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Abstract: Core-shell heterostructures with a complex, flower-like morphology, comprising a ZnO core
and a TiO2 shell decorated with reduced graphene oxide (rGO) sheets by hydrothermal wrapping,
are reported to extend the absorption properties of the semiconductors toward the visible light
range. The ternary photocatalysts were characterized by X-ray diffraction, field emission scanning
electron microscopy, Raman spectroscopy, diffuse reflectance UV–Vis, and attenuated total reflectance-
Fourier transform infrared spectroscopy. Its photocatalytic performance was evaluated under visible
light irradiation using methylene blue dye as a model pollutant. The rGO-modified ZnO–TiO2

photocatalyst exhibited superior photoactivity compared to that of the parent ZnO–TiO2 core-shell
structures, which was dependent on its graphene content. The enhanced photocatalytic response
was attributed to the higher absorption in the visible light range, as well as the pronounced electron
and hole separation in the ternary system.

Keywords: titanium dioxide; zinc oxide; photocatalysis; hybrid materials; reduced graphene oxide;
complex architectures

1. Introduction

The intense industrialization of the last decades has resulted in the continuous intro-
duction of industrial and agro-industrial wastewaters in aqueous matrices; heterogeneous
photocatalysis has been proposed as an efficient alternative to conventional methods for
their effective treatment. TiO2 has been the most widely used photocatalyst, but the max-
imization of its photocatalytic response is hindered by its inadequate absorption in the
visible light range, as well as the high degree of recombination of the photogenerated
charge carrier pairs. The synthesis of core-shell heterostructures comprising TiO2 and ZnO
has been evaluated as an effective approach to diminish charge recombination due to the
favorable energy differences between the two semiconductors [1–5]. The modification
of TiO2 or ZnO with reduced graphene oxide (rGO) sheets has been shown to present
synergistic advantages such as a suppressed recombination of the photogenerated charge
carriers and the extension of the photoresponse toward the visible light range [6–11].

The preparation of ternary photocatalysts, comprising TiO2, ZnO and rGO, has been
scarcely studied. Previous reports on ternary TiO2, ZnO, and rGO photocatalysts focused
on the nanocomposites of mixed inorganic particles prepared by conventional sol-gel,
hydrothermal methods, or other modern synthetic approaches such as sonochemistry or
microwave treatment [12–20]. In an important study, Johra et al. synthesized a mixed
photocatalyst comprising TiO2 and ZnO particles that were surface-modified with graphene
oxide (GO) via a hydrothermal reaction [12]. The mixed photocatalyst exhibited increased
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photocatalytic performance in the UV degradation of Cr(VI) compared with the parent TiO2–
ZnO analogues that were assigned to enhance light absorption and better the separation of
electron-hole pairs. Potle et al. also compared the preparation of a mixed photocatalyst,
based on TiO2 and ZnO modified by rGO, via conventional stirring and a sonochemical
approach. The application of ultrasound suppressed the aggregation of the inorganic
nanoparticles and resulted in a better dispersion on the rGO sheets, which was reflected
by more effective photocatalytic activity [13]. Simsek et al. immobilized rGO sheets
on fluorine-doped tin oxide (FTO) substrates, followed by the hydrothermal growth of
ZnO and TiO2 nanoparticles on graphene sheets. They observed a band-gap narrowing
for the ternary photocatalyst and superior photocatalytic performance against estrogen
bisphenol-A and pharmaceuticals under UV and visible-light irradiation.

Architectures of a higher complexity have not been examined, yet it is known that the
morphology of the ZnO–TiO2 heterostructures heavily affects significant properties of the
composite material such as the surface area and the contact between the two interfaces;
thus, its control is important [21]. The contact between the rGO sheets and the inorganic
component has been reported to significantly influence the photocatalytic performance of
the composite photocatalyst; however, the degree of contact in the ternary photocatalysts
presented so far is rather poor [22–25]. Therefore, the tailored synthesis of rGO functional-
ized ZnO–TiO2 core-shell heterostructures with a complex and well-defined morphology,
as well as a visible light photocatalytic activity, is expected to attract great scientific interest
and will find wide applicability in wastewater treatment.

