14.3 (0.21) 1946.1 (28.57) 0.16 (0.002)
AN/DABSA = 8.8 −523 (11.88) 8.8 (0.20) 4169.0 (94.75) 0.10 (0.002)
AN/DABSA = 3.4 −606 (19.34) 14.1 (0.45) 1916.1 (61.15) 0.16 (0.005)
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The reactions of carbon steel in NaCl solutions were as follows:

Fe→ Fe+2 + 2e− (8)

Fe+2 → Fe+3 + 1e− (9)

O2(g) + 2H2O + 4e− → 4OH− (10)

2 Fe+2 (aq) + O2(g) + 2H2O→ 2FeOOH + 2H+ (11)

The formation of a FeOOH layer provided protection for the metal and prevented it from corrosion.
In a 1 M NaCl solution, SPAN (EB) was converted to SPAN (ES) via the oxygen reduction reaction.

2O2 + 4H2O + SPAN (EB)→ SPAN (ES) + 8OH− (12)

As long as the polyaniline was in conducting (ES) form, it could provide protection to the metal
and this still persisted with complete coverage in the coating. SPAN coating also works as a barrier
against the diffusion of the electrolyte (NaCl) and aggressive ions (Cl−), protecting the substrate metal.
In addition, the oxidation of metal can give rise to the reduction of SPAN (ES) to SPAN (EB) in the
SPAN deposit film, leading to the anodic protection of a passive, protective FeOOH layer [27,28].
The mechanism set out in Scheme 2 can also be employed to explain the corrosion protection of SPAN
on mild steel in 1 M NaCl. One significant difference is that Na+ cations in NaCl solution cannot
dope SPAN as effectively as H+ cations in HCl solution, resulting in an incomplete ES state for the
SPAN. As a result, the relative efficiency of SPAN corrosion protection is lower in NaCl than in HCl
(refer to Tables 1 and 3). The anti-corrosion ability of the SPAN film with an AN/DABSA ratio of 10 is
lower than that of a SPAN film with an AN/DABSA ratio of 8.8, because the content of sulfonate
anion in the former film is lower than that in the latter film. The low content of sulfonate anion is not
effective in preventing the Cl− anion from attacking the metal substrate through the deposited polymer
layer, resulting in the corrosion of the metal substrate. The SPAN film with an AN/DABSA ratio of
3.4 possessed the highest content of sulfonate anion and the highest hydrophilicity, the two effects of
high sulfonate anions, namely blocking the attack of the Cl− anion and high hydrophilicity would offset
each other. As a result, the SPAN film with AN/DABSA ratio of 8.8 has the optimal anti-corrosion.

4. Conclusions

We have presented the first demonstration of self-doped polyaniline films that incorporate
2,5-diaminobenzenesulfonic acid in aniline for corrosion protection coatings. The self-doped
polyaniline films were obtained using electrodeposition by the direct electropolymerization of
aniline and 2,5-diaminobenzenesulfonic acid on mild steel, without the addition of extra inorganic
acid. The coatings exhibited effective protection of the surface of mild steel because of the
significant prevention of Cl− and O2 attacks by forming an inert barrier. The optimal content of
2,5-diaminobenzenesulfonic acid in a polymer film, namely an aniline/2,5-diaminobenzenesulfonic
acid ratio of 8.8, enhances the prevention of Cl− and O2 attack and is responsible for the highly desirable
anticorrosion properties. As such, copolymers of aniline and 2,5-diaminobenzenesulfonic acid have
excellent potential to be used as corrosion protection coating materials in a HCl or NaCl medium.
As it convenient to obtain the anti-corrosion films using direct polymerization on a metal substrate
without adding inorganic acid, we believe that electrodeposited self-doped polyaniline films will
create a category of corrosion protection materials in the future and possibly replace other polymers.
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