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Abstract: In this work, nanosized Cu and Ni Schiff-base complexes, namely ahpvCu, ahpnbCu, and
ahpvNi, incorporating imine ligands derived from the condensation of 2-amino-3-hydroxypyridine,
with either 3-methoxysalicylaldehyde (ahpv) or 4-nitrobenzaldehyde (ahpnb), were synthesized using
sonochemical approach. The structure and properties of the new ligands and their complexes with
Ni(II) and Cu(II) were determined via infrared (IR), nuclear magnetic resonance (NMR), electronic
spectra (UV-Vis), elemental analysis (CHN), thermal gravimetric analysis (TGA), molar conductivity
(Λm), and magnetic moment (µeff). The combined results revealed the formation of 1:1 (metal:
ligand) complexes for ahpvCu and ahpvNi and 1:2 for ahpnbCu. Additionally, CuO and NiO
nanoparticles were prepared by calcination of the respective nanosized Cu/Ni complexes at 500 ◦C,
and characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM).
Significantly, the as-prepared nanosized Schiff-base Cu/Ni complexes and their oxides showed
remarkable catalytic activity towards the selective oxidation of benzyl alcohol (BzOH) in aqueous
H2O2/ dimethylsulfoxide (DMSO) solution. Thus, catalytic oxidation of BzOH to benzaldehyde
(BzH) using both ahpvCu complex and CuO nanoparticles in H2O2/DMSO media at 70 ◦C for 2 h
yielded 94% and 98% BzH, respectively, with 100% selectivity.

Keywords: Schiff-base Cu(II) and Ni(II) complexes; metal oxides; nanoparticles; sonochemical;
catalytic activity; benzyl alcohol

1. Introduction

Owing to their wide-spread application in biology, biomedicine, and catalysis, complexes bearing
Schiff-base ligands are among the most intensively explored coordination compounds [1–4]. A large
number of Schiff-base transition-metal complexes are commonly employed as oxidation catalysts in
a variety of important organic transformations, because of their facile synthesis and excellent chemical
and thermal stability [2,5–8]. Given their inherent conducting and magnetic properties, Schiff-base
complexes are also employed as precursors in many technologies, including electrochromic display
screens, organic batteries, and microelectronic devices [9–13].

Selective oxidation of alcohols to aldehydes is an important and widely used reaction, as aldehydes
are crucial intermediates for many organic syntheses and essential precursors for making vitamins,
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drugs, and fragrances. Benzaldehyde (BzH), in particular, is commonly employed in the manufacture
of flavors, odorants, and other pharmaceutical products [14–18]. Previous studies have shown that
manipulation of the reaction conditions (e.g., reactant concentration, temperature, and pressure) and
the choice of solvent and oxidation catalyst are essential factors for controlling the reaction rate, along
with the nature and quantity of the generated side products [17,19]. However, in view of their pivotal
role in redox chemistry, tremendous efforts have been devoted in recent years to design and develop
novel types of catalysts to improve the selectivity and chemical yield of such reactions [15,16,20,21].

Among the endeavors in the exploration of smart materials in catalysis, inorganic precursors, such
as metal oxides (MOs) have received considerable interest over the past few decades, due to their ability
to withstand extremely harsh reaction conditions and their promising catalytic activity toward many
important transformation processes [21–27]. The catalytic properties of these metal oxides rely, in part,
on their high surface area and the relative acidity and basicity of the atoms present on their surface,
which can be tuned via coordination of metal cations and oxygen anions [28–31]. However, the great
challenge in the synthesis of nanotechnology-based materials lies in the production of nanostructures
with desired properties that can be tailored and/or tuned to meet specific applications [32–37].

In this contribution, we explored the catalytic activity of nanosized Ni(II) and Cu(II) complexes
comprising Schiff-base ligands derived from the condensation of 2-amino-3-hydroxypyridine with
3-methoxysalicylaldehyde or 4-nitrobenzaaldehyde along with their generated MO nanoparticles
(MO = NiO and CuO) [1] on the oxidation of benzyl alcohol (BzOH) under homogeneous conditions.
Other experimental parameters, such as the effect temperature, concentration, and various solvents
on the catalytic oxidation of BzOH, were also investigated. Our findings revealed that the parent
complexes together with their respective MO showed efficient catalytic activity for oxidation of BzOH
into BzH with approximately 100% selectivity under mild conditions.

