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Abstract: Wettability is an important property of solid surfaces and is widely used in many industries.
In this work, seven silicon microstructure surfaces were made by plasma immersion ion implantation
(PIII) technology. The experimental contact angles and theoretical contact angles of various surfaces
were compared, which indicated that the classical theory had great limitations in predicting the static
contact angles of complex structures. A parameterized microstructure surface was established by
computational fluid dynamics (CFD) with a volume-of-fluid (VOF) model to analyze the reasons
for the differences between experimental and theoretical contact angles. Comparing the results of
experiments and simulations, it was found that the VOF model can simulate the contact angle of
these surfaces very well. The geometrical models of the different microstructures were simplified,
and waveforms of the surfaces were obtained.

Keywords: silicon microstructure surface; wettability; contact angle; volume of fluid (VOF);
numerical simulation

1. Introduction

Wettability describes the spreading of a liquid on a surface, and is one of the important
characteristics of a solid surface [1]. Wettability has been widely used in many industries, such
as surface self-cleaning [2–4], antibacterial products [5], fluid drag reduction [6], inkjet printing [7,8],
anti-fouling products [9], anti-adhesives [10], and environmental applications [11]. Moreover, surface
wettability plays an important role in boiling and condensation, such as in homogeneous nucleation,
vapor condensation, and bubble growth [12,13]. The contact angle is the main parameter that
characterizes the wettability of the solid surface, and it changes following variations in the surface
morphology or chemical properties.

The contact angle refers to the angle formed by the tangent of the gas–liquid interface at the
gas–liquid–solid intersection on the sample surface, when the droplet reaches a thermodynamic
equilibrium on the solid surface. The relationship between surface tension and contact angle can be
expressed as Young’s equation [14], and the wetting model is shown in Figure 1a.

cos θY =
(
γsg − γsl

)
/γlg (1)

where θY is Young’s contact angle, γsg, γsl and γlg, andare the surface tension at the solid–gas,
solid–liquid, and liquid–gas interfaces, respectively. Young’s equation is applied to smooth ideal
surfaces, which greatly limits its practical applications. On the basis of Yang’s theory, Wenzel [15]
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proposed a contact-angle prediction theory for practical surfaces, and the wetting model is shown in
Figure 1b.

cos θ∗W = r cos θY (2)

where r represents the roughness and is defined as the ratio of the true surface area to the projected
surface area, namely r ≥ 1. The Wenzel theory assumes that the liquid is in full contact with the rough
structure on the solid surface. However, when |r cos θY| > 1, the surfaces do not satisfy this rule in
practical applications. The Cassie–Baxter theory [16] assumes that the solid–gas composite surface is
in contact with the droplet on the rough surface; in other words, the groove under the droplet is filled
with gas. The wetting model is shown in Figure 1c, such that

cos θ∗C = fs cos θY + fs − 1 (3)

where fs is the solid–liquid fractional surface area. The Cassie–Baxter theory indicates that the
solid–liquid fractional surface area plays a decisive role in determining the apparent contact angle.
Smaller fs values generate greater Young’s contact angles and apparent contact angles (θ∗C).

Appl. Sci. 2019, 9, 566 2 of 18 

proposed a contact-angle prediction theory for practical surfaces, and the wetting model is shown in 
Figure 1b. 

*cos cosW Yrθ θ=  (2) 
where represents the roughness and is defined as the ratio of the true surface area to the projected 
surface area, namely 1r ≥ . The Wenzel theory assumes that the liquid is in full contact with the 
rough structure on the solid surface. However, when cos 1Yr θ > , the surfaces do not satisfy this 

rule in practical applications. The Cassie–Baxter theory [16] assumes that the solid–gas composite 
surface is in contact with the droplet on the rough surface; in other words, the groove under the 
droplet is filled with gas. The wetting model is shown in Figure 1c, such that 

*cos cos 1C s Y sf fθ θ= + −  (3) 

where sf is the solid–liquid fractional surface area. The Cassie–Baxter theory indicates that the 
solid–liquid fractional surface area plays a decisive role in determining the apparent contact angle. 
Smaller sf values generate greater Young’s contact angles and apparent contact angles ( *

Cθ ). 

