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Abstract: The survey focuses on the most significant contributions in the field of fiber optic plasmonic
sensors (FOPS) in recent years. FOPSs are plasmonic sensor-based fiber optic probes that use an
optical field to measure the biological agents. Owing to their high sensitivity, high resolution,
and low cost, FOPS turn out to be potential alternatives to conventional biological fiber optic
sensors. FOPS use optical transduction mechanisms to enhance sensitivity and resolution. The optical
transduction mechanisms of FOPS with different geometrical structures and the photonic properties
of the geometries are discussed in detail. The studies of optical properties with a combination of
suitable materials for testing the biosamples allow for diagnosing diseases in the medical field.

Keywords: plasmonics; photonics; fiber optic probes; surface plasmon resonance; metal; dielectric;
refractive index; analyte; biosamples

1. Introduction

In recent years, the surface plasmon resonance (SPR)-based optical sensing of several quantities
such as chemicals [1,2], temperature [3], pressure [4], force [5], environmental monitoring [6],
optofluidic detection [7], food safety [8], and biological species [9,10], as illustrated in Figure 1 [11–14],
has been proven to be advantageous. The optical fiber deployed in such sensors has replaced the
traditional substrates for SPR sensors such as prisms, electrodes, etc. [15]. Today, SPR-based optical
sensors are employed for different applications in life sciences, electrochemistry, environmental safety,
and biomedical diagnostics, as illustrated in Figure 1 [16,17]. SPR is a promising and powerful optical
detection technique for studying label-free biomolecular interactions in real time within a variety of
diverse biomedical applications due to the label-free sensing, fast response, and high sensitivity [18–20].
Several SPR-based optical fiber sensing configurations are widely proposed, and fiber optic sensing
configuration allows for simplified designs [21,22]. Recently, researchers have found that these
SPR-based FOPSs are applied in remote sensing over the prism-based SPR sensing devices [1]. The
most beneficial aspect of FOPSs is their ability to analyze minute quantities of biological samples [23].
Thus, SPR-based FOPSs have received a lot of attention in the recent past [24].
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configurations of different FOPSs with single mode and multimode fibers for sensing applications 
are discussed [25,26]. As the propagation modes in multi-mode fibers are nearly random, the mode 
distribution at different incident angles is unstable [27]. As only part of the light beams undergoes 
resonance, it directly influences the sensing performance, reliability, and repeatability. Hence, for 
multimode optical fiber plasmonic sensors, the signal-to-noise ratio limits the measurable range of 
the sensitivity and resolution. Although there is some related work already reported for constant-
angle SPR sensor design [28–30], a number of unexpected incident angles were still involved in their 
designs. In addition, multimode optical fibers are sensitive to mechanical disturbance and hence the 
quality of the output signal is lowered as well [31]. In contrast, a single-mode fiber exhibits a narrow 
resonance dip in the transmission spectrum, which results in an improved detection limit. Thus, to 
enhance the resolution, the single-mode optical fiber plasmonic sensor has been established [32]. 
Generally, the geometric structure of the FOPSs consists of two media, namely, dielectric and metal. 
The sensing mechanism between the dielectric silica cladding with various metal-coated surfaces is 
attributed to the surface plasmon resonance. 

Nowadays, in order to enhance the sensitivity and resolution of SPR-based FOPS, a thin layer of 
graphene and molybdenum disulfide is added to the metal layer [33–35]. Furthermore, other 
combinations, namely, molybdenum disulfide, molybdenum diselenide, tungsten disulphide, and 
tungsten diselenide layers (transition metal dichalcogenides), have also been developed [21,36]. In 
this review, we briefly discuss the different geometrical configurations of the SPR-based FOPS with 
various combinations of transition metal dichalcogenides for biomedical applications. 

 
Figure 1. Biological applications of fiber optic plasmonic sensor [11–14,16,17]. 

  

Figure 1. Biological applications of fiber optic plasmonic sensor [11–14,16,17].

We start this review with a brief discussion of some SPR-based FOPSs that find wide application
because of their simple structure, compactness, high resolution, and sensitivity. The geometrical
configurations of different FOPSs with single mode and multimode fibers for sensing applications
are discussed [25,26]. As the propagation modes in multi-mode fibers are nearly random, the mode
distribution at different incident angles is unstable [27]. As only part of the light beams undergoes
resonance, it directly influences the sensing performance, reliability, and repeatability. Hence, for
multimode optical fiber plasmonic sensors, the signal-to-noise ratio limits the measurable range of the
sensitivity and resolution. Although there is some related work already reported for constant-angle
SPR sensor design [28–30], a number of unexpected incident angles were still involved in their designs.
In addition, multimode optical fibers are sensitive to mechanical disturbance and hence the quality of
the output signal is lowered as well [31]. In contrast, a single-mode fiber exhibits a narrow resonance
dip in the transmission spectrum, which results in an improved detection limit. Thus, to enhance the
resolution, the single-mode optical fiber plasmonic sensor has been established [32]. Generally, the
geometric structure of the FOPSs consists of two media, namely, dielectric and metal. The sensing
mechanism between the dielectric silica cladding with various metal-coated surfaces is attributed to
the surface plasmon resonance.

Nowadays, in order to enhance the sensitivity and resolution of SPR-based FOPS, a thin layer
of graphene and molybdenum disulfide is added to the metal layer [33–35]. Furthermore, other
combinations, namely, molybdenum disulfide, molybdenum diselenide, tungsten disulphide, and
tungsten diselenide layers (transition metal dichalcogenides), have also been developed [21,36]. In
this review, we briefly discuss the different geometrical configurations of the SPR-based FOPS with
various combinations of transition metal dichalcogenides for biomedical applications.
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2. Physics of Surface Plasmons

A quantum of a collective oscillation of free electrons that are confined evanescently on the surface
of a metal surface induced by an electromagnetic field is known as surface plasmons (SPs), a term that
was introduced by Ritchie in 1957 [37]. SPs that propagate in the transverse magnetic (TM) direction
(p-polarized) are known as surface plasmon waves (SPWs). In what follows, we discuss surface
plasmon polaritons (SPPs) and localized surface plasmon polaritons (LSPPs) in detail.