In the present work, we report the development of complex ZnO–TiO2 core-shell,
flower-like heterostructures and the extension of its photocatalytic response toward the
visible light range via wrapping the inorganic surface with rGO sheets. First, well-defined
core-shell, flower-like architectures, with a wurtzite ZnO core and an anatase TiO2 shell,
were synthesized by controlled sol-gel reactions. Next, the ZnO–TiO2 heterostructures were
surface-functionalized with 3-aminopropyltrimethoxysilane (APTMS) and hydrothermally
wrapped with rGO sheets at tunable mass ratios, resulting in a strong rGO–inorganic
surface contact. The photocatalytic performance of the obtained rGO–ZnO–TiO2 ternary
photocatalysts was evaluated in the decoloration of aqueous solutions of methylene blue
(MB) under visible light irradiation.

2. Results and Discussion
2.1. Graphene Oxide

The GO was synthesized by a modified Hummers’ method using graphite powder [26]
and was characterized by XRD and Raman spectroscopy, and FTIR (Figure 1). A single peak
at ~10◦ can be observed in the XRD pattern of the GO (Figure 1a), which can be assigned to
the (001) crystalline plane of the GO, verifying the successful oxidation of graphite [27–29].
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The Raman spectrum of the GO (Figure 1b) exhibited peaks at ~1355 and 1600 cm−1,
assigned to the typical D and G bands of graphitic materials, respectively [30,31]. Specifi-
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cally, the D band can be attributed to the modes of the sp2 atoms in the rings, while the G
band is due to the stretching vibration of the sp2-hybridized C–C bonds [32].

The ATR-FTIR spectrum of the GO presented in Figure 1c shows typical peaks associ-
ated with the oxygen functionalities introduced onto the rGO sheets upon the oxidation of
graphite. In particular, the broad band at ~3400 cm−1 can be assigned to O–H stretching
vibration, while the peaks at ~1720 and 1040 cm−1 are ascribed to C=O and C–O stretching
vibrations, respectively. Moreover, the peak at 1615 cm−1 is derived from the vibrations of
the remaining unoxidized graphitic domains [33,34].

2.2. ZnO Flower-Like Structures and ZnO–TiO2 Core-Shell Heterostructures

The SEM and TEM images of the ZnO and the ZnO–TiO2 core-shell architectures
are shown in Figure 2. Well-defined flower-like ZnO structures with a smooth sur-
face (Figure 2a,c and Figure S1a) were observed. After coating with a TiO2 shell, non-
agglomerated core-shell structures were obtained with a uniform porous titania shell of
59 ± 7 nm thickness (Figure 2b,d and Figure S1b). Based on the findings of our previous
work, where the photoactivity of ZnO–TiO2 core-shell, flower-like architectures with vari-
able titania shell thickness were evaluated, a shell thickness of ~59 nm was found to exhibit
the highest photocatalytic performance [2].
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2.3. rGO-Modified ZnO–TiO2 Core-Shell Heterostructures

To investigate the effect of APTMS pre-treatment on the morphology of the ternary
photocatalysts, the synthesis of rGO-modified ZnO–TiO2 structures (denoted as ZT-rGO)
was first carried out using ZnO–TiO2 heterostructures with and without amine functional-
ization. As shown in Figure 3, when the surface of the ZnO–TiO2 flower-like structures



Catalysts 2021, 11, 332 4 of 13

were not amine-functionalized before the introduction of the GO at a 2 wt % content,
the rGO sheets did not wrap the inorganic material well (indicated by the white arrow
in Figure 3a). On the contrary, the amine pre-functionalized flower-like structures were
completely wrapped with the rGO sheets, which attached very well onto the inorganic
surface (Figure 3b).
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Figure 3. SEM images of rGO-modified ZnO–TiO2 structures (ZT-rGO) structures at a 2 wt % reduced GO (rGO) loading
without (a) and with (b) 3-aminopropyltrimethoxysilane (APTMS) functionalization.

The observed increase in the adhesion of the rGO sheets onto the surface of the ZnO–
TiO2 heterostructures can be assigned to the favorable electrostatic interactions between the
amine-modified inorganic surface and the rGO sheets. The APTMS functionalization of the
ZnO–TiO2 core-shell, flower-like heterostructures resulted in the formation of a positively
charged inorganic surface onto which the negatively charged rGO sheets could readily
attach [34–38]. The high contact degree between the rGO layers and the semiconductor
resulted in an effective charge separation during the photocatalytic process, which is highly
desirable [22–25]. Therefore, the APTMS functionalized ZnO–TiO2 core-shell, flower-like
structures were employed in all the experiments discussed below.

