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Abstract: Function model finding has become an important tool for analysis of data collected from
wireless sensor networks (WSNs). With the development of WSNs, a large number of sensors
have been widely deployed so that the collected data show the characteristics of distribution and
mass. For distributed and massive sensor data, traditional centralized function model finding
algorithms would lead to a significant decrease in performance. To solve this problem, this paper
proposes a distributed global function model finding algorithm for wireless sensor network data
(DGFMF-WSND). In DGFMF-WSND, on the basis of gene expression programming (GEP), an
adaptive population generation strategy based on sub-population associated evolution is applied to
improve the convergence speed of GEP. Secondly, to solve the generation of global function model in
distributed wireless sensor networks data, this paper provides a global model generation algorithm
based on unconstrained nonlinear least squares. Four representative datasets are used to evaluate the
performance of the proposed algorithm. The comparative results show that the improved GEP with
adaptive population generation strategy outperforms all other algorithms on the average convergence
speed, time-consumption, value of R-square, and prediction accuracy. Meanwhile, experimental
results also show that DGFMF-WSND has a clear advantage in terms of time-consumption and
error of fitting. Moreover, with increasing of dataset size, DGFMF-WSND also demonstrates good
speed-up ratio and scale-up ratio.

Keywords: global function model; gene expression programming; unconstrained nonlinear least
squares; wireless sensor network

1. Introduction

Progress in wireless communication and microelectronic devices has led to the development of
low-power sensors and the deployment of large-scale sensor networks [1]. Wireless sensor networks
(WSNs) have been developed and applied to many fields, such as smart grid [2], agriculture [3,4],
environment monitoring [5,6], and the military [7]. In these applications, because of the large number
and wide distribution of sensors, the data from sensors is characterized by high dimension, large
amount, and wide distribution [8,9]. How to find useful knowledge from high dimensional, massive
and distributed data has become a key issue of data mining in wireless sensor networks [8,9].
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Recently, all kinds of approaches, including clustering [10,11], association rules [12] and
classification [13,14], have been successfully applied in wireless sensor networks. Function model
finding is also an important branch of data mining. The function finding technique for all kinds of
application data from WSNs can reveal the essence and phenomenon in the application. However, in
the existing references, function finding is rarely mentioned in WSNs.

The existing function model discovery algorithms mainly include the regression, the evolution
algorithms, and so on. Generally, traditional regression methods assumed that the function type
was known, and then the least squares method or its improved methods for parameter estimation
were used to determine the functional model [15]. These traditional regression methods needed to
depend on a priori knowledge and a lot of subjective factors. Moreover, these methods have high time
complexity and low computation efficiency for complex and high-dimensional datasets from WSNs.
To solve these problems, Li et al. and Koza et al. used genetic programming (GP) for mathematical
modeling and obtained good experimental results [16,17]. Yeun et al. proposed a method which dealt
with smooth fitting problem by GP [18]. In order to fit data points to curves in CAD (Computer Aided
Design)/CAM (Computer Aided Manufacturing), Gálvez et al. present a new hybrid evolutionary
approach (GA-PSO) for B-spline curve reconstruction [19]. Meanwhile, GP, genetic algorithm (GA)
or hybrid evolutionary algorithms also avoid the defect of traditional statistical methods’ selected
function models in advance. However, the efficiency of function model mined by GP, GA or hybrid
evolutionary algorithms was low. Thus, a new algorithm called gene expression programming (GEP)
was proposed [20]. Compared with GP, the efficiency of complex functions mined based on GEP was
improved 4–6 times.

Therefore, in order to reveal the inherent nature of the sensor data, this paper proposes a function
finding algorithm using gene expression programming (FF-GEP). In FF-GEP, an adaptive population
generation strategy is put forward. The strategy avoids the local optimum of GEP population. However,
thousands of distributed sensor nodes, and the unstable wireless communication environment make
traditional centralized function mining algorithms difficult to meet the needs of function mining
in wireless sensor networks. Traditional centralized FF-GEP is unable to meet the requirement of
function finding in wireless sensor networks. In order to better find functions for complex, massive and
high-dimensional sensor data, on the basis of FF-GEP, this paper presents distributed global function
model finding for wireless sensor networks data (DGFMF-WSND).

The main contributions of this paper are summarized as follows: (1) we present the function
finding algorithm using gene expression programming for wireless sensor networks data (FF-GEP)
in order to prevent GEP from the local optimum; (2) we solve the generation of the global function
model in distributed function finding and provide a global model generation algorithm based on
unconstrained and nonlinear least squares (GMG-UNLS); (3) on the basis of FF-GEP and GMG-UNLS,
we put forward distributed global function model finding for wireless sensor networks data
(DGFMF-WSND); and (4) we describe simulated experiments that have been done and provides
performance analysis results.

The content of the paper is organized as follows. Section 2 discusses prior work related to data
mining in WSNs and function mining. Section 3 introduces the function finding algorithm using gene
expression programming for wireless sensor networks data. Section 4 emphasizes the distributed
global function model finding for wireless sensor networks data. Section 5 represents experiments and
performance analysis. Finally, conclusions are given in Section 6.