 
Figure 1. Wetting models of (a) Yang’s theory, (b) Wenzel theory, and (c) Cassie–Baxter theory. 

Both the Wenzel and Cassie–Baxter theories indicate that the contact angle of the actual surface 
is determined by both the surface morphology and Young’s contact angle. In recent years, many 
scholars have examined the properties of superhydrophobic surfaces owing to their excellent 
performances in industrial applications. The wettability of a solid surface is determined by its 
surface chemical energy and surface roughness. To increase the contact angle of the surface, it is 
necessary to reduce the surface chemical energy and to increase the surface roughness [17]. Wang et 
al. [18], Feng et al. [19], and Wu et al. [20] characterized the surfaces of different materials using 
different chemical methods, all of which enlarged the surface roughness and reduced the surface 
free energy with the aim of generating a hydrophobic surface and augmenting the surface contact 
angle. In addition, some scholars changed the surface wettability by increasing the surface 
roughness. Emelyanenko [21] prepared a stable and wear-resistant coating on a stainless steel 
surface using nanosecond laser processing, which enhanced the surface roughness and the contact 
angle. Kwon et al. [22] fabricated a micro-pillar array with a re-entrant structure on stainless steel by 
laser ablation and electrodeposition, the results of which indicated that the presence of the re-entrant 
structure and the increase in the surface roughness generated an increase in the surface contact angle 
and created a superhydrophobic surface. Hao et al. [23] measured the contact angles of five different 
surfaces. The measurement results indicated a decrease in the contact angles of the hydrophilic 
silicon wafer and the polished silicon wafer, whereas the contact angles of the other three surfaces 
were relatively larger. For micro-grooved surfaces, Song et al. [24] observed a larger apparent 
contact angle parallel to the grooves as compared to that of the smooth surface, and the 
microstructures exhibited a minimal effect on the contact angle perpendicular to the grooves. An 
increase in the grooved area and the surface energy resulted in a more anisotropic droplet. Das et al. 
[25] coated the metal surface with tiny nanoparticles, and Yang et al. [26] fabricated microstructures 
on the silicon surface by plasma immersion ion implantation (PIII) technology, both of which 
resulted in the contact angles of the surfaces exhibiting no obvious change. Bell et al. [27] presented a 
two-dimensional (2-D) thermodynamic model to describe the wetting on hierarchically grooved 
surfaces by droplets, of which the results indicated that the influence of gravity was negligible. Bell 

r
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Both the Wenzel and Cassie–Baxter theories indicate that the contact angle of the actual surface is
determined by both the surface morphology and Young’s contact angle. In recent years, many scholars
have examined the properties of superhydrophobic surfaces owing to their excellent performances
in industrial applications. The wettability of a solid surface is determined by its surface chemical
energy and surface roughness. To increase the contact angle of the surface, it is necessary to reduce the
surface chemical energy and to increase the surface roughness [17]. Wang et al. [18], Feng et al. [19],
and Wu et al. [20] characterized the surfaces of different materials using different chemical methods,
all of which enlarged the surface roughness and reduced the surface free energy with the aim of
generating a hydrophobic surface and augmenting the surface contact angle. In addition, some
scholars changed the surface wettability by increasing the surface roughness. Emelyanenko [21]
prepared a stable and wear-resistant coating on a stainless steel surface using nanosecond laser
processing, which enhanced the surface roughness and the contact angle. Kwon et al. [22] fabricated a
micro-pillar array with a re-entrant structure on stainless steel by laser ablation and electrodeposition,
the results of which indicated that the presence of the re-entrant structure and the increase in the
surface roughness generated an increase in the surface contact angle and created a superhydrophobic
surface. Hao et al. [23] measured the contact angles of five different surfaces. The measurement results
indicated a decrease in the contact angles of the hydrophilic silicon wafer and the polished silicon
wafer, whereas the contact angles of the other three surfaces were relatively larger. For micro-grooved
surfaces, Song et al. [24] observed a larger apparent contact angle parallel to the grooves as compared
to that of the smooth surface, and the microstructures exhibited a minimal effect on the contact angle
perpendicular to the grooves. An increase in the grooved area and the surface energy resulted
in a more anisotropic droplet. Das et al. [25] coated the metal surface with tiny nanoparticles,
and Yang et al. [26] fabricated microstructures on the silicon surface by plasma immersion ion
implantation (PIII) technology, both of which resulted in the contact angles of the surfaces exhibiting no
obvious change. Bell et al. [27] presented a two-dimensional (2-D) thermodynamic model to describe
the wetting on hierarchically grooved surfaces by droplets, of which the results indicated that the
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influence of gravity was negligible. Bell et al.’s results indicated that the nanoscale roughness increased
the effective Young’s angle of the microscale features, thereby generating smaller required aspect ratios
(height to width) for the surface structures.