The rGO sheets were attached onto the APTMS-modified ZnO–TiO2 core-shell, flower-
like structures at different GO loadings. The obtained ternary catalyst structures are shown
in Figure 4. The attachment of the rGO sheets on the flower-like structures was heavily
affected by the rGO content of the composite. The rGO sheets completely wrapped the
inorganic structures at 0.5 and 2 wt % graphitic loading (Figure 4a,b and Figure S1c); above
this plateau value (Figure 4c), unattached rGO sheets (indicated by white arrows) were
also observed.

The rGO-modified core-shell semiconductors were characterized by ATR-FTIR
(Figure 4d). The spectra of the ZT-rGO structures exhibited new peaks at ~1560 and
1230 cm−1, which were attributed to the C=C skeletal vibration mode and C–O–C stretch-
ing vibration of rGO, respectively [39,40]. The peak at 1400 cm−1 can be attributed to the
C–OH vibration mode of the graphitic material. As expected, the intensity of the peaks
decreased with the reduction in the rGO loading.

Raman spectroscopy was also employed to verify the wrapping of the rGO sheets
on the surface of the ZnO–TiO2 core-shell, flower-like structures (Figure 5). The peaks at
142, 391, 517, and 630 cm−1 observed for TiO2 can be attributed to the Eg, B1g, A1g + B1g,
and Eg modes of the anatase phase, respectively [41]. Two peaks of low intensity can be
observed in the Raman spectrum of the ZnO flowers at 435 and 1145 cm−1, corresponding
to the E2

high and 2LO modes of wurtzite ZnO [42–44]. The peaks were also detected in
the spectrum of the ZnO–TiO2 core-shell, flower-like structures (Figure 5a), whereas the
ZT-rGO ternary material exhibited two additional Raman lines at 1355 and 1590 cm−1,
attributed to the D and G peaks of rGO, respectively.
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The band gap energy values (Eg) of the synthesized ZT-rGO materials were quantified
by UV–Vis diffuse reflectance measurements, employing the Tauc equation:

αhν = A(hν− Eg)1/n (1)
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where hν is the photon energy, A is an energy-independent constant, and n = 2, as the
indirect band gap, TiO2 is the outer material in the core-shell heterostructures [1].

The normalized and transformed Kubelka–Munk plots as a function of light energy
are shown in Figure 6, while the calculated Eg values are presented in Table 1. A narrowing
in the band-gap values and a redshift in the absorbance edge were observed in the ZT-
rGO structures compared with their parent ZnO–TiO2 analogue, in agreement with the
literature [45–47]. An Eg of 3.08 eV was calculated for the ZnO–TiO2 heterostructures, lower
than the values reported for the bare ZnO and TiO2 (~3.2–3.3 eV) nanoparticles [2]. This
phenomenon can be assigned to the generation of new energy states at the ZnO and TiO2
heterojunction [48]. The Eg values of the ternary photocatalysts decreased monotonically
with the increase in the rGO content due to the generation of Ti–O–C bonds during the
thermal treatment, as we reported in our earlier work [6].
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Table 1. Calculated optical band-gap values (Eg) for the ZnO–TiO2 and the ZT-rGO core-shell structures.

Sample Eg (eV)

ZnO–TiO2 3.08
ZT-rGO 0.5 wt % 2.97
ZT-rGO 2 wt % 2.84
ZT-rGO 5 wt % 2.72

Next, the photoactivity of the parent core-shell and the ZT-rGO structures was in-
vestigated in the decoloration of aqueous MB solutions under visible-light irradiation
(Figure 7).
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presence of parent ZnO–TiO2 core-shell flowers (�) and ZT-rGO at 0.5 (�), 2 (J), and 5 wt % (N) rGO.

The kinetic rate constants, k, for the decoloration process of MB were calculated from
the first-order equation:

ln
C

Co
= −kt (2)

The regression coefficient of the linear fits, R2, was greater than 0.99 for all studied samples.
The photocatalytic activity of the rGO-modified ZnO–TiO2 core-shell, flower-like

photocatalysts was, for all studied samples, superior compared to that of the parent ZnO–
TiO2 core-shell semiconductor. A graphitic-content-dependent performance was observed,
which was optimum for the ZT-rGO sample with 2 wt % rGO loading, and was reduced
upon further increase in the rGO loading to 5 wt %.