2. Related Work

2.1. Data Mining in Wireless Sensor Networks (WSNs)

Recently, mining knowledge from sensor data has attracted a great deal of attention from data
mining experts [21]. Lee et al. proposed a fuzzy-logic-based clustering approach to prolong the lifetime
of WSNs using energy predication [10]. Liu et al. present a distributed energy-efficient clustering
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algorithm with improved coverage by analyzing communication energy consumption of the clusters
and the impact of node failures on coverage with different densities in wireless sensor networks [11].
In WSNs, the stream nature of the data, the limited resources, and the distributed nature of sensor
networks bring new challenges for the mining techniques. Boukerche et al. proposed a new formulation
for the association rules [12]. In these references, data mining techniques are only seen as a means
to solve the problems existing in WSNs. Generally, for data mining in wireless sensor networks,
WSNs would be regarded as platform of data collection and transmission [22]. Finally, we analyzed
these data from WSNs. Due to the wide range of application of WSNs, the analysis and mining of
all kinds of data based on wireless sensor network are also emphasized. Sawaitul et al. proposed
classification and prediction of future weather using Back Propagation (BP) Algorithm for data collected
by weather sensors [23]. Erdogan et al. present a data mining approach for fall detection using k-nearest
neighbor algorithm on wireless sensor network data in order to enhance life safety of the elderly and
boost their confidence [24]. Tripathy et al. present knowledge discovery and leaf spot dynamics of
groundnut crop by wireless sensor network and data mining techniques. The useful information,
knowledge or relations from all kinds of data mining techniques would be helpful to analyze and
understand leaf spot disease infection [25]. In order to protect sensor nodes from malicious attacks,
Huang et al. proposed a new intrusion detection method. The method constructed Markov decision
processes based on an attack pattern mining in order to predict future attack patterns and implement
appropriate measures [26]. In order to explore, analyze, and extract useful information and knowledge
from the larger number of personal data which came from smartphone and wearable devices,
Muhammad et al. proposed the personal ecosystem where all computational resources, communication
facilities, storage and knowledge management systems are available in user proximity [27]. As
suggested above, it can be seen that finding knowledge or model from wireless sensor network data is
very meaningful and valuable.

2.2. Function Mining

At present, research on GEP focused on the basic theory of algorithm, symbolic regression,
function finding, prediction, security assessment, other application areas, and so forth. In algorithm
theory, in order to solve the problem that fitness distance correlation could hardly predict the evolution
difficulty of gene expression programming, Zheng et al. proposed gene expression programming
evolution difficulty prediction based on posture model [28]. Ryan et al. simplified operators of GEP
and proposed a robust gene expression programming algorithm [29]. Zhu et al. present naive gene
expression programming (NGEP) based on genetic neutrality that combined with neutral theory
of molecular evolution [30]. In symbolic regression and function mining, Peng et al. proposed
an improved GEP algorithm named S_GEP, which is especially suitable for dealing with symbolic
regression problems [31]. To better improve efficiency and accuracy of classification, Karakasis et al.
proposed a hybrid evolutionary technique by combining GEP with artificial immune system [32].
In order to better model the compressive strength of different types of geopolymers, GEP had been
employed. The model showed that GEP had a strong potential for predicting the compressive strength
of different types of geopolymers [33]. In view of insufficiency of the existing forecasting model on
highway construction cost forecasting, highway construction cost forecasting model was proposed
based on the GEP according to the characteristic of highway construction cost forecasting [34]. Güllü
proposed a function finding algorithm by gene expression programming for strength and elastic
properties of clay treated with bottom ash in order to understand the treatment of a marginal soil
well [35]. Zhao et al. treated image registration as a formula discovery problem, and proposed two-stage
gene expression programming and the improved cooperative particle swarm optimizer used to identify
the registration formula for the reference image and the floating image [36]. In prediction, Lee et al.
posed gene expression programming on Taiwan stock investment [37]. Mousavi et al. proposed
the prediction of electricity demand based on GEP [38]. Chen et al. applied parallel hyper-cubic
gene expression programming to estimate the slump flow of high-performance concrete [39].
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Huo et al. applied gene expression programming to short-term load forecasting on power systems,
and proposed the model error cycling compensation [40]. Forecasting results indicated that the model
was of high prediction efficiency. Seyyed et al. used gene expression programming to design a new
model for the prediction of compressive strength of high performance concrete (HPC) mixes [41].
Experiments showed that prediction performance of the optimal GEP model is better than the
regression models. In security assessment and other application areas, Khattab et al. introduced
gene expression programming into power system static security assessment [42]. To better design
sensor equivalent circuit, Janeiro et al. used GEP to determine a suitable equivalent circuit and choose
a circuit component [43]. For combinatorial optimization problems, Sabar et al. present a dynamic
multiarmed bandit-gene expression programming hyper-heuristic [44]. Zhang et al. provided revised
gene expression programming to construct the model for music emotion recognition [45]. However,
these algorithms do not involve distributed function mining.

