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Featured Application: The research results are very valuable for practice because they provide a
platform for optimizing of internal conditions in cowsheds by monitoring of internal and exter-
nal breeding parameters. The results also confirm the positive effect of photovoltaic (PV) mod-
ules installation on temperature conditions and Temperature—Humidity—Index (THI) values.
This fact is important mainly during the seasonal temperature extremes in summer in the Cen-
tral European region.

Abstract: This paper is focused on the temperature measurements which can detected the influence
of temperature changes on the microclimate in animal production building after the installation of
photovoltaic (PV) modules. The first series of experiments were performed on a specially designed
model cowshed. For the data comparison and verification, the same measurements were realized
in real conditions of the animal production object. The temperature balance was identified by
measurements of the temperatures in the different parts of roof, PV modules, and the most important
were measurements of the ambient temperature and temperatures in three levels of the cowshed
interior. For the confirmation of results, measurements were done in two cowsheds, which had
the same azimuth orientation and roof slope. The first cowshed was without installation of the PV
modules on the roof and the second building had installed PV modules. By the data analyzed from
experimentally obtained time-temperature dependencies, it was found that the installation of PV
modules on the cowshed roof had a positive influence on the interior temperature balance. The
installation of PV also had a positive effect on the cowshed microclimate, which was declared by
calculation of the Temperature—Humidity—Index.

Keywords: thermal balance; photovoltaics; Temperature—Humidity—Index

1. Introduction

In the last decades, a continuation of the long-term global warming trend was ob-
served, and regional and local impacts have already become apparent [1]. These impacts
are expected to become worse with ongoing climate change [2,3]. For Europe, tempera-
ture increase is projected in all seasons [4]. Seasonal shifts and changes in frequency and
intensity of weather extremes will amplify the impacts in many economic sectors such as
agriculture [5]. It is expected that approximately 26% of all damages and losses associated
with medium to large scale climate-related disasters are attributed to agriculture with its
sectors crops, livestock, fisheries, aquaculture, and forestry [6]. The situation of optimizing
animal husbandry conditions is also addressed by European legislation in the European
Convention for the Protection of Animals kept for Farming Purposes, where the obligations
to ensure suitable microclimatic conditions of livestock breeding are also formulated.

Increasing air temperature and humidity reduce the ability of cows to cool themselves.
Increases in these climate variables lead to, or increase existing, heat stress in cattle [7–10]. Heat
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stress is defined as the sum of external forces acting on an animal that causes an increase in
body temperature and evokes a physiological response [11]. Heat stress occurrence can be
a phenomenon of one or a few days, but it may also be a phenomenon extending over a
certain period. It is the joint result of multiple factors, of which ambient temperature and
relative humidity are the two most important ones [12–14]. Other risk factors contributing
to heat stress are breed, parity, lactation stage, milk production level, level of feed intake,
ration composition, body condition score, feedstuff quality, pasturing condition, housing
conditions, and cattle behavior [15,16].

The diagnosis of heat stress can, in general, be set by observing clinical signs in affected
cattle and an inventory of risk factors, together with high ambient temperatures and a
certain level of relative humidity [17,18]. However, sometimes the negative effects of heat
stress show up later and indirectly; there is a carry-over effect (summer heat stress can
have effects up into autumn).

The parameter of choice to confirm a probability diagnosis based on clinical signs is
the Temperature—Humidity—Index, THI [19–21]. It can be calculated with Equation (1).

THI = 0.8Ta + RH(Ta − 14.4) + 46.4 (1)

where Ta is the ambient temperature, and RH is the relative air humidity in percentage [22,23].
At a THI > 64, the heat stress is “mild”; at a THI > 72, the heat stress is “moderate”,

and at a THI > 77, the heat stress is “severe”; at THI > 84, death occurs [24–26].
Cows are well able to adapt to changeable temperature and humidity conditions through-