The parent ZnO–TiO2 photocatalyst exhibited a ~51% dye decoloration (rate constant
k = 0.0056 min−1) after a 120 min irradiation time. The decrease in the dye concentration
for the ZT-rGO sample with 0.5 wt % rGO was 76% (k = 0.011 min−1), while the ZT-rGO
photocatalyst with 2 wt % rGO exhibited the highest photocatalytic performance with an
86% dye removal (k = 0.015 min−1). Lastly, upon increasing the rGO loading to 5 wt % a
decrease in the performance of the ZT-rGO photocatalyst to a 60% dye decoloration, with a
rate constant k = 0.007 min−1, was found.

The reusability of the ZT-rGO catalyst with 2 wt % rGO, which exhibited the highest
photocatalytic activity, was evaluated for three photocatalytic cycles. As shown in Figure 8,
the photocatalyst exhibited excellent reusability, with its performance decreasing only by
~8% after three photocatalytic cycles. This is indirect evidence that the intimate contact
between the inorganic component and the rGO sheets is maintained during photocatalysis.
Arguably, the rGO content would decrease since each photocatalytic cycle is followed
by centrifugation and washing with water; thus, a rapid decrease in the photocatalytic
performance after each cycle would be observed.

As presented above, the unmodified ZnO–TiO2 core-shell photocatalyst exhibited a
low, nonnegligible photoactivity in the visible light range. As mentioned in the experi-
mental section, the lamp used in all photocatalytic experiments exhibited emission lines
between 390 and 600 nm. The observed photoactivity of the ZnO–TiO2 core-shell photo-
catalyst can be attributed to its band-gap value, which was measured as 3.08 eV (Table 1),
corresponding to ~400 nm. Therefore, the ZnO–TiO2 core-shell photocatalyst could be
effectively activated in the 390–400 nm emission range of the lamp. The photocatalytic
decoloration of MB by the ZT-rGO photocatalysts was significantly promoted compared
to that of the parent core-shell photocatalyst. The observed superior performance of the
ZT-rGO photocatalysts can be assigned to the rGO sheets acting as sensitizers in the visible
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light, inducing band-gap narrowing and a shift in the absorption edge of the ZT-rGO
materials toward the visible light range [49,50].
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The superior photocatalytic performance of the ZT-rGO core-shell architectures can
also be attributed to the appropriate energy level differences between ZnO, TiO2, and rGO.
These differences result in a more efficient separation and migration of the photogenerated
electrons and holes, significantly suppressing its recombination and promoting the photo-
catalytic rates. According to the literature, the conduction and valence bands of ZnO are
more negatively charged (~0.48 eV) and are located above those of TiO2 [1,17,51,52], while
rGO has a work function of −4.42 eV [38,53–56]. Therefore, rGO can act as a trap for the
electrons transferred to the conduction band of TiO2 (−4.2 eV) from ZnO and hinder the
charge recombination, which enhances the overall performance of the ternary photocata-
lyst [50,57,58]. However, a very high rGO loading (above the optimum value of 2 wt %)
decreases the active sites on the surface of the photocatalyst, which become adversely
blocked by the excessive rGO, resulting in the observed reduction of the photoactivity of
the ternary photocatalyst [59,60].

To elucidate the radical species that are responsible for the photocatalytic removal of
MB, radical trapping experiments were conducted by the addition of tert-butanol, (2,2,6,6-
Tetramethylpiperidin-1-yl)oxyl (TEMPO), and ethylenediaminetetraacetic acid (EDTA) as
•OH, •O2

−, and h+ traps, respectively, during the photocatalytic experiments (Figure 9).
The addition of EDTA, and thus the quenching of photogenerated holes, had an

insignificant effect on the photocatalytic rates induced by the ZT-rGO photocatalyst with
2 wt % rGO. However, when quenching the OH radical with the alcohol, the MB removal
efficiency decreased from 86% to 58% after 120 min of irradiation. This suggested that the
highly reactive hydroxyl radicals produced by the photogenerated holes participate in the
redox reactions. Moreover, an even more pronounced suppression of the photocatalytic
performance (from 86% down to 40%) was observed upon scavenging the O2

− species with
TEMPO, which indicated that the superoxide anion radicals were the main active species
in the removal of MB, in agreement with the literature [16,19,61]. As discussed above,
the modification of ZnO–TiO2 with the rGO sheets increased the separation of electrons
and holes, resulting in an increased migration of electrons on the graphene sheets, which
reacted further with dissolved O2 present in the reaction solution to generate the highly
responsive O2