2.1. Surface Plasmon Polaritons

The interaction between the photon and the polar excitation of electric dipoles in a semiconductor
or at the surface of a metal is known as a polariton. The strong coupling of the surface plasmons
with the polaritons is called SPPs, shown in Figure 2. The propagation of SPPs takes place when
the electromagnetic field strikes the free electrons in the interface of two media having negative
and positive real parts of permittivity (a metal and a dielectric medium). The plasma oscillation is
optically excited at the interface, which consists of positively charged ions on the planar metal layer
surface. Therefore, the density of the electromagnetic field at the metal surface will not be the same.
The positively charged ion background will attract the negatively charged free electrons. Hence, the
movement of electrons takes place when the density of free electrons is lower than the average density
in the given volume. The attracted electrons gain additional momentum and gradually grow in density.
Therefore, a large number of negative electrical charges are formed. The coulombic repulsive force
among the free electrons induces them to separate and the collective electron density oscillation is
established. Therefore, an electromagnetic surface wave is generated due to the plasma oscillation.
The quantum of plasma oscillation is referred to as SPP and is illustrated in Figure 2.
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2.2. Localized Surface Plasmon Polaritons

The interaction between the surface of the metal nanoparticle and the electromagnetic field that
results in strong oscillations/damping is known as LSPPs. The propagation of SPs in the LSPPs
is similar to the SPPs. In LSPPs, the collective oscillations of the free electron cloud are shown
in Figure 3. The light scatters from a topological defect on the surface of the metallic particles or
nanostructures [38,39]. In contrast with the SPPs, in which the coupling occurs at the surface of
the metal layer, the collective oscillations of the free electron cloud in LSPPs are confined in metal
nanoparticles or nanostructures [40].
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Figure 3. Schematic illustration of surface plasmons propagating at the interface between metal
nanoparticle and dielectric materials [40].

3. Resonance Conditions

As the SPP and LSPP have different coupling mechanisms, the resonance condition for two
different polaritons also needs to be explained in terms of the surface plasmon resonance and localized
surface plasmon resonance.

3.1. Surface Plasmon Resonance

The resonant oscillation of the conduction electrons at the interface between the dielectric and
metal stimulated by an electromagnetic wave is known as SPR, an underlying principle widely used
in sensing applications nowadays. SPR can be excited by the photons or electrons [38]. It is known
that SPs are excited by the evanescent waves under the resonance condition. When the propagation
constant of an incident light is equal to that of the collective oscillation of surface electrons in the metal,
their momenta can be matched, and hence resonance occurs. Thus, SPR is highly sensitive to variations
in the refractive index (RI).

3.2. Localized Surface Plasmon Resonance

LSPR is an optical phenomenon that arises when the incident light wave is trapped within
conductive nanoparticles with dimensions smaller than that of the wavelength of the light [41]. While
SPs propagate along the continuous metal surfaces, LSPs are localized around the surface of the
nanoparticles. Under the resonance condition, metal nanoparticles will present a strong absorption
band of light that will enhance their damping amplitude [42]. Recently, the particle-optical wave
excitation, which occurs in the visible wavelength region for noble metal nanoparticles with dimensions
smaller than the wavelength of incident light, is reported [43].

4. Theoretical Framework

Generally, SPs are excited by the photons in SPR-based optical sensors. SPs are optically excited
when the wave vector of the electromagnetic wave matches that of SPs, which is known as the
phase-matching condition or resonance condition. Next, we discuss the different excitation methods of
SPs with the prism, grating, and waveguide.

4.1. SPR in Prism Configuration

The Kretschmann configuration [44] is commonly used in most SPR applications nowadays, as
shown in Figure 4a, and was developed and improved from the Otto configuration [12] shown in
Figure 4b. In the Otto configuration, an air gap layer (dielectric constant, εs) lies between the prism
(dielectric constant, εp) and the metal layer (dielectric constant, εm). The evanescent wave at the
prism-air interface can excite the SPs at the air-metal interface. Total internal reflection takes place
inside the prism when the electromagnetic field propagates from the prism (high refractive index, n1)
to the air gap layer (low refractive index, n2).
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The incident angle, θa, should be greater than the critical angle, θc, in order for the total internal
reflection to take place. Nevertheless, some part of the electromagnetic field is propagated at the
prism-air interface as an evanescent wave. However, as it decays over a distance of the interface of the
entail air gap, the SPR efficiency is reduced.

Hence, in the Kretschmann configuration, the prism was coated by the metal directly without an
air gap and the other side of the metal layer was designed for placing a dielectric sample. In order to
enhance and maintain the propagation of this evanescent wave, a gold or silver film with a suitable
thickness is placed between the two media and dielectric sample (air). The most used metal is either
gold or silver, which can provide a real but negative dielectric constant, whereas for the dielectric
sample (air) it is positive.

The wave vector for the evanescent wave, kew, is given as

kew =
2π

λ
n1 sin(θ), (1)

where λ is the incident wavelength, n1 is the higher refractive index of the prism, and θ is the
incident angle.

The wave vector of the SPs is explained with the dielectric constant of the metal (refractive index,
ng) and dielectric sample (refractive index, n2) and is given as

kSP =
2π

λ

√
n2

2n2
m

n2
2 + n2

m
. (2)

In Equation (2), n2 = ε. Here, ε is the dielectric constant and n is the refractive index. When the
propagation constant of the evanescent wave is equal to that of SPs (kew = kSP), SPR can be achieved
by the transfer of light wave energy into the SPs. The evanescent wave in the metal film is expressed as

kSPR =
1

n1sinθ

√
n2

2n2
m

n2
2 + n2

m
, (3)

where θ is the resonance angle.

4.2. SPR in Grating Configuration

The in-plane wave vector of the incident electromagnetic field on the metal-dielectric interface is
increased to match the associated surface plasmons by a diffraction grating, G as shown in Figure 5.
The x-component of wave vector of the incident light, kx, is increased by G through the order of the
diffraction order, m = +1 to match that of the surface plasmons [45].
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The propagation constant of the electromagnetic field on the surface of the grating is given as

kSPR = kx + mG kSPR =
2π

λ
n1 sin(θ) + m

2π

Λ
, (4)

where kSPR is the propagation constant of the diffracted light of the grating, kx is the propagation
constant of the electromagnetic field, m is the diffraction order (m = 0, ±1, ±2, ±3, . . . ), G is the wave
number of the grating, Λ is the grating period, and n1 is the refractive index of medium 1.

4.3. SPR in Waveguide Configuration

In waveguide configuration, the electromagnetic field propagates through the guided modes in
the metal-dielectric region and its evanescent wave can penetrate the thin metal film, as shown in
Figure 6.
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The resonance is achieved when the wavelength-dependent propagation constant of the guided
mode matches that of the surface plasmon mode at the interface of the metal-dielectric region [46].
Therefore, the transmitted spectrum can be observed for the sensing analysis.