In our study, we first used plasma immersion ion implantation (PIII) technology [28] to prepare
microstructures on the surface of monocrystalline silicon, and studied their wetting characteristics.
There was a great difference between the experimental results and the theoretical results. It was seen
that the Cassie–Baxter theory had great limitations in predicting the static contact angle of complex
structures. In order to analyze the reasons for the observed differences, the contact angle numerical
model was set up on the basis of the volume-of-fluid (VOF) model, and a simplified waveform of the
microstructure surfaces was obtained.

2. Surface Properties of Silicon Prepared by PIII Technology

2.1. Preparation and Characterization of Microstructural Silicon Surfaces

The experimental sample was a microstructural surface prepared by plasma immersion ion
implantation (PIII) technology on the surface of polished monocrystalline silicon. Figure 2a shows a
schematic diagram of a plasma immersion ion implantation (PIII) device, which includes a plasma
source, a vacuum chamber, a high-voltage pulse power source, and a worktable on which the sample
was placed [29]. The preparation process was implemented as follows—first, the Si slice was placed
on the worktable and the high-voltage pulse power source was turned on. At the same time, the SF6

and O2 produced a lot of S*, F*, and O* plasma under the ionization of the plasma source. Finally,
plasma impinged the Si surface and initiated a reaction, thereby forming micro/nanostructures on the
sample surface.
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The process of PIII preparation included the etching reaction and the passivation reaction.
Figure 2b presents the ion implantation process. The mixture of the etching gas (SF6) and the passive
gas (O2) entered the vacuum chamber and the atomic groups, such as F*, SF*, S*, and O*, were generated
by the ionization of the SF6 and O2 gases. When these atomic groups met the test sample, the F*
entered the inside of the silicon wafer and formed a volatile gas SiF4 with the Si atoms [30]. The sample
surface was etched following SiF4 gas escape from the silicon wafers. The etching reaction caused
the silicon surface to be removed. Simultaneously, the O*, F*, and Si atoms underwent passivation
reaction and produced SixOyFz. Passivation reaction inhibited etching reaction. When etching reaction
and passivation reaction exist simultaneously, the surface of the sample formed inhomogeneous
microstructures by the PIII process [29]. In order to control the surface microstructure, the SF6/O2 flow
ratio, SF6 and O2 total flow rates, and reaction time were controlled during the experiment.

In this paper, six different microstructural surfaces were prepared by changing the gas mixture
ratio (SF6/O2), while the reaction time and the total gas flow rate were constant. The experimental
samples were numbered 1, 2, 3, 4, 5, 6, and 7 based on the ascending order of the gas mixture ratio.
Eight samples were made for each mixed gas ratios. The corresponding relationship between the
number and gas ratio is presented in Table 1. Sample 1 is an untreated Si surface, which is considered
an ideally smooth surface. The surfaces of the samples were scanned by scanning electron microscopy
(SEM) and atomic force microscopy (AFM), and the surface microstructural morphology was obtained.

Table 1. Relationship between the sample number and mixture ratio of the gas.