− species.
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3. Materials and Methods

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O, 99%), hydrochloric acid (HCl, 37 wt %),
APTMS (H2N(CH2)3Si(OCH3)3), sodium nitrate (NaNO3), and graphite were supplied by
Sigma Aldrich (St. Louis, Missouri United States); while MB (82%) and titanium isopropox-
ide (Ti[OCH(CH3)2]4, 97%) were received from Aldrich. Potassium permanganate (KMnO4)
was obtained from Scharlau (Barcelona, Spain). Sulfuric acid (H2SO4) was purchased from
PENTA (Prague, Czech Republic), while hydrogen peroxide (H2O2, 30% solution in H2O)
was provided by Chem-Lab. Ethanol (98%) was received from Honeywell (Charlotte, NC,
USA) and was dried overnight over CaH2 prior to use. Finally, Milli-Q water, obtained
from a Millipore apparatus, with a resistivity of 18.2 MΩ × cm at 298 K, was used for the
preparation of all samples.

3.1. Synthesis of GO

For the synthesis of the GO, graphite powder (1.0 g) was first stirred into a mixture
of H2SO4 (23 mL, 98%) and NaNO3 (0.5 g) in an ice bath. Then, KMnO4 (3 g) was slowly
added over a period of 2 h. After 4 h, the reaction mixture was heated to 35 ◦C for 30 min
and was added into H2O (50 mL), followed by heating at 70 ◦C for 15 min. The mixture
was then poured into 250 mL H2O and the unreacted KMnO4 was removed by the addition
of 3% H2O2. The GO was purified by several centrifugation/redispersion cycles in H2O
and was dried under a vacuum overnight. An aqueous GO suspension (0.5 mg GO/mL
H2O) was prepared by ultrasonication for 1 h.

3.2. Synthesis of ZnO Flower-Like Structures and ZnO–TiO2 Core-shell Heterostructures

The synthesis of the ZnO flower-like structures, as well as the ZnO-TiO2 core-shell,
flower-like heterostructures, has been described in detail in our previous work [2]. Briefly,
ZnO, with a flower-like morphology, was prepared via the reaction of 40 mL of a 0.035 M
Zn(CH3COO)2·2H2O and 0.055 M NaOH aqueous solution at 70 ◦C for 24 h. For the
synthesis of the ZnO-TiO2 core-shell, flower-like heterostructures, 0.1 g ZnO flowers were
first dispersed in 35 mL ethanol by ultrasonication. A solution of 0.25 mL Ti[OCH(CH3)2]4
in 5 mL ethanol was prepared separately and was added dropwise in the ZnO dispersion.
The dispersion was transferred in a preheated oil bath at 80 ◦C and a 10 mL mixture of
water in ethanol (50 mL/L) was added via dropwise. After 2 h, the ZnO-TiO2 core-shell
catalyst was isolated by centrifugation, washed thoroughly with ethanol, and dried under
a vacuum.
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3.3. Synthesis of ZnO–TiO2 Core-Shell Structures Wrapped with rGO

First, the ZnO–TiO2 core-shell structures (400 mg) were ultrasonically dispersed in
200 mL dry ethanol. Then 3 mL APTMS was injected in the dispersion, followed by an
overnight reflux at 90 ◦C. Finally, the APTMS-modified ZnO–TiO2 flowers were rinsed
thrice with ethanol and dried under a vacuum.

Next, 300 mg of the APTMS-modified ZnO–TiO2 heterostructures were dispersed in
100 mL H2O by ultrasonication, and an appropriate amount of the GO suspension was
added under vigorous stirring to obtain ternary photocatalysts with 0.5, 2, and 5 wt %
theoretical GO content. After stirring for 1 h, the GO-modified inorganic heterostructures
were washed repeatedly with H2O and dried under a vacuum. This process was repeated
for the ternary photocatalyst with 2 wt % GO, using core-shell heterostructures without
the APTMS functionalization to elucidate the effect of the amine groups on the interactions
between the GO sheets and the inorganic core-shell structures.

To induce the reduction of GO to rGO, the GO-modified ZnO–TiO2 flower-like parti-
cles were dispersed in a mixture of H2O/EtOH (2:1) and were hydrothermally treated at
120 ◦C for 24 h in a Teflon-lined, stainless-steel autoclave. Finally, the ternary photocatalysts
were calcined at 500 ◦C for 2 h under N2, to further reduce rGO and crystallize TiO2.