5. FOPS Performance Evaluation

The dependence of the SPW on the changes of analyte RI is the underlying principle used in FOPS
detection [47]. There are three main critical parameters for evaluating FOPS performance.
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5.1. Sensitivity

The sensing sensitivity of FOPS can be determined by the degree of discrimination of resonance
wavelength shift or intensity change caused by the variation of RI of the analyte, namely wavelength
interrogation and amplitude interrogation. The sensitivity of wavelength interrogation can be
expressed as Sλ(nm/RIU) = ∆λpeak/∆na. Here, ∆na is the analyte RI variation for an RI-based
FOPS system (this can also be defined in terms of other variables, for example, variation in temperature
for the detection of temperature sensor or variation in liquid concentration as a chemical sensor)
and ∆λpeak is the resonance wavelength peak shift [48]. In comparison to wavelength interrogation,
amplitude interrogation has the advantages of simple technical requirements and low cost. It can be
defined as SA(λ)

(
RIU−1) = −(∂a(λ, na)/∂na)/a(λ, na), where a(λ, na) is the lost energy of the core

mode for a particular wavelength [49]. However, this method suffers from the disadvantages of low
sensing capability and a small operational range.

5.2. Linearity

Linearity presents the ratio between the transducing parameter and measurand, which can reflect
the sensing stability of the entire system during the detection. A high linearity response of regression
line indicates a good sensor [50]. For an RI-based FOSP system, the linearity can be plotted between
the loss resonance wavelength and analyte RI.

5.3. Figure of Merit

Figure of merit (FOM) is one of the important parameters related to the signal-to-noise ratio (SNR)
to evaluate the FOPS sensing performance by introducing the spectral width [51]. It can be given by
the equation of FOM = S/FWHM, where S is the wavelength interrogation sensitivity and FWHM
represents the full width at half-maximum of the spectra [52].

6. FOPS Geometrical Configuration and Techniques

Recent FOPS can be categorized based on the geometry of sensor probes and are discussed
in what follows. Moreover, some novel SPR sensor techniques developed in the last few years are
also discussed.

6.1. Conventional Optical Fiber Sensors

Conventional fibers are modified to trap the light inside the core, which is in direct contact
with the surrounding medium and hence acts a sensor, as sketched in Figure 7a–h [46,53]. All or
part of the cladding of the fiber is removed by chemical itching or side polishing for the sensing
applications. These uncladded or D-shaped optical fiber sensors are established and studied in the
operating wavelength range from 500 to 800 nm [46]. The incident light launched into the fiber
core, i.e., fundamental mode, at a certain wavelength can couple with the plasmonic mode. Then, the
particular effective refractive index of the analyte is monitored for the characteristics of the transmission
light. Nevertheless, achieving the phase matching condition is challenging. The coupling between
the effective refractive index of the plasmonic mode and the effective refractive index, ne f f , of the
core mode takes place at higher frequencies. Tuning the phase-matching condition in the desired
wavelength has been achieved with multimode fibers by coupling the effective refractive index of
higher-order modes and effective refractive index of the plasmonic mode [25,54,55]. The tapered optical
fibers, as shown in Figure 7a, are produced by removing the cladding of the fiber [56]. The unclad part
is fixed with translational stages at both the ends. The center part of the unclad fiber is heated with
burning gas and the fiber is slowly pulled at both ends to reduce the waist diameter of the fiber. A
thin metal layer is placed on the tapered region and exposed to the surrounding for sensing [56]. Such
unclad/etched/tapered structured sensors have achieved a maximum sensitivity of 20,000 nm/RIU
in RI (refractive index)ranging from 1.415 and 1.429 [57]. A RI sensor based on dual-core photonic
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crystal fiber (PCF) has exhibited the highest sensitivity of 22,983 nm/RIU [58]. The so-called N-layered
matrix method is also followed for the unclad/etched structure sensor configuration, as elucidated in
Figure 7b [22]. In the N-layered matrix method, to analyze the reflectance and transmittance properties,
the following three methods are surveyed, namely, the field tracing method, the resultant wave method,
and the transfer matrix method [59]. The characteristics of better sensitivity with enhanced detection
accuracy and figure of merit are endowed by this transfer matrix method [22,60]. In recent years, the
fabrication techniques provide several geometries for the metal components, as shown in Figure 7c,
which are used for tailoring the modal dispersion of the plasmons and to increase their coupling with
the fundamental mode [61]. The metallic wires support multiple modes, which are responsible for the
increased number of resonant peaks that result in the sensor with different values of refractive index
detection range and operating wavelengths [62]. Nanocoated D-shaped optical fibers were constructed
for sensing applications with a sensitivity of 1566 nm/RIU [63]. A single mode D-shaped fiber is used
for sensing the RI monitoring of liquid with linearity up to 0.984 [64]. The multi-D-shaped optical fiber
has been established by forming several D-sections in an optical fiber as a highly sensitive RI sensor
with the resolution of 1.27 × 10−3–3.13 × 10−4 RIU [65].

6.2. Grating-Assisted Fiber Sensors

The gratings are photo-inscribed inside the core region and some part of the light is given
in the cladding region. This effect has been used to develop the SPR-based FOPs [41]. In what
follows, we discuss various types of grating-assisted fiber sensors such as thinned fiber Bragg gratings
(ThFBGs), long-period fiber Bragg gratings (LFBGs), and tilted fiber Bragg gratings (TFBGs). Recently,
ThFBGs have been established for RI sensing applications with a resolution of 10−5–10−4, as shown in
Figure 7d [66]. LFBGs have been proposed to achieve SPR of a single cladding mode at the gold-coated
tip of a single mode fiber [67], as shown in Figure 7e. Recently, sensors based on TFBGs have exhibited
a sensitivity of 500 nm/RIU in non-plasmon-assisted refractometry and bulk optic SPR sensors, as
shown in Figure 7f [68].

6.3. Specialty Fibers

The specialty fiber configurations of this group are non-conventional fibers. In this line, the
polarization-maintaining optical fibers support two linearly polarized modes, namely, slow and fast
polarizations. When one of the polarized modes is aligned with the metal layer, the other modes tend
to exhibit the SPR mode. A polarization mode fiber sensor has been demonstrated with refractive
index resolutions better than 4 × 10−6 RIU [69]. Over the years, in order to enhance the sensitivity of
the fiber sensors, there has been continuous engineering done on the geometry of the fiber. This has
led to notable advances in sensor technology.