2. Results and Discussion

2.1. Physicochemical Characteristics

All the prepared complexes are hydrated, air-stable solids at ambient temperature.
The physicochemical and analytical results of Schiff-base ligands and their M(II)-complexes (M = Cu and
Ni) are described in details in Table S1 in the Supplementary Materials. Complexes ahpvCu and ahpvNi
display a 1:1 (metal: ligand) ratio, whereas the ahpnbCu complex presents a 1:2 stoichiometry (vide infra).

2.2. 1H-NMR Spectroscopy

The 1H-NMR spectra of the prepared Schiff-base ahpv and ahpnb ligands in dimethylsulfoxide
(DMSO)-d6 show a singlet signal at 9.44 and 9.39 ppm for the azomethine (CH=N) proton, multiple
signals at 6.85–8.00 and 7.25–8.46 for six and seven aromatic protons. Moreover, the ahpnb ligand
displays only a singlet signal at 10.28 for the OH proton, whereas the ahpv ligand shows similar singlet
signal at 10.23 and 6.41 for the OH protons in the pyridine ring and adjacent to OCH3, respectively,
along with a singlet signal at 3.34 for the three OCH3 protons [1,38,39].

2.3. Infrared and Electronic Spectra

The characteristic infrared (IR) frequencies of the ligands and their complexes, together with
their assignments, are shown in Table S2. The bands assigned to –OH and –CH=N groups are
distinguishable and provide insight into the structure of the ligands and their bonding to the metal
ion. The bands at 1613 and 1621 cm−1 in the ahpv and ahpnb ligands, respectively, are attributed
to the −C=N stretching vibration. Upon coordination, these bands shift to lower wavenumbers by
5–12 cm−1. This negative shift is indicative of the direct coordination of the azomethine nitrogen atoms
to the metal ion [1,40,41]. This conclusion is supported by the appearance of strong bands within
527–656 cm−1 range, corresponding to the stretching of the M–N bond.

Additionally, the IR bands at 3447 and 3475 cm−1 observed for both ahpv and ahpnb ligands are
consistent with the stretching vibration of free –OH. The IR spectra of all the prepared complexes show
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broad bands at 3450 and 3490 cm−1, assigned to the υ(OH) stretching vibration of the hydrated water
molecules in the complexes, as evidenced by the elemental analysis data listed in Table S1. However,
the observation of IR bands at 814–976 cm–1 (OH rocking) implies the existence of coordinated H2O
in the prepared complexes. The Schiff-base (ahpv and ahpnb) ligands also display absorption bands
at 1307 and 1288 cm−1, respectively, which are assigned to the stretching vibration of the phenolic
C–O group. The shift of that band to lower wavenumbers by 9–35 cm−1 for ahpv and 3 cm−1 for
ahpnb upon complexation implies that the oxygen atoms of deprotonated phenolic groups are directly
coordinated to the metal ion. The involvement of such bands in binding to the metal ion is further
supported by the appearance of strong non ligand bands within 723–736 cm−1 range, assigned to the
stretching vibration of the M–O bond. As reported for related complexes, the bands observed in the
region of 3047–3079 cm−1 are assigned to υ(C–H) aromatic stretching vibrations [1,42].

Figure S1 showed representative electronic absorption spectra of the ahpvCu complex and its
components in N,N′-dimethylformamide (DMF) in the wavelength range of 200–800 nm at 25 ◦C.
The absorption bands below 300 nm are assigned to π–π* transitions in the aromatic rings, whereas the
absorption bands at λmax = 314–349 nm are attributed to n–π* transitions of the imine group in the
Schiff-base ligands [43]. As for the complexes, the absorption bands at λmax = 239–391 nm are consistent
with a charge transfer in the Schiff-base ligands [44], whereas the broad bands at λmax = 430–506 nm
are indicative of d–d transitions in the complexes [44].

2.4. Magnetic Moment Measurements and Thermal Analysis

Magnetic susceptibility provides valuable insights on the geometric structure of compounds.
In this context, the magnetic susceptibility results (Table S1) revealed that all prepared complexes
exhibit paramagnetism and octahedral geometry, except for the ahpvCu complex, which presents a
tetrahedral geometry [45]. The thermal behavior of the as-prepared complexes revealed the loss of the
hydrated water molecules in the first step; then, in subsequent steps, the coordinated water molecules
are released and the ligands decomposed, as shown in Table S3 [46]. The final decomposition products
were identified as the metallic species [47,48].