Number 1 2 3 4 5 6 7

Mixing ratio of the gases (SF6/O2) Untreated 1:1 2:1 3:1 4:1 5:1 6:1

The two-dimensional (2-D) surface morphology of the sample surface was obtained by SEM
scanning, of which the distribution of the projection of the convex and concave structures on the surface
was displayed well. The overhead views of the microstructural surface observed by SEM at 5000 times
magnification are shown in Figure 3, wherein no obvious concave or concave structures on the surfaces
of samples 1 and 2 are observed, whereas the surfaces of samples 3–7 exhibit obvious convex and
concave structures. These results indicated the minimal presence of SF6 gas to prepare sample 2, and
that the intensity of the etching reaction was far less than that of the passivation reaction. The surface
of sample 2 was not significantly etched and was therefore characterized as smooth. An increase in the
gas mixture ratio generated a gradual increase in the amount of SF6 gas and enhanced the intensity
of the etching reaction, thereby forming an obvious microstructure on the surfaces of samples 3–7.
The convex and concave microstructures were randomly distributed on the surface of the sample (the
lighter the color, the higher the structure). At the same time, an increase in the SF6 gas generated a
decrease in the shape and area of the local convex structure and an increase in the dispersion, thereby
significantly increasing the percentage of the depression structure in the total area as well.

The SEM results exhibited an area ratio of the projection on the surface of the convex/concave
structures. However, the shape and height of the convex/concave structures could not be clearly
displayed through the projection. The surface morphology of the sample was further scanned by AFM,
and the three-dimensional (3-D) morphology of the convex/concave structure was obtained, as seen in
Figure 4. Similar to the SEM scanning results, the surfaces of samples 1 and 2 were smooth, and the
surface of samples 3–7 exhibited an obvious convex structure of a volcanic heap. The AFM results also
indicated that an increase in the gas mixture ratio, to a certain degree, did not exhibit any obvious
physical changes in the microstructure, as observed in the surface structure of samples 5–7.
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Figure 4. AFM image of the sample surface—untreated surface (a), gas-treated surface with a mixing
ratio of 1:1 (b), 2:1 (c), 3:1 (d), 4:1 (e), 5:1 (f), and 6:1 (g).

The Asylum Research AFM software (version 13.04.77, Oxford Instruments Asylum Research,
Inc., CA, USA) was applied to analyze the AFM scanning data and to characterize both the surface
roughness (Ra) and the area ratio (r) of the total surface area to the projected area of the microstructures.
The Ra was obtained from the statistics of the average height of the convex structure, and r was
obtained from the statistics of the surface area ratio of the convex/concave structure to its projection
area at the horizontal plane. Figure 5 presents the relationship between the surface roughness and
area ratio of the sample surface and the change in the mixing ratio of gases (SF6/O2). According
to Figure 5, the change in the surface roughness and area ratio of sample 2 was very small when
compared to that of sample 1, which further validated the significantly low intensity of the etching
reaction to form microstructures on the sample surface under the condition of a low gas mixing ratio.
In addition, an increase in the mixed gas proportion first generated a rapid increase and then a slight
decrease in the surface roughness, whereas the area ratio of the sample increased continuously. These
results indicated that an increase in the mixed gas proportion enhanced the etching reaction and
more silicon surfaces participated in the etching reaction, thereby resulting in an increase in the area
ratio. However, the surface roughness was determined by both the etching and passivation reactions.
An extreme relationship was observed between the maximum roughness and the mixing ratio of the
gases. In addition, too large of a mixing ratio reduced the roughness of the microstructural surfaces.
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The static contact angle of the sample surfaces was measured by the contact angle measuring
instrument XG-GAMB1 (Xuanyichuangxi Industrial Equipment Co. Ltd., Shanghai, China). Ultrapure
water with a volume of 2 µL was used as the experimental working medium, and the environmental
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Figure 6 exhibits a significant increase in the contact angle of the sample surface prepared by
PIII technology. In addition, the hydrophilic surface was transformed into a hydrophobic surface
(the contact angle was greater than 90◦). Figures 3 and 4 present a combination of the SEM and AFM
surface morphologies, wherein sample 2 exhibited minimal changes in its surface morphology as
compared to sample 1, whereas the contact angle exhibited significant changes because the intensity of
the etching reaction was not enough to form an obvious microstructure on the surface of the sample
at a low gas mixing ratio. However, the reaction continued to change the chemical properties of the
surface of the sample, thereby generating a change in the wetting properties of the surface. An increase
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in the mixing ratio of the gases generated an increase in the value of the static contact angle of the
surface, though this growth rate of contact angle gradually decreased. A combination of the previous
figures with Figure 5 exhibited a simultaneous increase in the area ratio and roughness of the sample
following an increase in the mixing ratio of the gases from 1:1 to 3:1. When the gas mixture ratio was
greater than 3:1, the roughness exhibited a slight decrease, even when following an increase in the
convex/concave area ratio. Therefore, the increased surface roughness (Ra) and area ratio (r) generated
an increase in the contact angle. When the mixing ratio of the gases was less than 3:1, an increase in
both the roughness and area ratio resulted in a significant increase in the contact angle. In addition,
a gas-mixing ratio greater than 3:1 inhibited the increase of the contact angle due to the decrease in
the roughness, thereby decreasing the growth rate of the contact angle under the condition of a large
mixing ratio.