3. Function Finding Algorithm by Using Gene Expression Programming for Wireless Sensor
Networks Data

3.1. Function Finding in Wireless Sensor Networks

Generally, for data mining in wireless sensor networks, firstly, data are collected and preprocessed
by various sensors and transmitted directly to the servers by means of wireless communication. Then,
these data can be quickly analyzed by strong data processing and analysis ability of servers. Finally,
the knowledge is attained. The whole framework is shown in Figure 1.
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From Figure 1, it is known that data mining for wireless sensor networks consists of five main
components: acquisition layer, preprocessing layer, transmission layer, analysis layer and virtualization
layer. The acquisition layer is responsible for collecting all kinds of data (e.g., weather, spectral,
temperature, humidity, gas, etc.) through various sensors (e.g., weather sensor, hyperspectral sensor,
temperature sensor, humidity sensor, gas sensor, etc.). The preprocessing layer focuses on data
aggregation, normalization and cleaning to provide favorable data form for data mining in wireless
sensor networks. The transmission layer mainly addresses security transmission of data between
sensors and terminals. The analysis layer provides all types of data mining services for data from
various sensors. Finally, the results of data mining are shown by the virtualization layer.
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Function discovery is an important part of data mining framework in wireless sensor networks.
It is vital to find the function model among sensor data for the concrete application and analysis on
WSNs. This paper proposes function finding algorithm using gene expression programming (FF-GEP)
for sensor data. The details are shown as follows.

3.2. Coding of Gene Expression Programming (GEP)

The gene is the basic unit of GEP [20]. In order to better describe GEP algorithm, the related
definitions are given as follows.

Definition 1. Let string G be defined as a triplet G “ă GHead, GTail, L ą, F be basic elementary
function set and T be terminal set. Where GHead, GTail and L represent head, tail, length of the G respectively.
The elements of GHead randomly generates from F and T, the elements of GTail randomly generates from T.
Then string G is called gene.

Property 1. Let the length of GHead be h, the length of GTail be t, maximum number of arguments of
operator in the GHead be n. Then, h and t follow the equation:

t “ hˆ pn´ 1q ` 1 (1)

Definition 2. The string which is composed of one or more G is called the chromosome, and denoted as C.
GEP adopts linear code of fixed length to represent an individual which is called a chromosome

C. However, the linear code can accurately show expression trees (ETs) of different shapes and sizes.
During decoding, firstly, ETs is traversed from the upper to the bottom, the left to the right, and finally,
function model is obtained.

Example 1. Let function set be F “ t`,´,ˆ, Qu, terminal set be T “ ta, bu, length of gene head be
h “ 5, where “Q” represents the square root function. From function set F, we know that maximum
number of arguments of all operators is 2. According to Equation (1), length of gene tail is 6. The
randomly generated chromosome is shown in Figure 2.
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The decoding of Sub-ET1 and Sub-ET2 is respectively performed. The result of decoding is
linked by addition function and simplified by mathematica software. The final function model is

f pa, bq “ 3a` ab`
1
b
´
?

b.

3.3. Adaptive Population Generation Strategy Based on Collaborative Evolution of Sub-Population

In GEP, in order to better evolve, gene diversity in the initial population is required so that the
GEP algorithm can evolve from different directions. At present, the strategy of initial population
generation is simple and occupies fewer system resources. However, the diversity of the population
generated by the strategy is limited. With the increasing of fitness value of an individual, it is easy
to stop the population evolving and fall into local optimum. In theory, the greater the population
space, the more diverse the individual, the greater the probability of searching the global optimal
solution. However, increase of population space will increase the computational complexity and reduce
the convergence speed. Thus, in order to prevent the population from falling into local optimum,
this paper presents an adaptive population generation strategy based on collaborative evolution of
sub-population (APGS-CESP). In APGS-CESP, the probability of searching the global optimal solution
is increased by raising the diversity of the individuals in the population. The flow of APGS-CESP is
shown as follows.

Algorithm 1. APGS-CESP (Pop)

Input: Pop, Ps, Pm, Pt, Pr, popSize;
Output: new Population;
Begin {
1. for (int i = 1; i <= MaxGen; i++){
2. Fmaxris = MaxFitness (Pop [i]);
3. SumFmax = 0; SumFmax` “ Fmaxris;
4. if (i mod 10 ““ 0){
5. if (sumFmax mod 10 ““ 0) {
6. subPop Ð RandomInitPoppsubPopSizeq ;
7. Pop Ð InsertpsubPop, Popq ;
8. EvalueFitnesspPopq;
9. Pop Ð SelectpPs, Pop, popSizeq ;
10. Pop Ð MutatepPm, Popq ;
11. Pop Ð ISTranspositionpPt, Popq ;
12. Pop Ð RISTranspositionpPt, Popq ;
13. Pop Ð GeneTranspositionpPt, Popq ;
14. Pop Ð OnePointRecombinationpPr, Popq ;
15. Pop Ð TwoPointRecombinationpPr, Popq ;
16. Pop Ð GeneRecombinationpPr, Popq ;}}}
17. newPopulation “ Pop;
18. Return newPopulation;}

Generally, Algorithm 1 enriches diversity of the individuals in the population, and expands the
scope of the global optimal solution. However, size of the population has not increased and time
complexity of the algorithm changes from OppopSizeq to OppopSize` subPopSizeq.