2.5. Spectrophotometric Determination of the Stoichiometry of the Prepared Complexes

The stoichiometry of the prepared Schiff-base complexes was determined using two
spectrophotometric methods, namely, the continuous variation and molar ratio methods [49].
The curves obtained from the continuous variation method revealed a maximum absorbance at
a mole fraction Xligand = 0.43–0.68, thereby suggesting metal-to-ligand complexation in a molar ratio of
either 1:1 or 1:2, as illustrated in Figure 1a. Similarly, the results obtained from the molar ratio method
supported the above findings for the three prepared complexes, as shown in Figure 1b. Consistent
with the aforementioned characterization, the data obtained from the two methods clearly confirm
that the stoichiometry (metal: ligand) is 1:1 for both ahpvCu and ahpvNi complexes, and 1:2 for the
ahpnbCu congener.Catalysts 2018, 8, x FOR PEER REVIEW  4 of 15 
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2.6. Formation Constants and pH Stability Range of the Complexes

The formation constant (Kf) of the prepared Schiff-base Cu-and Ni-complexes in solution
was determined via spectrophotometric measurements using the continuous variation method and
Equation (1) [50]:

Kf =
A/Am

4C2(1− A/Am)
3 , (1)

where Am is the absorption at the maximum formation of the complex, A denotes arbitrary absorbance
values on either side of the absorbance curve, and C is the elementary concentration of the metal.
As summarized in Table 1, the obtained Kf values reflect the high stability of the prepared complexes.
Importantly, the negative values of the Gibbs free energy (∆G 6=) mean that the reactions are
spontaneous and favorable.

Table 1. Formation constant (Kf), stability constant (pK), and Gibbs free energy (∆G 6=) values of the
synthesized complexes in aqueous ethanol at 298 K.

Complex Stoichiometry Kf pK ∆G 6= (kJ mol−1)

ahpvCu 1:1 7.15 × 108 8.85 −50.48
ahpnbCu 1:2 3.62 × 1010 10.55 −60.20
ahpvNi 1:1 9.60 × 109 9.98 −56.91

Furthermore, the pH profiles (absorbance vs. pH, Figure S2) of the prepared complexes established
their marked stability in a wide pH range (4–11). This behavior indicates that the stability of the
Schiff-base ligands is strongly enhanced by formation of the corresponding complexes, thereby making
them suitable for various applications (vide infra).

2.7. Particle Size of the Prepared Complexes and Their Metal Oxides

Cu(II) and Ni(II) oxide nanoparticles were synthesized at 500 ◦C using the Schiff-base complexes
as precursors and their structure and morphology were examined by transmission electron microscopy
(TEM) and powder X-ray diffraction (PXRD). Based on the TEM images and the calculated histograms
(Figure 2), it is evident that the prepared complexes have an average particle size of 46 and 65 nm,
for ahpvCu and ahpvNi, respectively. The corresponding metal oxides (CuO and NiO) have a particle
size of 42 and 16 nm as illustrated in Figure S3. These results clearly confirm that the prepared
compounds have high surface area, which is essential for application in catalysis, as discussed in
details below [51].

The X-ray diffraction (XRD) patterns of the synthesized CuO and NiO nanoparticles, as shown in
Figure 3. The obtained XRD data are consistent with the reported values for CuO and NiO, thereby
confirming the formation of pure phases of these materials [12]. The mean grain size (D) of the particles
was estimated from the XRD line broadening using the Scherrer equation [52]:

D = 0.89λ/β cos θ (2)

where λ is the wavelength (Cu Kα), β is the full width at the half-maximum (FWHM) of the CuO and
NiO lines, and θ is the diffraction angle. Importantly, the annealing temperature was found to greatly
affect the particle morphology of the as-prepared CuO and NiO powders.
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2.8. Catalytic Oxidation of Benzyl Alcohol Using Schiff-Base M(II) Complexes and Their Oxides

The catalytic oxidation of BzOH in DMSO and other organic solvents was performed using the
prepared nanosized Cu and Ni Schiff-base complexes (ahpvCu, ahpnbCu, and ahpvNi) and their metal
oxide (CuO and NiO) nanoparticles in the presence of aqueous H2O2 as the oxidant under different
experimental conditions, as described in Tables S4–S6. The obtained results clearly demonstrate
that the prepared nanosized complexes and their MO exhibit efficient and highly selective catalytic
oxidation of benzyl alcohol (BzOH) to the corresponding benzaldehyde (BzH) as the main product,
compared to other conceptually and structurally related catalysts as illustrated in Table 2. This finding
implied the crucial role of sonochemical approach in providing much higher surface area nanocatalysts
compared to other conventional methods of synthesis.
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Table 2. Comparison of the catalytic activity for BzOH oxidation using Schiff-base complexes and
metal oxides.