2.3. Theoretical Value of Static Contact Angle

The structural parameters corresponding to the theoretical model of the contact angle were
extracted from the SEM and AFM characterization results. In addition, the static contact angles of
the sample surface were calculated by the Wenzel and Cassie–Baxter theoretical models, respectively.
According to the Wenzel theory, the Wenzel’s contact angle (θ∗W) on the microstructural surfaces can be
calculated based on Equation (2), where r was obtained by the AFM characterization results and the
Young’s contact angle was 54◦, which was obtained from the experiment with sample 1. Photoshop
software (Adobe, Inc., CA, USA) was applied to extract the pixels of the different shades of gray from
Figure 3. The proportion of the pixels in the lighter color region to the total number of pixels in the
whole image was calculated, wherein the projection area of the protruding structure accounted for the
percentage of the total projection area of the picture, namely, the solid–liquid fractional surface area ( fs).
According to the Cassie–Baxter theory, the Cassie–Baxter’s contact angle (θ∗C) on the microstructural
surfaces can be calculated based on Equation (3) for a Young’s contact angle of 54◦. Table 2 presents
the microstructural characteristic parameters of the sample surfaces and the contact angles of the
corresponding theoretical models.

Table 2. Theoretical contact angle.

Mixing Ratio of the Gases (SF6/O2) 0 1:1 2:1 3:1 4:1 5:1 6:1

r 1 1.104 1.440 1.632 1.736 2.076 2.232
θ∗W 54 49 32 16 – – –
fS 1 0.903 0.604 0.536 0.470 0.417 0.393
θ∗C 54 64 92 99 105 110 112

Variations in the contact angle of experimental measurements (θE), the theoretical Cassie–Baxter
contact angle (θ∗C), and the theoretical Wenzel contact angle (θ∗W) with the mixing ratio of the gases
are presented in Figure 7, wherein the graph indicates that the trend of the theoretical Wenzel’s
contact angle (θ∗W) is the opposite of that of the contact angle of the experimental measurement (θE).
The presence of microstructures generated an obvious increase in the area ratio (r) of the sample
surface, thereby resulting in a significant reduction in the contact angle. It was obvious that Equation
(2) was not suitable for predicting the static contact angle of the sample. The trend of the theoretical
Cassie–Baxter’s contact angle (θ∗C) was the same as that of the contact angle of the experimental
measurement (θE), wherein an increase of the static contact angle caused an increase of the mixing
ratio of the gases. When the mixing ratio of the gases was 1:1, the Young’s contact angle in Equation (3)
still used the contact angle of the untreated silicon surface, which did not consider the change in the
Young’s contact angle due to the chemical reaction. Therefore, a significant difference was observed
between θE and θ∗C when the mixing ratio of the gases was 1:1, though this was not observed in the
theoretical model. However, when the mixing ratio of the gases was greater than 3:1, θ∗C continued
to increase due to both the continuous decrease of fS and the increased deviation between θ∗C and
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θE. On one hand, these results indicated that the calculation method of fS greatly influenced the
contact-angle calculation results. On the other hand, it also indicated that fS was not the only factor
that affected the static contact angle. According to the analysis of the contact angle of the experimental
measurements in the last section, the contact angle was co-influenced by the roughness and area ratio.
However, the Cassie–Baxter theory unified all the influence factors of the contact angle to parameter
fS. The present study could not get the exact fS of the microstructural surface as it had a volcanic
shape, which was also the limitation of the Cassie–Baxter theory when predicting the contact angle of
microstructural surfaces.Appl. Sci. 2019, 9, 566 9 of 18 
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3. Numerical Methods and Setup

The calculation results of the theoretical contact angles in the last section indicated the difficulty
in scientifically determining the parameters (such as fs and r) when applying the Cassie–Baxter
theoretical model to predict the contact angle of the complex microstructural surface, which resulted
in large prediction errors. In this section, the VOF numerical simulation method was used to study the
simulation of the static contact angle according to the microstructural characteristics of the sample.