3.4. Description of Function Finding Algorithm Using Gene Expression Programming (FF-GEP)

GEP has strong global searching ability. Therefore, it has definite potential in getting sufficiently
good solutions to function model finding problems for wireless sensor network data. The core of
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FF-GEP focuses on putting adaptive population generation strategy into population evolution. The
steps of FF-GEP are shown as follows:

Algorithm 2. FF-GEP

Input: popSize, maxGen, maxFitness, Ps, Pm, Pt, Pr;
Output: Best Function Expression;
Begin {
1. double f itness “ 0.0; int i “ 0;
2. Pop Ð InitPopppopSizeq ;
3. EvalueFitnesspPopq;
4. while (( f itness ď maxFitness) or (i ď maxGen)) {
5. Pop Ð SelectpPs, Pop, popSizeq ;
6. Pop Ð MutatepPm, Popq ;
7. Pop Ð ISTranspositionpPt, Popq ;
8. Pop Ð RISTranspositionpPt, Popq ;
9. Pop Ð GeneTranspositionpPt, Popq ;
10. Pop Ð OnePointRecombinationpPr, Popq ;
11. Pop Ð TwoPointRecombinationpPr, Popq ;
12. Pop Ð GeneRecombinationpPr, Popq ;
13. Pop Ð APGS´ SPAEpPopq ;
14. EvalueFitnesspPopq;}
15. return BestFunctionExpression;}

4. Distributed Global Function Model Finding for Wireless Sensor Networks Data

4.1. Algorithm Idea

In WSNs, because the number of sensors is very large and sensors are physically deployed in a
very distributed fashion, traditional centralized function model finding algorithms will undoubtedly
increase transmission bandwidth, network delay and probability of data packet loss, and also reduce
the efficiency of function model finding. Meanwhile, centralized analysis for massive data in WSNs will
also add pressure to the data storage so that traditional centralized function model finding algorithms
are difficult to apply in wireless sensors networks.

Grid is a high performance and distributed computing platform with good self-adaptability and
scalability, and provides favorable computing and analysis capability for massive or distributed data
sets. Grid could provide strong analysis and computing power with distributed data mining and
knowledge discovery. In view of advantages of grid computing, on the basis of FF-GEP, this paper
presents distributed global function model finding for wireless sensor networks data (DGFMF-WSND)
which combines with global model generation and grid services.

Suppose that data on each grid node are homogeneous and the attributes that are contained
in each of datasets on the computing nodes are same in this paper. The algorithm idea is divided
into some sub-processes. Firstly, algorithms proposed in this paper are wrapped as grid services and
deployed on each grid node. Meanwhile, a local function model is obtained by performing FF-GEP
algorithm service on each grid node in parallel. Lastly, the local function model of each node is
transmitted to the specified node to generate a global model and returned to the user.

4.2. Global Model Generation Algorithm Based on Unconstrained Nonlinear Least Squares

The traditional distributed data mining algorithm mainly includes two steps: (1) analyzing local
data and generating a local function model; (2) global function model is obtained by integrating
different local function models. How to get the global function model from the local function model
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has not been investigated in earlier work. This paper presents a global model generation algorithm
based on unconstrained nonlinear least squares (GMG-UNLS).

Definition 3. In WSNs, we propose the number of the sensor node and sink node are k and n, respectively.
For each sink node, it contains a sensor data set S “ rx1, ..., xm ym`1s, where S P Rm` 1 and ym`1 represents
target value for each sensor data set. Then, the set of each sink node can be obtained yielding to GEP by
employing the approach of function model mining, such that yipxm`1q “ fipx1, x2, ..., xmq, i P r1, ns. Hence,
yipxm`1q “ fipx1, x2, ..., xmq is the local function model with m-dimension of the i-th sink node.

Definition 4. Suppose that there exist n sink nodes and fipXq, i P r1, ns, where X “ px1, x2, ..., xmq.

There exists a set of constants ai ‰ 0, i P r1, ns such that f px1, x2, ..., xmq “
n
ř

i“1
ai fipXq. Thus, f px1, x2, ..., xmq

is called global function model.
Lemma 1. Given that there exist n local function model f1px1, x2, ..., xmq, , ..., fnpx1, x2, ..., xmq with

m-dimension in WSNs, and pm` 1q ˆ p sample datasets on each sink node. There exists a set of

constants ai ‰ 0, i P r1, ns such that value of
k
ř

i“1
pyi ´

n
ř

j“1
aj f jpXiqq

2
is minimum, where k “ np.