Compound Conversion (%) Selectivity (%)
a ahpvCu 95 100

a ahpnbCu 94 100
b npisnphCu 79 100
b bsisnphCu 90 100

a CuO 96 100
c CuO 69 91

a This work, b Ref. [19], and c Ref. [21].

2.8.1. Effect of Temperature

The effect of temperature on the catalytic activity of the prepared Schiff base-M(II) (M = Cu
and Ni) complexes and their metal oxides (MO) toward the oxidation of BzOH in DMSO, using
aqueous H2O2 as the oxygen source, was evaluated and optimized at different temperatures (60, 70,
80, and 90 ◦C) and time intervals. Tables S4 and S5 summarize the data obtained from using
both ahpvCu and its corresponding CuO as catalysts presented in Figure 4. For all prepared
nanocatalysts, gas chromatography (GC) confirmed that BzH was the solely generated product for
BzOH oxidation reaction.Catalysts 2018, 8, x FOR PEER REVIEW  7 of 15 
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Figure 4. Oxidation of benzyl alcohol (1.0 mmol) catalyzed by the prepared Schiff base-M(II) complexes
and their respective metal oxide (MO) (0.03 mmol) using aqueous H2O2 (3.0 mmol) in dimethylsulfoxide
(DMSO) at designated temperatures using: (a) ahpvCu, (b) ahpnbCu, (c) ahpvNi complexes, (d) CuO,
and (e) NiO.

Control experiments using only H2O2 (i.e., in the absence of the Schiff base-M(II) complexes or
their MO) showed that no other carbonyl products were formed to a measurable extent under similar
conditions. Importantly, as can be seen from Figure 4d,e, it is clearly established that the MOs exhibit
higher catalytic activity toward BzOH oxidation than their parent complexes at all the investigated
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temperatures [53]. In the case of CuO (Figure 4d), for instance, the rate of conversion is remarkably
increased with the reaction temperature, meanwhile the selectivity toward BzH remained constant.
According to the results shown in Table S5, after 30 min, the conversion of BzOH to BzH increased
from 45% to 88% upon increasing the temperature from 60 to 90 ◦C, while the selectivity for generation
of BzH was nearly 100% under both conditions.

2.8.2. Effect of the Solvent

Previous studies have shown that the nature of the solvent plays a crucial role in the catalytic
oxidation of alcohols and the control of the stereo- and chemo-selectivity, as well as the conversion
yield [19,54–56]. In the present study, the catalytic behavior of the prepared Schiff-base M(II) complexes
and their MOs toward the oxidation of BzOH was investigated in various solvents, including
acetonitrile (AN), acetone (AC), N,N′-dimethylformamide (DMF), and dimethylsulfoxide (DMSO).
The catalytic reactions were conducted under the optimized conditions for all catalysts, and the
obtained results are presented in Table 3. As can be seen from these data, the catalytic activity is
prominently influenced by the nature of the solvent, with DMSO being the best solvent for all catalysts
affording 94–98% conversion of BzOH into BzH. This is probably, due to the fact that DMSO is the most
polar of all the studied solvents and has the greatest coordinating ability, which strongly activated the
catalyst toward the oxidation of BzOH. Although NiO yielded 92–97% of BzH, its parent Ni-complex
gave the lowest conversion (~55%). Therefore, under these conditions, the Schiff-base Cu-complexes
are more efficient catalysts than their Ni-counterparts.

Table 3. Summary of the optimized parameters for oxidation of BzOH using the five prepared
nanocatalysts.