Recently, microstructured optical fibers (MOFs) have attracted more interest due to their
usefulness in design engineering. MOFs are mostly modeled with air holes in the cladding region
surrounded with metal over the core region, as shown in Figure 7g,h [70]. The several SPR-based FOPs
reported so far have been classified into five categories, namely, nanowire based, micro-fluidic slotted
based, internal metal coated, external sensing type, and D-shaped. In the mentioned techniques, the
sensitivity has been achieved by coating the metal in the air holes and filling the analyte selectively in
the cladding air holes. By engineering the geometric structure of the MOFs with various structural
parameters, a maximum sensitivity of 21,700 nm/RIU has been achieved [71]. In this line, several
different configurations, namely, three-hole, multi-core, grapefruit, and higher-order asymmetric
MOFs have been demonstrated [72–79].
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Furthermore, polymer plastic MOFs have been used for plasmonic generation in achieving the
biocompatibility [80]. The U-shaped plastic optical fiber (POF) with long period grating exhibits better
sensing performance of 1130%/RIU with a resolution of 8.44 × 10−4 in the RI range of 1.33 to 1.41 [81].

6.4. Novel Techniques for Optical Fiber Sensors

With the new developments in fiber fabrication, novel SPR sensors using optical fibers were
reported in the last few years. In 2001, both magnesium fluoride and Teflon AF-1600 were successfully
utilized as dielectric buffer materials for long-range surface plasmons (LRSPR) wavelength-modulated
sensor design by Nenninger with a maximum sensitivity of 9200 nm/RIU [82]. In 2004, Chien and
Chenb presented an improved theoretical analysis method for the LRSPR device by taking the angular
interrogation into account, in addition to the spectral interrogation that is usually considered for the
conventional SPR configuration [83]. In the same year, Ekgasit et al. explained their SPR spectroscopy
experiment using the characteristic matrix approach and the total transmission coefficients [84]. Later
on, the SPR imaging (SPRI) technique became the most promising tool for high-throughput detection
and Corn’s group reported SPR imaging with a special multilayer structure in 2005 [85]. A review of
thin metal strip waveguides for LRSPR and their applications was presented by Berini in 2009 [86].
Further, Yashunsky et al. reported the existence of multiple phases in epithelial cell adhesion and
showed that the penetration depth and propagation length of near-infrared SPR can be enhanced to
more than 1 mm [87]. Abbas summarized new sensing materials, such as negative index materials,
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ZnO, and other analytical techniques combined with SPR, in his review paper [88]. In 2017, Watad
et al. proposed a spectro-polarimetric SPR sensor with high RI resolution and high tolerance that
depends on the Ag film thickness [89]. CNT/Cu-nanoparticles with good dielectric properties were
used for the design of a highly sensitive fiber SPR sensor based on the nanocomposite technique for
the sensing of nitrates [90]. Recently, a review article by Abdulhalim discussed different configurations
for high-performance sensors via an extended surface electromagnetic wave (SEW) [91]. Moreover,
cholesterol oxidase was employed as a sensing material in FOPS for measuring the concentration of
cholesterol by Gupta’s group [92].

To date, the conventional coating methods of SPR-based FOPS have been reported based on
RF sputtering, thermal evaporation, electrolysis plating or wet-chemistry deposition, and chemical
vapor deposition. There is no unanimously recognized method to list the characteristics influencing
sensor performance. However, sensitivity, resolution, and detection limit are considered to be a few
important parameters that characterize the performance of the sensor. Hence, the sensor performance
of recent SPR-based FOPS has to be compared with standard prism-based systems, which are bulkier
and costlier.

7. Concept of Surface Plasmon Resonance Biosensing

In a FOPS detection process for biosensing, first, light needs to be launched through an optical
fibre coated by a thin layer of noble metal. Then the evanescent wave propagates along the silica-metal
interface and the maximum energy transfer from light to SPW occurs on the metal surface when its
propagation constant is the same as that of SPW. The propagation constant of the SPW is extremely
sensitive to the changes of the refractive index of the sample on the metal surface. Figure 8 illustrates an
overview of the detection mechanism of a FOPS for antibody-antigen binding. The antibody elements
initially immobilize themselves on the metal surface and then the interaction between the antibody
and antigen results in the refractive index change of the samples, which can lead to a shift in the
resonance wavelength of the FOPS. This significant wavelength shift caused by the binding introduces
the changes in the refractive index that can be detected by a precise optical spectrometer [93].
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8. Applications

FOPS-based SPR sensors have brought several advantages, namely, minimum measurement of
sample volumes, possibility of multi-sensing, geometric feasibility, miniaturization of the sensing
device, and immunity to the electric signal noise of the sensing system [94]. The development and
investigation of the biosensors have been reviewed and reported [38,45,95]. SPR-based FOPS have
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applications in biology and medicine. They can generally be classified into two groups, chemical
sensors and biological sensors. The chemical sensors are “miniaturized analytical devices that can
deliver real-time and on-line information in the presence of specific compounds or ions in complex
samples,” as defined by Wolfbeis [96]. A biosensor is an analytical device that converts the analyte into
an electrical signal through the bio-recognition system with a transducer [97]. A range of biosensors
for the detection of different biological samples are reviewed and tabulated in Table 1. It provides
details of the sensor configuration with an application and the specific technique used for binding the
functional materials, sample range used, and sensor performances. It includes both SPR and LSPR
implementations in the reviewed sensor configurations. The SPR-based sensor devices operate in the
visible region. Recently, an ITO-based SPR sensor has been established to operate in the near-infrared
region. To model a sensor device in the near-infrared regime, the nanoparticle coating is incorporated
in the sensor configuration, which further improves the optical properties [98].

8.1. Medicine

In cancer research, biosensors are used to analyze changes in the protein contents of cells [99].
Cancer cells use the body’s energy and cause a change in how food energy is utilized in the human
body. When these cancer cells are multiplied, they give impulse to adjoining organs, nerves and blood
vessels, etc., [100]. In biomedical treatment, human fluids such as blood, tears, saliva, and urine can
be used as an analyte in which different components of the chosen analyte can be analyzed [101].
In diabetic patients, monitoring the glucose level with blood as a sample causes uneasiness. As an
alternative, tears can be used as an analyte in which the glucose level is 50 to 100 times lower than
that of blood [102]. For every disease, earlier detection significantly improves the chances of a cure.
Conventional techniques for detecting diseases are time-consuming. Additionally, to detect the disease
requires a lot of expensive equipment. In recent years, researchers have found that these current
biosensors are cost-effective and take less time compared with the conventional techniques. These
biosensors are defining nano- or micro-fabrication technologies and the use of optical, electrical, and
mechanical transducers.