Proof: Set Qpa1, a2, ..., anq “
k
ř

i“1
pyi ´

n
ř

j“1
aj f jpXiqq

2
. Then

Qpa1, a2, ..., anq “
k
ř

i“1
pa1 f1pXiq ` a2 f2pXiq ` ...` an fnpXiq ´ yiq

2

“ pa1 f1pX1q ` ..` an fnpX1q ´ y1q
2
` ...` pa1 f1pXkq ` ..` an fnpXkq ´ ykq

2
(2)

where f jpXiq, i P r1, ks , j P r1, ns and y1, ..., yk are constants. Denote

f1pX1q “ C11, f2pX1q “ C21, ..., fnpX1q “ Cn1, ..., f1pXkq “ C1k, f2pXkq “ C2k, ..., fnpXkq “ Cnk (3)

Substituting Equation (3) into Equation (2), we have that

Qpa1, a2, ..., anq “ pa1C11 ` ..` anCn1 ´ y1q
2
` ...` pa1C1k ` ..` anCnk ´ ykq

2 (4)

Because Qpa1, a2, ..., anq is a two time polynomial of pa1, a2, ..., anq, and composed of basic
elementary functions, and differentiable.

Hence, the partial derivative of Qpa1, a2, ..., anq with respect to a1, a2, ..., an exists, respectively. The
Equations (5)–(7) hold.

BQ
Ba1

“ 2pa1

k
ÿ

i“1

C2
1i ` a2

k
ÿ

i“1

C1iC2i ` ...` an

k
ÿ

i“1

C1iCni ´

k
ÿ

j“1

yjC1jq (5)

BQ
Ba2

“ 2pa1

k
ÿ

i“1

C2iC1i ` a2

k
ÿ

i“1

C2
2i ` ...` an

k
ÿ

i“1

C2iCni ´

k
ÿ

j“1

yjC2jq (6)

BQ
Ban

“ 2pa1

k
ÿ

i“1

CniC1i ` a2

k
ÿ

i“1

CniC2i ` ...` an

k
ÿ

i“1

C2
ni ´

k
ÿ

j“1

yjCnjq (7)
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Solving pa1, a2, ..., anq such that value of Qpa1, a2, ..., anq is minimum. Set
BQ
Bai

“ 0, i P r1, ns. Thus,

Equation (8) can be obtained.
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Then Equation (8) can be rewritten as BX “ Y. Because of the randomness of data acquisition
and function model finding using GEP in wireless sensor networks, there are no two identical or
proportional row vectors in the matrix B so that the determinant of matrix B is not equal to 0. According
to definition of rank of a matrix, we have that R pBq “ R pB|Yq “ n. Therefore, non homogeneous linear
equations BX “ Y exist unique solution pa1, a2, ..., anq. According to the theorem and deduction of the

corresponding calculation of determinant [46], we have that pa1, a2, ..., anq “ p
d1

d
,

d2

d
, ...,

dn

d
q, where
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Algorithm 3. GMG-UNLS

Input: local Function Model fi pXq , i P r1, ns, k sample data;
Output: global Function Model f pXq;
Begin {
1. double a1, a2, ..., an;//Defining n real variables.

2. Set f pXq “
n
ř

i“1
ai fipXq. //Building global function equation.

3. Set Qpa1, a2, ..., anq “
k
ř

i“1
pyi ´

n
ř

j“1
aj f jpXiqq

2
;//Building function model, where yi, i P r1, ks is

target value for k sample data.
4. k sample data Ñ Qpa1, a2, ..., anq ; // Substituting k sample data into Qpa1, a2, ..., anq.

5.
BQ
Bai

“ 0, i P r1, ns; // pa1, a2, ..., anq is obtained by solving non homogeneous linear equations.

6. return f pXq;}// Substituting pa1, a2, ..., anq into
n
ř

i“1
ai fipXq and returning f pXq.

The time-consumption of GMG-UNLS focuses on solution of pa1, a2, ..., anq. The time complexity
of GMG-UNLS is Opn3q.

4.3. Description of DGFMF-WSND

Firstly, local function model is solved by FF-GEP on each grid node. Then, global function
model is obtained by GMG-UNLS. In order to achieve DGFMF-WSND, firstly, WSDL document which
describes FF-GEP is defined. On this basis, server program of DGFMF-WSND is prepared and various
XML documents and properties files of the grid service are released. Finally, Gar package is compiled
by ant tool, and the service is deployed in the Tomcat container. The users can access the service by
writing the client program.

A whole algorithm based on grid service includes client and server. DGFMF-WSND is described
respectively from client and server. The description of whole algorithm is listed as follows.

Algorithm 4. DGFMF-WSND

Input: GEPGSH, popSize; maxGen; maxFitness; Ps, Pm, Pt, Pr;
Output: Global Function;
Begin {
Server:
1. ReceivePara (T, GEPParas, i, GEPGSH); // Parameters are received from ith client according
to GEPGSH.
2. InitPop (Pop S); //Initializing population of FF-GEP.
3. LocalFunction (i) = FF-GEP (popSize; maxGen; maxFitness; Ps, Pm, Pt, Pr);
Client:
4. T = Read (SampleData);
5. int gridcodes = SelectGridCodes ();
6. for (int i = 0; i < gridcodes; i++) {
7. TransPara (T, GEPParas, i, GEPGSH); //Transmitting parameters to server.
8. TransService (LocalFunction [i]);}
9. GlobalFunction = GMG-UNLS (LocalFunction);
10. return Global Function;}

For the distributed algorithm, time-consumption of the algorithm is an important index which
must be considered in the design and implementation. From Algorithm 3, we know that execution
time of the DGFMF-WSND algorithm includes time of FF-GEP algorithm on each grid node, time of
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transmission parameters and GMG-UNLS algorithm. In a LAN environment, the time of transmission
parameters can be ignored.