Compound a Solvent Temp. (◦C) Time (h)
Yield (%) Conversion

(%)
Selectivity

(%)BzH b BzA c Side Products R

ahpvCu

DMF

70 2

33 0 0 67 33 100
Acetone 7 7 0 86 14 50
DMSO 95 0 0 5 95 100

Acetonitrile 48 0 0 52 48 100

ahpnbCu

DMF

70 2

44 0 0 56 44 100
Acetone 25 11 0 64 36 69
DMSO 94 0 0 6 94 100

Acetonitrile 46 0 0 54 46 100

ahpvNi

DMF

70 1

15 0 0 85 15 100
Acetone 5 4 3 88 12 42
DMSO 55 0 0 45 55 100

Acetonitrile 28 0 0 72 28 100

CuO

DMF

70 2

61 0 0 39 61 100
Acetone 18 11 4 67 33 54
DMSO 98 0 0 2 98 100

Acetonitrile 66 0 0 34 66 100

NiO

DMF

70 1

52 0 0 48 52 100
Acetone 45 12 0 43 57 79
DMSO 97 0 0 3 97 100

Acetonitrile 84 0 0 16 84 100
a Oxidation of benzyl alcohol (R) (1.0 mmol) catalyzed by ahpvCu complex (0.03 mmol) with aqueous H2O2
(3.00 mmol) in 10 cm3 DMSO for 0.5–4 h. b Yield based on gas chromatography (GC) results: Selectivity percentage
of the target oxide product, benzaldehyde (BzH), and the other product, benzoic acid (BzA). c The side product was
mainly benzoic acid (BzA).

In contrast to DMSO, all catalysts showed drastically poor catalytic activity when acetone was
used as the solvent, with the highest selectivity (~69%) and conversion (~36%) for BzOH oxidation
being achieved when ahpnbCu complex is used. In view of these results, it can be concluded that the
most suitable solvent for the efficient catalytic oxidation of benzyl alcohol by the ahpvCu, ahpnbCu,
and ahpvNi complexes, along with CuO and NiO, is DMSO, as previously reported [57].
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2.8.3. Effect of the Catalyst Concentration

The amount of catalyst used for the oxidation of primary alcohols, such as benzyl alcohol
has a profound impact on the kinetics and yield of the produced products, particularly
benzaldehyde [17,19,56]. In this work, the effect of the catalyst concentration was probed by
deliberately adding different molar ratios (0.01, 0.02, 0.03, and 0.04 mmol) of the three complexes
(ahpvCu, ahpnbCu, and ahpvNi) and their oxides (CuO and NiO) to a BzOH solution in DMSO in
the presence of aqueous H2O2, while the other experimental parameters were kept at their optimum
values. For all catalysts, the obtained results (Table S6) suggest that the catalytic activity is enhanced
by increasing catalyst concentration from 0.01 to 0.03 mmol, while it decays at values greater than
0.04 mmol.

2.8.4. Mechanistic Aspects of the Catalytic Oxidation of Benzyl Alcohol

The data obtained for the five investigated nanocatalysts, under various experimental conditions,
revealed several important features on the catalytic oxidation of BzOH. Firstly, the catalytic
performance of the ahpvNi complex is markedly lower than that of both copper complexes (ahpvCu
and ahpnbCu). This behavior implies that oxygen transfer from H2O2 to the catalyst is much
easier in the case of the copper complexes than in the Ni congener, as previously reported for
structurally-related systems [19,21,58,59]. Secondly, the catalytic activity of the MOs is greater than
that of their parent Schiff-base complexes. This is explained by the fact that the oxides afford
comparatively smaller-sized nanoparticles than the parent complexes, with consequently larger
surface-to-volume ratios, thereby offering more efficient means for catalytic activity. Thirdly, in most
catalytic processes, the major oxidation product was BzH and DMSO was found to be the best solvent
for this catalytic oxidation reaction as both benzyl alcohol and the oxidant (H2O2) are soluble in it.
Finally, from catalyst recovery viewpoint, the separation and/or recycling of MO nanoparticles from
the reaction mixture upon completion of the catalytic reaction was successfully achieved at least 3 times
and showed negligible decrease in their catalytic performance. Given their solubility in all employed
organic solvents, the recovery of Schiff-based Cu-and Ni-complexes was not possible, as expected for
homogeneous catalysis.

The catalytic activity of the prepared complexes correlates with their high stability in different
solvents, which are able to accommodate the octahedral structure of ahpnbCu and ahpvNi and
tetrahedral geometry of ahpvCu (Scheme S1). In view of these proposed structures, the complexes
contain open coordination sites for the oxidant (H2O2), thus replacing the H2O molecules and binding
directly to the central cation (M2+). This allowed oxygen to be transferred from H2O2 to M2+ [19,58–60]
(Scheme 1). This behavior can be detected spectroscopically (UV-Vis) by monitoring the changes in the
characteristic peaks of each complex in DMSO at 70 ◦C, before and after addition of H2O2, as shown in
Figures S4 and S5. Putatively, these spectral changes can be attributed to the substitution of H2O by
H2O2 molecules, as shown in the proposed mechanism in Scheme 1.