The macroscopic static contact angle was the comprehensive expression of the local infiltration
characteristics of the droplets on the microstructural surface. The fluid was assumed to have continuum
characteristics and satisfied the basic Young’s equation in any local area of the microstructure.
In addition, the contact angle on the smooth surface and the local area of the microstructure were
assumed to be equal. Therefore, the VOF model in the computational fluid dynamics (CFD) analysis
method was used to study the macroscopic static contact angle of specific microstructural surfaces.

According to the analysis of the PIII preparation technology in Section 2.1, the locally exposed
surface after corrosion can be assumed to have the same wettability as the initial surface. In addition,
the 3-D morphology model was established according to the AFM pictures. This section systemically
describes the CFD analyzing model and the numerical simulation results of the static contact angle on
the microstructure surface prepared by PIII technology.

3.1. Establishment of the Parameterized Geometric Model

The AFM results (Figure 4) indicated that the 3-D surface topography was in an uneven “mountain
peak” shape. Although the AFM picture can be used to directly construct the 3-D microstructural
geometric surface, an enormous amount of the grid was required to describe the geometric topography
of the microstructural area. In addition, the VOF method is a transient simulation and requires huge
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computing resources. Therefore, this section focused on the characterization of the 2-D model to
describe the 3-D structure of the actual sample.

The 2-D parameterization microstructure surfaces are then built and are presented in Figure 8a.
Finally, the microstructure surfaces depicted in Figure 8b–d were established through the parameter
transformation of the model in Figure 8a. As presented in Figure 8a, the microstructural morphology
was mainly determined by the width of the structure (λ), the height of the structure (h), and the width
of the morphology (w). When w = 0, the morphology was a triangular wave (Figure 8b); when w
= λ/4, the morphology was a trapezoid wave (Figure 8c); and when w = λ/2, the morphology was
a rectangular wave (Figure 8d). The three derived shapes were compared and analyzed, and the
parameters (h) in Figure 8a were characterized by the surface roughness values in the AFM diagram.
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3.2. Geometric Model

The calculation model is a 2-D axisymmetric structure, as presented in Figure 9. The computational
domain had a height of 120 µm and a width of 100 µm. The height of the structure (h) was 2 µm.
The radius of semicircular water droplet was 50 µm.
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3.3. VOF Model

The VOF model is a surface tracing method in a fixed Eulerian grid, and can handle arbitrary-free
interfaces between different kinds of immiscible fluids. The VOF model recorded the position and
shape of the free surface using the fluid volume fraction (F), wherein the volume of the fluid was
estimated by the volume of the grid itself. The present study employed the gas–liquid two-phase flow
of water droplet moving on the solid wall as the simulated object, wherein air was the main phase and
water was the secondary phase. In this paper, the value of the fluid volume fraction was shown in
Table 3.

Table 3. The value of the fluid volume fraction.

F = 0 Only air in the control unit

0 < F < 1 Water and air in the control unit
F = 1 Only water in the control unit

The momentum equation of the two phases was defined as follows.

∂

∂t
(FaρaVa) +∇ ·

(
Faρa ·

→
ν ·Va

)
= S (4)

∂

∂t
(FwρwVw) +∇ ·

(
Fwρw ·

→
ν ·Vw

)
= S (5)

where script w is water and a is air, Fa + Fw = 1, and S is the source term. The contact angle at any
point on the wall boundary was assumed be equal to the contact angle of sample 1 (54◦). The surface
tension was the source term in the momentum equation, S = σ/A. The surface tension coefficient σ

was determined to be 0.07275 N/m, the acceleration of gravity was 9.81 m/s2, and the direction was
downward.

3.4. Initial Conditions and Boundary Conditions

The assumptions in initial conditions were:

1. The water droplet was circle in shape and located above the upper wall of the parameterized
microstructure. The water droplet position was shown in Figure 9.