Let total time of the DGFMF-WSND algorithm be ttotal , time of FF-GEP on each grid node be
tFF´ GEP, time of data transmission be ttransParas, time of GMG-UNLS algorithm be tGMG´UNLS. Then
Equation (10) is shown as following:

ttotal “ tFF´GEP ` ttransParas ` tGMG´UNLS (10)

Time of DGFMF-WSND can be very convenient to take on calculation and evaluation by
Equation (10).

5. Experimental Section

5.1. Experimental Environment

To verify the performance and effectiveness of the proposed algorithm in this paper, a grid
computing platform based on WS-Core is built in the Lab. The computing platform is composed of 12
nodes including one name node with 2* E5-2620v2 CPU, 128G memory and 2*4T 7200K SATA hard
disk, one management node with 2*E5-2620v2 CPU, 32G memory and 4*600G 10KSATA hard disk, ten
data nodes with 2*E5-2620v2 CPU, 64G memory and 2*4T 7200K SATA hard disk. Furthermore, the
bandwidth of network is 100M. All experimental datasets come from several sensors and are stored as
data nodes. The grid computing framework based on WS-Core is shown in Figure 4.
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and global model generation algorithm based on unconstrained nonlinear least squares (GMG-UNLS).

5.2. Data Resources

In this paper, four representative datasets (including two real-life datasets and two UCI (University
of California Irvine) standard datasets) are considered to evaluate the performance of the proposed
algorithm. In two real-life datasets, all data are collected by various photo sensors and meteorological
sensors. The first dataset is estimation of leaf biochemistry and leaf water status with remote sensing
data obtained from websites [47]. In the first dataset, we use spec_aux.txt in LOPEX (Leaf optical
properties experiment) 93 to find model between spectrum and the relative auxiliary measurements.
The second dataset is provided by the EUNITE (the European Network of Excellence on Intelligent
Technologies for Smart Adaptive Systems) network during the daily peak load competition [48]. For
the dataset, the organizer of the competition provided the following data to the competitors: half
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hourly electricity load demand from January 1997 to December 1998, average daily temperature from
1995 to 1998, and holiday’s information from 1997 to 1999. We focus on mining model between daily
peak load and average daily temperature and between daily peak load and holiday. Two UCI standard
datasets are also available on the UCI machine learning archive [49]. In Gas Sensor Array Drift Dataset
(GSADD), this contains 13,910 measurements from 16 chemical sensors utilized in simulations for drift
compensation. In Dodgers Loop Sensor (DLS), loop sensor data were collected for the Glendale on
ramp for the 101 North freeway in Los Angeles. All datasets in this paper are shown in Table 1.

Table 1. Datasets used in our experiments.

Datasets Number of Attributes Number of Instances

Leaf optical properties experiment 93
(LOPEX93) 9 1938

European Network of Excellence on
Intelligent Technologies for Smart Adaptive

Systems (EUNITE)
3 730

Gas Sensor Array Drift Dataset (GSADD) 128 13,910
Dodgers Loop Sensor (DLS) 3 50,400

To facilitate the calculation of the algorithm proposed, we linearly normalize all inputs and output
to be within the range [0,1] to avoid the masking effect.

6. Comparative Analysis

To better evaluate degree of fitting of the proposed algorithm, the evaluation indexes are shown
as follows.

Definition 5. Let ŷi, yi and yi be predicted value, real value and mean value of the i-th original data,

respectively. Let SSR “
n
ř

i“1
pŷi ´ yiq

2 be sum of squares for regression, SST “
n
ř

i“1
pyi ´ yiq

2 be sum of squares

for total. Then R2 “
SSR
SST

is called coefficient of determination.

Note that the bigger the value of R2, the better the function model.
Definition 6. Let FR´ max be real maximum fitness value, FM´max be model-based maximum fitness

value. If
FR´max ´ FM´max

FR´max
ď δ, then the corresponding algorithm is convergent.

Due to FM´max ď FR´ max, such that 0 ď δ ă 1. In this paper, set δ “ 0.01.
Definition 7. Let Stime be time-consumption of DGFMF-WSND in a single machine environment, Ctime

be time-consumption of DGFMF-WSND in parallel computing environment. Then Speedup “
Stime
Ctime

ˆ 100%
is called speed-up ratio.

Where Speedup is mainly used to measure the performance and effect of DGFMF-WSND.
Definition 8. Let m ¨ dataT be time-consumption to perform dataset with an increase of m times

on a cluster with an increase of m times, dataT be time-consumption of the original dataset. Then

Scaleup “
m ¨ dataT

dataT
ˆ 100% is called scale-up ratio.