8.2. Food Safety

Food safety will prevent an increase in foodborne diseases. The attention to handling, preparing,
and preserving the food in conventional methods is tedious and time-consuming. The optical
biosensors provide specificity, ease, and a fast response. The greater potential of optical biosensors
lies in the detection of toxic substances in food. Recently, SPR optical biosensors have been developed
for the detection of pesticide residues, veterinary drugs in animal-derived products, microbial
contamination and hygienic monitoring, heavy metal adulterants, and other toxic compounds [103].
The most beneficial applications in optical biosensors consist of biological analytes and the analysis of
biomolecular interactions [93]. Recently, the research and development of SPR-based FOPS in the area
of drug discovery have been established for food safety [104]. Wan et al. simplified a protocol based
on LSPR with enhanced sensitivity by embedding a gold nanoparticles thin film in the geometrical
configuration of the biosensor [105]. The SPR-based biosensor’s advancement towards multiplexing
and coupling this advancement with biotechnology for high quality food safety assessment were
reviewed [106]. Features of SPR-based optical biosensors used for pathogen detection in meat products
were enumerated [107]. A new approach to blood glucose sensing with enhanced sensitivity of
0.0366 nm/(mg/dL) has been established [108]. Recently, a novel glucose fiber optic grating sensor
for the applications in food safety, disease diagnosis, and clinical analysis has been reported with
high sensitivity of 0.298 nm(mg/mL)−1 in low analyte concentrations of 0~3 mg/mL [109]. These
SPR-based FOPS developed for food safety and quality assurance also satisfy the quality standards of
international trade. SPR-based biosensors have resulted in great attention to the development of new
techniques for predicting the internal quality parameters of food materials.
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8.3. Environmental Monitoring

Sensitivity monitoring of environmental pollutants, namely, pesticides, biological pollutants,
disruptive chemicals, explosives, and toxins, is needed to safeguard environmental quality and
therefore human health. To surpass the conventional chromatographic and spectroscopic technologies,
which quantify the contamination in an environment with sophisticated instruments, a recently
developed biosensor can be used for its simple protocols and cost-effectiveness. The functional
biorecognition is a key concept of biosensors. Antibodies such as enzymes, antigens, aptamers, and
DNAzyme are recurrently used as biorecognition molecules in optical fiber sensor technologies. A
highly sensitive optical biosensor for interaction among environmental molecules with the sensitivity
of 100 pg/mL has been reported [110]. Recently, a whole cell-based optical biosensor for detecting
organic waste with a sensitivity of 0.74 µg/L was reported [111]. The applications of cell-based
optical biosensors for environmental analysis and medical diagnostics were reviewed [112]. The
environmental investigation requires more attention to diverse environmental phenomena including
the fate and transport of contaminants. The other applications of the SPR-based FOBS are tabulated in
Table 1 as follows:

Table 1. Summary of selected experimental performances for fiber optic plasmonic probes.

Sensor Configuration and Its
Application

Operating
Wavelength (nm) Functional Materials Performance with Sample

Range Ref.

Etched optical fiber for detection of
salinity concentration 1400–1600 SMF + MMF + SMF coated

with ITO
7000 nm/RIU for RI ranges

from 1.333 to 1.338. [113]

Symmetrically-etched POF sensor for
RI sensing application 350–1100 Etched POF coated with Au 1600 nm/RIU for RI ranges

from 1.3353 to 1.3453. [114]

Etched-optical fiber Bragg grating for
sensing deionized water and saline 400–1600 Etched D-shaped fiber Bragg

grating coated with TiO2

1.257 nm/RIU for
air-deionized water and

0.857 nm/RIU for air-saline
for the corresponding RI 1

and 1.318.

[115]

Tilted fiber Bragg grating sensor for
detecting urinary protein variations 1440–1540 Tilted fiber Bragg grating

coated with Ag
8000 dB/RIU for RI ranges

from 1.3400 to 1.3408 [116]

Tapered fiber SPR-based sensing
systems for remote measurement of
chemical and biological parameters

450–1700 Cr + Au + TiO2 coated on
fiber

5000 nm/RIU at 1500 nm for
RI ranges from 1.332 to

1.338.
[117]

Tapered multimode fiber sensor for RI
detection sensors 400–1200 Ag + Au coated on fiber

10 times as compared to the
symmetric fiber sensing
probe for RI ranges from

1.333–1.353

[118]

Adiabatic tapered optical fiber sensor
for biochemical sensing 400–2000 Tapered optical fiber + TiO2

7096 nm/RIU for RI ranges
from 1.3373 to 1.3500 [119]

Side polished single
mode-multimode-single mode fiber

for sensing characteristics
1450–1610 SMF + MMF + SMF 30 mm,

35 mm, 40 mm, and 45 mm

The highest sensitivity of 65
nm/RIU in RI range from
1.33 to 1.39, and of 1190

nm/RIU in RI range from
1.43 to 1.45.

[120]

Side-polished plastic optical fiber for
biochemical application 400–1100

Ag + silicon +
Polyacrylamide Gel with

uricase enzyme

10.50 nm/mM in the range
0–0.9 mM [121]

Side-polished single-mode fiber for
the detection of Legionella

pneumophila
400–1800 Au + SAM + antigen LP

coated on fiber
Legionella pneumophila

LOD 101 CFU/ml [122]
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Table 1. Cont.

Sensor Configuration and Its
Application

Operating
Wavelength (nm) Functional Materials Performance with Sample

Range Ref.