2. The microstructure channels were filled with air, without water.

The initial value of the fluid volume fraction was{
F = 1(r = 50 µm, 0 ≤ θ ≤ π)

F = 0(Other region)
(6)

The boundary conditions are shown in Figure 9. The surfaces of microstructure was set as wall,
which had a contact angle of 54◦, the right boundary was set as the axis, and the top and left boundaries
were both set as the opening boundary with a pressure of 1 atm.

The calculation of the transient time step was 1 × 10−8 s, which was calculated till a balance of
the droplet was obtained.

3.5. Grid Sensitivity Analysis and Model Verification

The accurate shape of the solid–gas–liquid three-phase contact line was used as the judgment
basis for the grid sensitivity analysis. The mesh was divided into unstructured quadrilateral mesh
portions, and the wall boundary layer was used to encrypt the grid. Figure 10 presents a local discharge
diagram of the three-phase contact line obtained from grid numbers 59,333, 93,323, 115,213, and 138,133.
According to Figure 10, the mesh with grid number 115,213 relative to the mesh with grid number
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93,323 improved the clarity of the contact line, though it was not accurate at the three-point contact
point. Grid number 115,213 clearly exhibited the contact line and contact point, and improved the
calculation rate as compared to grid number 138,133. The setting parameters of the 115,213 grid
number models were selected as the parameters of the subsequent model-grid generation.
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Figure 11a presents the phase distribution map of the smooth surface (h = 0) after the simulated
stationary state, wherein its macroscopic contact angle was equal to the experimental results of sample
1 (seen in Figure 11b), all of which had values of 54◦. This, thereby, validated the reliability of the VOF
analysis model established in this paper.
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4. Analysis of the Numerical Results

The droplet spreading process on the solid surface was clearly observed given that the
computational model was transient. To clearly indicate the influence of the surface microstructure on
the contact angle, the change process of the droplet on the smooth and microstructure surfaces was
analyzed in detail. Based on the analysis, a yellow dashed line with a rectangular frame was used
as an auxiliary to characterize the changes in the droplets. In addition, the height and width of the
rectangular frame were categorized as the height of the liquid drop and the length of the solid liquid
contact line, respectively. The effects of the 2-D models on the simulation results were investigated
and analyzed, and the 2-D geometric models were simplified by the various parameters.

4.1. Static Contact Angle of the Smooth Surface

Figure 12 presents the droplet morphology of the typical time in the droplet change process on
a smooth surface. The droplet process exhibited stages in the following order—initial state, rising,
spreading, shrinking, oscillating, and stable state. The detailed changes of the droplet are as followed
in Table 4.

Table 4. The state changes of the droplet.

0 ms The initial state

0–0.075 ms The droplet rose to its maximum height
0.075–0.2 ms The droplet spread to maximum diameter

0.2–0.3 ms The droplet shrank to stable state
0.3–0.7 ms The stable state
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4.2. Static Contact Angle of the Microstructural Surface

To examine the influence of the microstructures on the droplet change process, the change process
of the droplet on the rectangular parameterized surface of w = h = 2 was observed. Figure 13 presents
the droplet morphology of the typical times during the droplet change process on the microstructural
surface. The droplet process exhibited stages in Table 5—initial state, rising, oscillating, and stable state.
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Table 5. The state changes of the droplet.

0 ms The initial state

0–0.075 ms The droplet rose to its maximum height
0.075–0.5 ms The oscillating state

0.5–0.7 ms The stable state

The change process of the droplet on the two different surfaces was compared. For the
smooth surface, the droplets exhibited an initial state, rising, spreading, shrinking, and oscillation to
stabilize, wherein the oscillating process encompassed 50% of the whole variation process. For the
microstructural surface, the droplets exhibited an initial state, rising, spreading, and oscillation
to stabilize, wherein the oscillating process covered 80% of the whole variation process. Due to
the hindrance in the microstructure of droplets and the interactions among the main droplets and
those among the spreading droplets, the droplets were not completely spread on the surface of the
microstructures, which enhanced the oscillation of the liquid. Therefore, the equilibrium state of
the droplets on the microstructural surface required more time than the smooth surface. As seen in
References [31] and [32], the wetting anisotropy of the micro-groove surface, i.e., the contact angle
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in the vertical direction was greater than that in the parallel direction because the droplet spreading
in the parallel micro-groove was similar to the smooth surface, and the droplet spreading process
in the vertical micro-groove was similar to the microstructural surface. The wettability was related
to the characteristics of the microstructure surface, thereby resulting in a larger contact angle on the
microstructure surface as compared to that of the smooth surface.