Definition 9. Suppose that the algorithm runs N times independently, and
FR-max ´ FM-max ris

FR-max
ď

δ, i P r1, Ns, where FM´max ris be the i-th model-based maximum fitness value. Then, by Definition 6,
it is clear that the i-th run of the algorithm is convergent. Thus, the sum of the number of algorithm
convergence K, K ď N is called number of convergence of the algorithm.

Definition 10. Suppose that the algorithm runs N times independently, Kris, i ď N represents the
corresponding number of generation when the algorithm is convergent under the condition of the i-th run. Thus,

N
ř

i“1
Kris

N
is called average number of convergence generation.
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Note that the smaller number of convergence is, the faster convergence speed is.
Example 1: To compare the performance of ACO (Ant Colony Optimization) [50], SA (Simulated

Annealing) [51], GP [16], GA [17], GEP [20] and FF-GEP, for four datasets in Table 1, the four algorithms
run 50 times independently, and the maximum number of generation of four algorithms is 5000. By
Definition 6, Figure 5 shows comparison of number of convergence for GP, GA, GEP and FF-GEP.
Comparison of average generation of convergence for GP, GA, GEP and FF-GEP are shown in Figure 6.
Meanwhile, Table 2 shows comparison of value of R2 for four test datasets in Table 1 based on the four
algorithms. Degree of fitting between model value and real value of four test datasets in Table 1 based
on FF-GEP is shown Figure 7 without taking into account the time-consumption.
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From Figure 5, for LOPEX93, EUNITE, GSADD and DLS datasets, compared with ACO, SA, GP,
GA and GEP, number of convergence for FF-GEP maximally increases by 47.06%, 29.73%, 54.55% and
51.72%. In Figure 6, it is shown that for LOPEX93, EUNITE, GSADD and DLS datasets, compared with
ACO, SA, GP, GA and GEP, average number of convergence generation for FF-GEP drops by 11.44%,
14.31%, 21.53% and 19.82%. This is mainly because, in FF-GEP, adaptive population generation strategy
based on collaborative evolution of sub-population is applied to dynamically increase population
size and diversity of individual so as to improve the probability of the global optimal solution and
convergence speed.

In Table 2, it is shown that for LOPEX93, EUNITE, GSADD and DLS datasets, compared with
ACO, SA, GP, GA and GEP, value of R2 based on FF-GEP increases by 11.62%, 7.04%, 19.45% and
15.04%, respectively; and by Definition 5, value of R2 based on FF-GEP is 0.9381, 0.9575, 0.8686 and
0.9097, respectively. It means that function model for all test datasets based on FF-GEP is best and can
fit sample data well. From Figure 7, using FF-GEP, we can see that for LOPEX93, EUNITE, GSADD
and DLS dataset, the maximum error between real value and model value is 1.1804, 0.9135, 0.9639 and
0.9515, respectively, and the minimum error is 0.0007, 0.0071, 0.0114 and 0.0251, respectively. It can be
seen that the model has high prediction accuracy.

Example 2: In order to better evaluate performance of algorithm, Example 2 focuses on
comparison of average time-consumption and fitting degree between real value and model value.
Figure 8 shows average time-consumption of ACO, SA, GP, GA, GEP and FF-GEP. Average
time-consumption of DGFMF-WSND with the increase of number of computing nodes is shown
in Figure 9. Comparison of value of R2 for LOPEX 93, EUNITE, GSADD and DLS datasets with
the increase of number of computing nodes is shown in Figure 10. Figure 11 shows fitting degree
between model value and real value of four test datasets in Table 1 based on DGFMF-WSND on six
computing nodes.
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(FF-GEP). (a) Comparison between model value and real value of LOPEX93 datasets using GEP
and FF-GEP; (b) comparison between model value and real value of EUNITE datasets using GEP
and FF-GEP; (c) comparison between model value and real value of GSADD datasets using GEP
and FF-GEP; and (d) comparison between model value and real value of DLS datasets using GEP
and FF-GEP.
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From Figure 8, we know that for LOPEX93, EUNITE, GSADD and DLS datasets, compared with
ACO, average time-consumption of FF-GEP drops by 51.57%, 44.3%, 70.05% and 65.03%, respectively,
compared with SA, average time-consumption of FF-GEP drops by 51.84%, 44.5%, 70.29% and
63.89%, respectively, and compared with GEP, average time-consumption of FF-GEP drops by 26.01%,
4.34%, 58.03% and 42.7%, respectively, in contrast to GP, decreases by 52.03%, 43.58%, 70.57% and
65.38%, respectively. While for LOPEX93, EUNITE, GSADD and DLS, average time-consumption
of FF-GEP drops by 50.54%, 37.48%, 66.36% and 63.2% respectively in contrast to GA. This means
that for LOPEX93, EUNITE, GSADD and DLS, FF-GEP outperforms all other algorithms on average
time-consumption, followed by GEP. Especially, for GSADD dataset, average time-consumption
of FF-GEP declines most quickly, and while, for EUNITE dataset, average time-consumption of
FF-GEP declines most slowly. This is mainly because that compared with the other datasets, number
of attributes of GSADD dataset is maximum, and number of attributes and instances of EUNITE
dataset is minimum. Meanwhile, FF-GEP adopts adaptive population generation strategy based on
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collaborative evolution of sub-population to increase convergence speed. Figure 9 shows that with
the increasing of number of computing nodes, average time-consumption of DGFMF-WSND drops
gradually for LOPEX93, EUNITE, GSADD and DLS datasets. However, when number of computing
nodes is increased from 7 to 10, average time-consumption of DGFMF-WSND will increase for all test
datasets. This is mainly because that with the increasing of number of computing nodes, time of data
transmission and global function generation will continue to increase so that total time-consumption
of DGFMF-WSND will increase according to Equation (10). The decrease of time-consumption and
the improvement of prediction accuracy of DGFMF-WSND will be helpful to find domain knowledge
from massive and distributed wireless sensor network data.