As for the catalytic oxidation of BzOH into BzH using MO nanoparticles (MO = CuO and NiO)
catalysts, it is proposed that DMSO abstracts a proton (H+) from H2O2 to generate a perhydroxyl
anion (OOH−), which then combines with MO to yield MO–OOH. This species attacks BzOH to
form peroxycarboximidic acid intermediate (step IV in Scheme 2), which is then converted into BzH
with concomitant regeneration of the catalyst. In view of the proposed mechanistic pathways for the
catalytic oxidation of BzOH, it can be concluded that both the phenyl ring and OH group of benzyl
alcohol may interact with the metal center of MO (M2+), whereas the inner active sites remain intact.
However, the interaction of the phenyl ring and OH group with the outer metal ions of MO is also
possible via adsorption of the phenyl ring on MO, as reported in ref. [56,61,62]. Importantly, the active
sites of the catalyst can be regenerated by the oxidant. This leads to desorption of the desired product
(BzH) molecules, thereby favoring the oxidation of BzOH to BzH. On this basis, it is likely that BzOH,
DMSO, and H2O2 interact efficiently with MO, affording the eventual formation of BzH, as described
by step V in Scheme 2 [17,19,55].
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3. Materials and Methods

3.1. Chemicals

All solvents, chemicals, and starting materials utilized in this work, such as DMSO,
DMF, acetone, acetonitrile, benzyl alcohol, 3-methoxysalicylaldehyde, 2-amino-3-hydroxypyridine,
4-nitrobenzaaldehyde, copper acetate, nickel nitrate hexahydrate, hydrogen peroxide, manganese
dioxide, and sodium sulfite were obtained from Sigma-Aldrich Chemie (Darmstadt, Germany),
and used as received.

3.2. Synthesis of Schiff-Base Ligands

The Schiff-base ligands were prepared, as shown in Scheme S2, by condensation of
3-methoxysalicylaldehyde (0.152 g, 1.0 mmol) or 4-nitrobenzaaldehyde (0.151 g, 1.0 mmol) with
2-amino-3-hydroxypyridine (0.110 g, 1.0 mmol) in a 1:1 molar ratio in 10 mL of ethanol. The reaction
mixtures were then refluxed for 1 h, after which the obtained solid precipitates were filtered off, rinsed
with distilled water, dried, and then recrystallized from ethanol to afford an overall yield of 88–90%.
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3.3. Preparation of Nanosized Cu- and Ni-Schiff Base Complexes via a Sonochemical Approach

An ethanolic solution (10 mL, 0.1 M) of the metal salts Cu(CH3COO)2·H2O, 0.199 g or
Ni(NO3)2·6H2O, 0.291 g was placed in an ultrasonic probe operated at 24 kHz with a maximum
force output of 400 W. A solution (10 mL, 0.1 M) of the Schiff base ahpv ligand (0.260 g) or 10 mL of a
0.2 M solution of the ahpnb ligand was added dropwise to the metal salt solution. The reaction mixture
was then exposed to 10–15 min of sonochemical irradiation, allowing for nanoparticles formation of
the desired complex. The obtained precipitate was filtered off, rinsed with ethanol, and then dried in
air (yield: 72–84%). The proposed structures of the synthesized complexes are illustrated in Scheme S1.

3.4. Preparation of Nanosized NiO and CuO

NiO and CuO nanoparticles were prepared by calcination of 0.05 g of the ahpvCu, ahpvNi, and
ahpnbCu complexes in air at 500 ◦C at a heating rate of 10 ◦C min−1. The resulting MOs were washed
with ethanol and dried in a desiccator. The MO structure was confirmed by TEM and XRD analyses.