Coreless side-polished fiber for
multimode interference and refractive

index sensors
1100–1650

lead in SMF, transitional
section 15,666 nm/RIU in SRI range

from 1.438 to 1.444
[123]1, coreless flat section,

transitional section
2, and lead-out SMF

Ag NP-based LSPR optical fiber
biosensor for detecting the

anti-human IgG
200–800 Human IgG + immobilized

on the sensor probe
387 nm/RIU for RI ranges

from 1.33 to 1.40. [124]

D-shaped fiber SPR-based plasmonic
sensor 500–1200 Au coated on fiber 7381 nm/RIU for RI ranges

from 1.40 to 1.42. [125]

D-shaped fiber SPR-based plasmonic
sensor 1000–1100 ITO coated on fiber 6000 nm RIU for RI ranges

from 1.30 to 1.31 [126]

D-shaped fiber SPR-based biosensor 500–1720 Au + TiO2 coated on fiber
46,000 nm/RIU at 1130 nm
for RI ranges from 1.34 to

1.35.
[127]

U-bent fiber optic SPR sensor for
medicine, biotechnology and food

safety
300–800 Ag NPs coated on U-bent

optical fiber
1198 nm/RIU for RI ranges

from 1.3657 to 1.3557. [128]

PCF biosensor for biological analyte
detection 500–740 Au coated outside of the

PCF structure
2200 nm/RIU for RI ranges

from 1.33 to 1.36. [129]

Side-polished D-shaped PCF for
bio-chemical detection 500–900 Ag-coated side-polished

hexagonal structure PCF
21,700 nm/RIU for RI ranges

from 1.33 to 1.34 [130]

LSPR-based optical fiber sensor for RI
measurements 200–1100 Ag NPs are coated on

optical fiber
1933 nm/RIU for 1.333 to

1.404 [131]

U-bent plastic optical fiber sensor for
biosensing 300–800 Ag thin film was deposited

on U-bent optical fiber
700.3 nm/RIU for ranges

from 1.330 to 1.3657 [132]

However, there are still some limitations to such SPR-based FOPS. For example, for the
measurement of some physical parameters, such as curvature and displacement, the applications of
the fiber optic SPR sensor are still limited because it is difficult to control the propagation angle of the
light beam in the fiber and the intensity of the evanescent wave [134].

This review also provides the basis of fabrication techniques of SPR-based FOPS such as stack and
draw method [135], drilling [136], sol-gel casting [137], slurry casting [138], and extrusion method [139].
The conventional stack and draw method is generally used to fabricate PCF-based SPR FOPS with
the least transmission loss of 0.18 dB/km at 1550 nm wavelength [140]. In every MOF-based FOPS,
the complexity of the geometric structure is the most common issue. However, the fabrication of
the asymmetric geometry of the sensor is a challenging process. Moreover, the metal coating on
the surface of circular air holes in MOF-based sensors is one of the common difficulties that restrict
the experimental realization of FOPS. Table 2 provides the various metal coating techniques such
as sputtering, side-polishing, dip-coating, thermal evaporation, electroless plating, wet-chemistry
deposition, and chemical vapor deposition. By using the chemical vapor deposition technique, the
complex metal coating on the surface of the circular air holes has been reported [141,142]. Furthermore,
the metal coating in the inner surface of the circular air holes is achieved by Tollens’ reaction [143,144].
Among the various metal-coating techniques, the chemical method is the most common and is
cost-effective. The self-calibration process is essential to characterize and utilize the sensor. Various
analytes have been tested by exchanging with water and filling the nitrogen gas [143]. The fabrication
approaches employed for the fabrication of SPR-based FOBS have been reported [15]. In practical
applications, several SPR-based FOBS play a role in the chemical, biological. and medical fields.
In 2015, a fast bioassay for determining the infliximab concentration in serum using an in-house
developed SPR-based FOBS was reported [145]. In 2018, a red-green dual color SPR-based FOBS using
a smartphone was developed for real-time biodetection by monitoring the binding of IgG and protein
A [146]. These portable devices are attractive for point-of-care and remote detection of biomedical and
environmental targets. In lab-on-fiber technology, a new vision for chemical and biological sensing
has been proposed to determine the direct impact of localized cancer treatment [9]. On account of
these developments, we believe that these SPR-based FOBS would contribute greatly to enhancing
industrial applications in several areas of the physical, chemical, biological, and medical fields.
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Table 2. Various metal-coating techniques in the different geometry of FPOS (Fiber Optic
Plasmonic Sensor).

Type of Metal Coating Advantage Disadvantage FOPS Geometric Structure

Selective metal coating
[76]

Analyte is filled in the
chosen air hole cell

Metal coating is
challenging on the
circular air holes

Appl. Sci. 2019, 9, x 13 of 22 

Ag NP-based LSPR optical fiber biosensor for 
detecting the anti-human IgG 

200–800 
Human IgG + 

immobilized on 
the sensor probe 

387 nm/RIU for RI 
ranges from 1.33 to 

1.40. 
[124] 

D-shaped fiber SPR-based plasmonic sensor 500–1200 Au coated on fiber 
7381 nm/RIU for RI 
ranges from 1.40 to 

1.42. 
[125] 

D-shaped fiber SPR-based plasmonic sensor 1000–1100 
ITO coated on 

fiber 

6000 nm RIU for RI 
ranges from 1.30 to 

1.31 
[126] 

D-shaped fiber SPR-based biosensor 500–1720 
Au + TiO2 coated 

on fiber 

46,000 nm/RIU at 1130 
nm for RI ranges from 

1.34 to 1.35. 
[127] 

U-bent fiber optic SPR sensor for medicine, 
biotechnology and food safety 

300–800 
Ag NPs coated on 

U-bent optical 
fiber 

1198 nm/RIU for RI 
ranges from 1.3657 to 

1.3557. 
[128] 

PCF biosensor for biological analyte detection 500–740 
Au coated outside 

of the PCF 
structure 

2200 nm/RIU for RI 
ranges from 1.33 to 

1.36. 
[129] 

Side-polished D-shaped PCF for bio-chemical 
detection 

500–900 

Ag-coated side-
polished 

hexagonal 
structure PCF 

21,700 nm/RIU for RI 
ranges from 1.33 to 

1.34 
[130] 

LSPR-based optical fiber sensor for RI 
measurements 

200–1100 
Ag NPs are coated 

on optical fiber 
1933 nm/RIU for 1.333 

to 1.404 
[131] 

U-bent plastic optical fiber sensor for biosensing 300–800 
Ag thin film was 
deposited on U-
bent optical fiber 

700.3 nm/RIU for 
ranges from 1.330 to 

1.3657 
[132] 

Table 2. Various metal-coating techniques in the different geometry of FPOS (Fiber Optic Plasmonic 
Sensor). 

Type of 
Metal 

Coating 
Advantage Disadvantage FOPS Geometric Structure 

Selective 
metal coating 

[76] 

Analyte is filled in the 
chosen air hole cell 

Metal coating is 
challenging on the 
circular air holes 

 

External 
metal coating 

[50] 

Analyte is filled in the 
external surface of the 

fiber 

Different air hole sizes 
are required. 