3.4. Characterization

The ternary core-shell structures were characterized by Raman spectroscopy using a
Nicolet Almega XR Raman spectrometer (Thermo Scientific, Waltham, MA, USA) with a
473 nm blue laser as the excitation source in high resolution mode. ATR-FTIR spectra were
recorded on a Thermo Scientific Nicolet 6700 spectrometer in the 400–4000 cm−1 range. We
collected 64 scans at a resolution of 4 cm−1. XRD patterns were measured on a PANalytical
(Almelo, Netherlands) Xpert Pro X-ray diffractometer, using Cu-Kα radiation (45 kV and
40 mA). UV–Vis diffuse reflectance spectra in the 300–800 nm wavelength range were
obtained using a Shimadzu UV-2401 PC spectrophotometer with an ISR-240A integrating
sphere, with BaSO4 powder used as a 100% reflectance standard. Finally, the morphology
of the samples was investigated by field emission scanning electron microscopy (FE-SEM,
JEOL JSM-7000F).

3.5. Photocatalytic Study

The photocatalytic performance of the parent and the rGO-modified ZnO–TiO2 core-
shell semiconductors was quantified via the decoloration of MB dye solutions (20 mg/L)
under visible-light irradiation at pH 5 (corresponding to the natural pH of the solutions).
The photocatalytic reactions were conducted at a photocatalyst loading of 160 ppm, while
no catalyst was added for the photolytic experiments. The photocatalyst dispersion in
the dye solutions was first stirred in the dark for ca. 40 min to establish the MB adsorp-
tion/desorption equilibrium, followed by irradiation using a medium-pressure mercury
lamp emitting in the 200–600 nm range. The lamp was placed in a glass jacket that filtered
out the UV lines at λexc < 390 nm (Table S1) [2,6]. All photocatalytic experiments were
carried out in duplicate. To evaluate the reusability of the most photoactive photocatalyst,
three photocatalytic cycles were conducted by recovering the catalyst after each cycle by
centrifugation and washing thrice with H2O before the next cycle.

4. Conclusions

In summary, complex ZnO–TiO2 core-shell, flower-like structures wrapped with rGO
sheets were prepared by a simple and well-controlled synthetic approach. First, core-shell
flowers with a wurtzite ZnO core and an anatase TiO2 shell of 59 ± 7 nm thickness were
prepared and their surfaces were functionalized with primary amino groups using APTMS.
The surface-modified ZnO–TiO2 core-shell structures were then hydrothermally wrapped
with rGO sheets at 0.5, 2, and 5 wt % loading. The amine functionalities on the inorganic
surface induced strong adhesion of the rGO sheets on the TiO2 shell due to favorable
electrostatic interactions. The rGO-modified ZnO–TiO2 photocatalysts exhibited superior
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photoactivity in the decoloration of aqueous solutions of MB under visible-light irradiation
compared with that of the parent ZnO–TiO2 core-shell structures, which was dependent on
the rGO loading. Specifically, the ternary photocatalyst with a 2 wt % rGO content resulted
in ~86% dye removal after 120 min of irradiation, which was significantly higher than the
~51% decoloration found for the parent ZnO–TiO2. Overall, the enhanced photocatalytic
response of the ternary photocatalysts was attributed to the increase in the absorption in
the visible-light range, as well as the promoted electron and hole separation due to the
favorable energy level differences between ZnO, TiO2, and rGO. Notably, excessive rGO
loading above the optimum value of 2 wt % diminished the photoactivity of the ternary
heterostructures to ~60% MB removal because of the decrease in free active sites on the
surface of the photocatalyst.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/3/332/s1, Figure S1. Higher magnification SEM images of the (a) bare ZnO flowers, (b)
ZnO-TiO2 core-shell heterostructures, and (c) ZT-rGO structures at a 2 wt % rGO loading, Table S1.
Radiation flux Φ for the immersion lamp used in this study, Figure S2. Decoloration of MB in the
absence of a photocatalyst (•) and in the presence of the parent ZnO–TiO2 core-shell flowers (�), and
ZT-rGO at 0.5 wt % (�), 2 wt % (J), and 5 wt % (N) rGO. All values were corrected for the adsorption
component.
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