In Figure 10, it is shown that with the increasing of number of computing nodes, a value of R2

for four datasets in Table 1 based on DGFMF-WSND increases gradually. According to Definition 5,
we know that the bigger the value of R2, the better the function model. When number of computing
nodes is increased from 1 to 10, for LOPEX93, EUNITE, GSADD and DLS datasets, maximum value
of R2 is 0.97, 0.9994, 0.9201 and 0.9786, respectively. This means that with the increasing number of
computing nodes, a global function model based on DGFMF-WSND can fit sample data well. From
Figure 11, we can see that for LOPEX93, EUNITE, GSADD and DLS datasets, the maximum error
between real value and model value is 0.7667, 0.6429, 0.915 and 0.7333, respectively, and the minimum
error is 0.0359, 0.0106, 0.0107 and 0.0018, respectively. It can be seen that the global function model has
high prediction accuracy.
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function model finding for wireless sensor networks data (DGFMF-WSND) with the increase of number
of computing nodes.

Example 3: To reflect the parallel performance of DGFMF-WSND, LOPEX93 and EUNITE datasets
in Table 1 are expanded 1000, 2000, 4000 and 8000 times to respectively form four new datasets.
Comparison of speed-up ratio of DGFMF-WSND for the four new datasets with the increase of
number of computing nodes is shown in Figure 12. Figure 13 shows comparison of scale-up ratio of
DGFMF-WSND for LOPEX93 and EUNITE datasets with the increase of number of computing nodes.

From Figure 12, with the increasing of number of computing nodes, speed-up ratio of
DGFMF-WSND is increasing, and when size of the LOPEX93 and EUNITE dataset is expanded
8000 times, speed-up ratio of DGFMF-WSND is close to the linear increase. We know that change rate
of speed-up ratio of an excellent parallel algorithm is close to 1. However, in concrete application,
with the increasing of number of computing nodes, time-consumption of information transmission
between node and node also increasing, linear speed-up ratio is very difficult to achieve. Figure 13
shows that for LOPEX93 and EUNITE, maximum scale-up ratio reaches 0.91 and 0.98, respectively;
however, with the increasing of the number of computing nodes, scale-up ratio of DGFMF-WSND
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decreases gradually, while the slope of the decrease gets smaller. This means that the scalability of
DGFMF-WSND is better.
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Figure 12. Comparison of speed-up ratio of DGFMF-WSND for two datasets with the increase of
number of computing nodes. (a) Comparison of speed-up ratio of DGFMF-WSND for LOPEX93
datasets with the increase of number of computing nodes; and (b) comparison of speed-up ratio of
DGFMF-WSND for EUNITE datasets with the increase of number of computing nodes.
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7. Conclusions

With the development of wireless sensor networks, a large number of sensor data are collected.
Finding a function model from the massive and distributed sensor data is very difficult. The
requirement for the data mining techniques for wireless sensor network data led to the development
of data mining algorithms. Each of the data mining algorithms solves certain problems of WSNs.
Function mining is a significant part of data mining. With the quick increment of sensor nodes, a
huge volume of dynamic, geographically distributed data are collected. How to efficiently analyze
and transform this to usable knowledge by data mining is very important to the development and
application of WSNs.

In order to better find a function model from massive and distributed sensor data, this paper
proposes a function finding algorithm using gene expression programming (FF-GEP) with adaptive
population generation strategy, and global model generation algorithm based on unconstrained
nonlinear least squares (GMG-UNLS). On the basis of FF-GEP and GMG-UNLS, a distributed global
function model finding for wireless sensor networks data (DGFMF-WSND) is present. In order to
better evaluate performance of the proposed algorithm, in this paper, a grid computing platform
based on WS-Core and four test datasets are provided. The experimental results show that compared
with GA, GP and GEP, FF-GEP has an advantage in time-consumption, error of fitness and prediction
accuracy, and DGFMF-WSND has lower time-consumption, higher degree of fitness and excellent
speed-up ratio and scale-up ratio.

With the progress of sensor technology, applications for wireless sensor networks will become
more mature and popular. All kinds of sensor data will become richer. Data mining techniques will be
very important to execute in-depth analysis and improve performance of WSNs.
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