 

External metal coating
[50]

Analyte is filled in the
external surface of the

fiber

Different air hole sizes
are required.

Appl. Sci. 2019, 9, x 13 of 22 

Ag NP-based LSPR optical fiber biosensor for 
detecting the anti-human IgG 

200–800 
Human IgG + 

immobilized on 
the sensor probe 

387 nm/RIU for RI 
ranges from 1.33 to 

1.40. 
[124] 

D-shaped fiber SPR-based plasmonic sensor 500–1200 Au coated on fiber 
7381 nm/RIU for RI 
ranges from 1.40 to 

1.42. 
[125] 

D-shaped fiber SPR-based plasmonic sensor 1000–1100 
ITO coated on 

fiber 

6000 nm RIU for RI 
ranges from 1.30 to 

1.31 
[126] 

D-shaped fiber SPR-based biosensor 500–1720 
Au + TiO2 coated 

on fiber 

46,000 nm/RIU at 1130 
nm for RI ranges from 

1.34 to 1.35. 
[127] 

U-bent fiber optic SPR sensor for medicine, 
biotechnology and food safety 

300–800 
Ag NPs coated on 

U-bent optical 
fiber 

1198 nm/RIU for RI 
ranges from 1.3657 to 

1.3557. 
[128] 

PCF biosensor for biological analyte detection 500–740 
Au coated outside 

of the PCF 
structure 

2200 nm/RIU for RI 
ranges from 1.33 to 

1.36. 
[129] 

Side-polished D-shaped PCF for bio-chemical 
detection 

500–900 

Ag-coated side-
polished 

hexagonal 
structure PCF 

21,700 nm/RIU for RI 
ranges from 1.33 to 

1.34 
[130] 

LSPR-based optical fiber sensor for RI 
measurements 

200–1100 
Ag NPs are coated 

on optical fiber 
1933 nm/RIU for 1.333 

to 1.404 
[131] 

U-bent plastic optical fiber sensor for biosensing 300–800 
Ag thin film was 
deposited on U-
bent optical fiber 

700.3 nm/RIU for 
ranges from 1.330 to 

1.3657 
[132] 

Table 2. Various metal-coating techniques in the different geometry of FPOS (Fiber Optic Plasmonic 
Sensor). 

Type of 
Metal 

Coating 
Advantage Disadvantage FOPS Geometric Structure 

Selective 
metal coating 

[76] 

Analyte is filled in the 
chosen air hole cell 

Metal coating is 
challenging on the 
circular air holes 

 

External 
metal coating 

[50] 

Analyte is filled in the 
external surface of the 

fiber 

Different air hole sizes 
are required. 

 

Internal nanowire filling
[133]

Analyte is filled in the
nanowire

Selective filling of air
hole in nano size is

challenging

Appl. Sci. 2019, 9, x 14 of 22 

Internal 
nanowire 

filling [133] 

Analyte is filled in the 
nanowire 

Selective filling of air 
hole in nano size is 

challenging 

 

Side-polished 
[125] 

A flow of analyte is 
allowed at the outer 
surface of the fiber 

A precise etching and 
polishing exertion are 

needed 

 

Micro-fluidic 
slots [76] 

Various analytes can 
be analyzed at the 

same time  

Making the metal slots 
is challenging 

 

However, there are still some limitations to such SPR-based FOPS. For example, for the 
measurement of some physical parameters, such as curvature and displacement, the applications of 
the fiber optic SPR sensor are still limited because it is difficult to control the propagation angle of 
the light beam in the fiber and the intensity of the evanescent wave [134]. 

This review also provides the basis of fabrication techniques of SPR-based FOPS such as stack 
and draw method [135], drilling [136], sol-gel casting [137], slurry casting [138], and extrusion method 
[139]. The conventional stack and draw method is generally used to fabricate PCF-based SPR FOPS 
with the least transmission loss of 0.18 dB/km at 1550 nm wavelength [140]. In every MOF-based 
FOPS, the complexity of the geometric structure is the most common issue. However, the fabrication 
of the asymmetric geometry of the sensor is a challenging process. Moreover, the metal coating on 
the surface of circular air holes in MOF-based sensors is one of the common difficulties that restrict 
the experimental realization of FOPS. Table 2 provides the various metal coating techniques such as 
sputtering, side-polishing, dip-coating, thermal evaporation, electroless plating, wet-chemistry 
deposition, and chemical vapor deposition. By using the chemical vapor deposition technique, the 
complex metal coating on the surface of the circular air holes has been reported [141,142]. 
Furthermore, the metal coating in the inner surface of the circular air holes is achieved by Tollens’ 
reaction [143,144]. Among the various metal-coating techniques, the chemical method is the most 
common and is cost-effective. The self-calibration process is essential to characterize and utilize the 
sensor. Various analytes have been tested by exchanging with water and filling the nitrogen gas [143]. 
The fabrication approaches employed for the fabrication of SPR-based FOBS have been reported [15]. 
In practical applications, several SPR-based FOBS play a role in the chemical, biological. and medical 
fields. In 2015, a fast bioassay for determining the infliximab concentration in serum using an in-
house developed SPR-based FOBS was reported [145]. In 2018, a red‒green dual color SPR-based 
FOBS using a smartphone was developed for real-time biodetection by monitoring the binding of 
IgG and protein A [146]. These portable devices are attractive for point-of-care and remote detection 
of biomedical and environmental targets. In lab-on-fiber technology, a new vision for chemical and 

Side-polished [125]
A flow of analyte is
allowed at the outer
surface of the fiber

A precise etching and
polishing exertion are

needed

Appl. Sci. 2019, 9, x 14 of 22 

Internal 
nanowire 

filling [133] 

Analyte is filled in the 
nanowire 

Selective filling of air 
hole in nano size is 

challenging 

 

Side-polished 
[125] 

A flow of analyte is 
allowed at the outer 
surface of the fiber 

A precise etching and 
polishing exertion are 

needed 

 

Micro-fluidic 
slots [76] 

Various analytes can 
be analyzed at the 

same time  

Making the metal slots 
is challenging 

 

However, there are still some limitations to such SPR-based FOPS. For example, for the 
measurement of some physical parameters, such as curvature and displacement, the applications of 
the fiber optic SPR sensor are still limited because it is difficult to control the propagation angle of 
the light beam in the fiber and the intensity of the evanescent wave [134]. 