3.5. Physical Measurements

The decomposition temperatures, as well as the melting point of the Schiff-base ligands, and
corresponding complexes were determined using a Gallenkamp (London, UK) instrument. The IR
spectra were recorded as KBr pellets of the compounds in the range of 4000–400 cm−1 on a Shimadzu
FTIR model 8101 spectrophotometer. Molar conductivity experiments were performed via a JENWAY
conductivity meter model 4320 at 298 K using DMF as the solvent. UV-visible (UV-Vis) spectra of
the compounds in DMF were recorded in a 10-mm quartz cell using a PG spectrophotometer model
T+80. 1H-NMR spectra, in which tetramethylsilane (TMS) was used as internal standard (δ ppm)
and DMSO-d6 as the solvent were obtained through a BRUKER model 400 MHz. The C, H, and N
elemental analysis of the Schiff-base ligands and their Ni(II) and Cu(II) complexes was carried out using
a Perkin-Elmer (model 240 C) elemental analyzer (Mount Holly, NJ, USA). Magnetic measurements
were conducted on a Gouy’s balance and diamagnetic corrections were performed using Pascal’s
constants using Hg[Co(SCN)4] as a calibrant. Thermogravimetric testing was undertaken at a heating
rate of 10 ◦C min−1 under N2 atmosphere using a Shimadzu corporation 60H analyzer (Kyoto, Japan).
The value of the absorbance of a 5 × 10−3 M solution of each complex was recorded over wide range
of pH values. The pH of a series of Britton–Robinson (BR) universal buffers was determined using a
HANNA 211 pH meter at 298 K.

Transmission electron microscope (TEM-2100) at the Faculty of Science, Alex University was
employed to obtain the TEM images of all prepared nanocatalysts. Ultrasonic irradiation was obtained
via an ultrasonic generator (Dr. Hielscher UP400 S ultrasonic processor) prepared with an “H22”
sonotrode of diameter 22 mm, working at 24 kHz at a maximum force output of 400 W. XRD
measurements were performed using a Philips diffractometer with monochromatized CuKα radiation.
Image Launcher of the Broken Symmetry Software, version 1.4.3.6.7 was employed to determine the
particle size distribution of the prepared Ni/Cu-complexes and their corresponding MOs.

3.6. Catalytic Oxidation Experiments

The catalytic oxidation of BzOH to the corresponding BzH by the nanosized Ni/Cu-Schiff base
complexes and their NiO/CuO nanoparticles was studied in the presence of H2O2. In a typical reaction,
BzOH (0.1 mL, 1.0 mmol) was added to a solution of the M(II) complex or metal oxide (0.03 mmol) in
10 mL of DMSO under stirring conditions at different temperatures (60, 70, 80, and 90 ◦C) in a water
bath. The reaction was initiated by adding aqueous H2O2 (30%) at each temperature and monitored by
GC. The obtained oxidation products were identified by matching their retention times with those of
authentic samples. Control experiments were conducted by treating a withdrawn sample (ca. 2 mL)
of the reaction mixture with solid MnO2 (to quench the excess H2O2) and then adding anhydrous
Na2SO4 (to absorb the excess water molecules) under the same conditions to those of the catalytic runs.
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The resulting slurry was filtered off and the obtained filtrate was injected into the GC. This protocol
allowed independent measurements for each sample. The amount of generated oxidation product
(BzH) obtained upon chemical conversion of BzOH was calculated using computerized standard
calibration curves.

4. Conclusions

In this study, two Schiff-base ligands derived from the condensation of 2-amino-3-
hydroxypyridine with 3-methoxysalicylaldehyde or 4-nitrobenzaldehyde were synthesized, and their
nanosized Cu(II) and Ni(II) complexes, namely ahpvCu, ahpnbCu, and ahpvNi were obtained via a
sonochemical approach. The results obtained by a wide range of structural tools revealed the formation
of 1:1 (metal: ligand) complexes in the case of ahpvCu and ahpvNi, while a 1:2 stoichiometric ratio was
found for the ahpnbCu congener. The prepared nanosized Schiff-base complexes, along with their MOs,
exhibit excellent catalytic performance in the oxidation of BzOH to BzH, particularly when carried out
in DMSO using H2O2 as the oxidizing agent. The present finding makes the prepared complexes good
candidates for the investigation of the catalytic conversions of other organic compounds and alcohols.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/10/452/s1,
Figures S1–S5: Electronic spectra, pH-profiles, TEM images, and repetitive scans for designated complexes and
their MOs, Tables S1–S6: Physical and analytical properties, as well as IR and thermal analysis data for the ligands
and their respective complexes along with data for catalytic oxidation of benzyl alcohol under various conditions.
Schemes S1 and S2: Proposed structures and procedure for the prepared complexes.
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