4.3. The Simplified Waveform of the Microstructural Surface

Figure 14 presents the relationship between the simulated contact angles of the three different
waveforms with the area ratio, in which the black dots represent the experimental results.
The simulated contact angles of the three kinds of wave surfaces are well in agreement with the
contact angle of the experimental measurement, that is, the macroscopic contact angle increased
following an increase of the area ratio. As shown in the experimental results, the sample surfaces
were easily covered by SixOyFz, while the ratio of the gas mixture was one-to-one. At the same time,
the chemical characteristics of the surface changed, which resulted in an augmented contact angle
trend. When gas mixing ratio increased, corrosion dominated and the surface of the samples were
covered by SixOyFz. Consequently, the size of the contact angle was dependent on the morphology of
the samples. In this work, local surfaces in the simulation were regarded as the initial surface and the
effects to the local contact angle were neglected. Therefore, the experimental results of sample 2 were
not considered in the preparation of the numerical simulations.
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The simulation results indicated that the variation of contact angle on the surface of the different
waveforms varied greatly with the area ratio. In particular, the contact angle of the rectangle surface
(w = λ/2) was the largest, followed by the contact angle of the trapezium surface (w = λ/4), and lastly
by the contact angle of the triangle surface (w = 0). The experimental contact angle was in good
agreement with the surface morphology of w = 0, because the triangular waveform was closer to the
actual surface topography of the sample as compared to the other two kinds of morphology and can
best represent the characteristics of the real sample surface.

5. Conclusions

In this paper, the influence of the gas mixing ratio of the PIII preparation process on the surface
morphology and wetting characteristics was systematically examined. The results of the wetting
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characteristics of microstructure surfaces were studied by theoretical, experimental, and numerical
simulation methods. The main conclusions are as follows:

1. The sample with the concave/convex structure can be prepared on the surface of the polished
monocrystalline by the PIII technology. An increasing mixing ratio (SF6/O2) first resulted in an increase
and then a slight decrease in the height of the bulged structure, whereas the area ratio of the surface
increased continuously.

2. The apparent contact angle of the microstructural surface was influenced by the surface
roughness and the area ratio, which increased following an increase in the mixture ratio of the gases.
In addition, the contact angle increased quickly when the ratio (SF6/O2) was small, but the increase in
the rate of the contact angle slowed down when the ratio was large.

3. The VOF model can well simulate the macroscopic contact-angle characteristics on the surface
of the complex structure. The simulation results indicated that the presence of the microstructure
hindered the spreading of the droplets and changed the wetting characteristics of the droplets on the
inner surface of the microstructures, thereby resulting in more static contact angles.

4. For the 3-D appearance of the “peak” surface microstructures, the 2-D axisymmetric CFD
model established by the equivalent triangular waveform accurately predicted the contact angle of the
microstructure surface, which was highly consistent with the experimental results.
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Nomenclature

r ratio of the true surface area to the projected
fs percent of liquid–solid contact area
Ra surface roughness, µm
F fluid volume fraction
h height of the structure, µm
λ width of the structure, µm
w width of the morphology, µm
S source term
V scalar speed
→
ν vector speed
A area
σ surface-tension coefficient
Greek letters

θY
contact angle depending on the liquid surface and
vapor

γsg surface tension at solid–vapor interface
γsl surface tension at solid–liquid interface
γlg surface tension at liquid–vapor interface
θ∗W apparent contact angle
θ∗C Wenzel’s liquid–solid contact angle
θE Cassie–Baxter’s liquid–solid contact angle
Subscripts, superscripts, and acronyms
PIII plasma immersion ion implantation
VOF volume of fluid
SEM scanning electron microscopy
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AFM atomic force microscopy
C Cassie and Baxter state
W Wenzel state
l liquid
s solid
g gas
a air
w water
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