This review also provides the basis of fabrication techniques of SPR-based FOPS such as stack 
and draw method [135], drilling [136], sol-gel casting [137], slurry casting [138], and extrusion method 
[139]. The conventional stack and draw method is generally used to fabricate PCF-based SPR FOPS 
with the least transmission loss of 0.18 dB/km at 1550 nm wavelength [140]. In every MOF-based 
FOPS, the complexity of the geometric structure is the most common issue. However, the fabrication 
of the asymmetric geometry of the sensor is a challenging process. Moreover, the metal coating on 
the surface of circular air holes in MOF-based sensors is one of the common difficulties that restrict 
the experimental realization of FOPS. Table 2 provides the various metal coating techniques such as 
sputtering, side-polishing, dip-coating, thermal evaporation, electroless plating, wet-chemistry 
deposition, and chemical vapor deposition. By using the chemical vapor deposition technique, the 
complex metal coating on the surface of the circular air holes has been reported [141,142]. 
Furthermore, the metal coating in the inner surface of the circular air holes is achieved by Tollens’ 
reaction [143,144]. Among the various metal-coating techniques, the chemical method is the most 
common and is cost-effective. The self-calibration process is essential to characterize and utilize the 
sensor. Various analytes have been tested by exchanging with water and filling the nitrogen gas [143]. 
The fabrication approaches employed for the fabrication of SPR-based FOBS have been reported [15]. 
In practical applications, several SPR-based FOBS play a role in the chemical, biological. and medical 
fields. In 2015, a fast bioassay for determining the infliximab concentration in serum using an in-
house developed SPR-based FOBS was reported [145]. In 2018, a red‒green dual color SPR-based 
FOBS using a smartphone was developed for real-time biodetection by monitoring the binding of 
IgG and protein A [146]. These portable devices are attractive for point-of-care and remote detection 
of biomedical and environmental targets. In lab-on-fiber technology, a new vision for chemical and 

Micro-fluidic slots [76]
Various analytes can be

analyzed at the same
time

Making the metal slots is
challenging

Appl. Sci. 2019, 9, x 14 of 22 

Internal 
nanowire 

filling [133] 

Analyte is filled in the 
nanowire 

Selective filling of air 
hole in nano size is 

challenging 

 

Side-polished 
[125] 

A flow of analyte is 
allowed at the outer 
surface of the fiber 

A precise etching and 
polishing exertion are 

needed 

 

Micro-fluidic 
slots [76] 

Various analytes can 
be analyzed at the 

same time  

Making the metal slots 
is challenging 

 

However, there are still some limitations to such SPR-based FOPS. For example, for the 
measurement of some physical parameters, such as curvature and displacement, the applications of 
the fiber optic SPR sensor are still limited because it is difficult to control the propagation angle of 
the light beam in the fiber and the intensity of the evanescent wave [134]. 

This review also provides the basis of fabrication techniques of SPR-based FOPS such as stack 
and draw method [135], drilling [136], sol-gel casting [137], slurry casting [138], and extrusion method 
[139]. The conventional stack and draw method is generally used to fabricate PCF-based SPR FOPS 
with the least transmission loss of 0.18 dB/km at 1550 nm wavelength [140]. In every MOF-based 
FOPS, the complexity of the geometric structure is the most common issue. However, the fabrication 
of the asymmetric geometry of the sensor is a challenging process. Moreover, the metal coating on 
the surface of circular air holes in MOF-based sensors is one of the common difficulties that restrict 
the experimental realization of FOPS. Table 2 provides the various metal coating techniques such as 
sputtering, side-polishing, dip-coating, thermal evaporation, electroless plating, wet-chemistry 
deposition, and chemical vapor deposition. By using the chemical vapor deposition technique, the 
complex metal coating on the surface of the circular air holes has been reported [141,142]. 
Furthermore, the metal coating in the inner surface of the circular air holes is achieved by Tollens’ 
reaction [143,144]. Among the various metal-coating techniques, the chemical method is the most 
common and is cost-effective. The self-calibration process is essential to characterize and utilize the 
sensor. Various analytes have been tested by exchanging with water and filling the nitrogen gas [143]. 
The fabrication approaches employed for the fabrication of SPR-based FOBS have been reported [15]. 
In practical applications, several SPR-based FOBS play a role in the chemical, biological. and medical 
fields. In 2015, a fast bioassay for determining the infliximab concentration in serum using an in-
house developed SPR-based FOBS was reported [145]. In 2018, a red‒green dual color SPR-based 
FOBS using a smartphone was developed for real-time biodetection by monitoring the binding of 
IgG and protein A [146]. These portable devices are attractive for point-of-care and remote detection 
of biomedical and environmental targets. In lab-on-fiber technology, a new vision for chemical and 

9. Conclusions and Future Directions

In this paper, we have reviewed the theoretical model and experimental techniques that
culminated in the successful realization of FOPS for biological applications. In this review, we
have explained the SPR technique in different media, namely, prism-based SPR FOPS, grating-based
SPR FOPS, and optical fiber-based SPR FOPS. Currently, the novel SPR-based FOPS geometries and
approaches are being explored by several groups to model sensors for achieving high sensitivity
and high resolution with better performance. It is noted that the optical fiber-based SPR FOPS
are enormously attractive for the possibility of sensor miniaturization. Nowadays, the unique
properties of the metal nanoparticles are used to explain the phenomenon of LSPR in FOPS. Several
functionalization strategies for metal-based LSPR have been established. In this line, engineering
the optical properties and thin-film thickness are carried for such lamellar SPR-based FOPS for
point-of-care biosensing applications.
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Recent trends concerning several geometries of the FOPS have been discussed. We have found
that the applications of FOPS in medical diagnosis, such as characteristics of particular biomolecular
species, have been analyzed on buffered samples instead of clinical samples. With the SPR-based
FOPS, the penetration depth is limited. Identifying a specific molecule among groups of molecules
with less interaction between the unwanted molecules remains difficult. Besides high sensitivity and
better performance, compactness is also a challenging task for future research. For the early detection
of cancer and cardiovascular problems such as tissue perfusion, blood pressure, heart rate, etc., novel
biosensors can be developed by exploiting the optical properties of recently proposed materials such
as TMDC, hBN, black phosphorus, etc. Furthermore, new fiber designs may also be introduced for
achieving low-cost biosensors. FOPS shall also be considered for understanding the role of several
characterizations of optical fibers during the sensing process. Finally, we believe that this review will
help encourage further research in the field of SPR-based FOPS.
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