out the year [16]. This can be confirmed by a relatively wide range of neutral temperatures
established for dairy cattle. Fluctuations of temperature within a range of − 0.5 ◦C to 20.0 ◦C
and 60–80% relative humidity [15] is generally accepted as a thermoneutral zone that does
not significantly induce physiological or behavioral changes among cows. The level of air
temperature generally accepted as 25.0 ◦C–26.0 ◦C or 24.0 ◦C–27.0 ◦C [15,27,28] is the upper
critical temperature, above which the dairy cow welfare is disturbed. Although air temperature
and relative humidity may be most important in determining the exchange of heat between
the animal and its surroundings, other relevant microclimate factors, such as air movement
and sunlight, also play a significant role in levels of heat stress [29–31]. Changes in air velocity
influence the convection cooling of cattle which, in combination with solar radiation, has a very
significant impact on the regulation of the thermal balance of cows [32,33]. Legislative support
for the optimization of living conditions of animal husbandry is expressed in the European
Convention for the Protection of Animals kept for Farming Purposes where the obligations to
ensure suitable microclimatic conditions of livestock breeding are also formulated.

Agriculture also faces the problem of increasing dependency on energy sources. Elec-
trical energy is needed for lighting, water pumping, air-conditioning of cowsheds, green-
houses, warehouses, administration buildings, etc. In the farms are large buildings with
flat roofs, which offer ideal conditions for the photovoltaic system installation. Agri-
voltaics are popular nowadays, and is described in the literature [34–38]. Research was
performed based on presented facts, focused on photovoltaic (PV) modules installation
to the microclimate of selected agricultural buildings. In particular, thermal conditions
were examined by experiments on the model cowshed and also on the two real cowsheds.
The main aim of this research was the identification of temperature changes after the
photovoltaic modules installation on the cowshed roof. The next aim was the calculation of
Temperature—Humidity—Index and the quantitative and qualitative evaluation of micro-
climate changes in the cowshed. The results of the research should support the willingness
of farmers to install PV modules on cowshed roofs in the climatic conditions of Central
Europe. Research results should refute the claims about the overheating of the cowshed
interior after the installation of PV modules.

2. Materials and Methods

For measurements of microclimate changes in the interior space of the building after
photovoltaic module installation was designed the model cowshed. The model cowshed
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is showed on (Figure 1a) and its dimensions were a = 570 mm, b = 600 mm, c = 830 mm,
d = 700 mm, and the angle of the roof inclination was α = 43.5◦. The model roof was
covered with the same roofing material made of aluminum as a real object; the thickness of
the aluminum sheet was 1 mm. The side walls of the model building were made of MDF
boards. In terms of thermophysical properties, a material (MDF board) was chosen for the
model object due to similar thermal properties as the thermal insulation tarpaulin used as
a covering of the side walls of the cowshed in real conditions. The thermal conductivity
of the MDF board used for model building was 0.073 W·m−1·K−1. The thickness of MDF
board was 25 mm, and the thermal resistance of 0.342 m2·K·W−1. Thermal conductivity
was measured in Thermophysical laboratory (Department of Physics, SUA in Nitra, Nitra
Slovakia) by instrument Isomet 2104 (Applied Pecision Ltd., Bratislava, Slovakia). The
thermal insulation tarpaulin used as a wall in a real cowshed has a thermal resistance
0.340 m2·K·W−1. Diffusion resistance of the used material was the same.
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the facade; (c) the experimental equipment with photovoltaic (PV) module on the roof.

The realization of the model building took into account the fact that in the conditions
of Central Europe, the natural ventilation of the building is used for at least 10 months a
year in combination with ventilation equipment. It was the main reason for the installation
of two computer fans with diameters of 80 mm that were used to simulate the cooling and
air flow in the model building (Figure 1b). The fans were used to simulate the air flow that
occurs in the cowshed. The main function of fans was blowing air out of the model. The fans
work all the time, but the power of the fans was regulated continuously by potentiometer
so that the speed of the air flow in the interior proportionally corresponded to the real
conditions in a specific season. Air velocity in the model building and the real cowshed
was measured throughout the whole experimental period by using dataloggers Comet
S-3121 (COMET SYSTEM Ltd., Rožnov pod Radhoštěm, Czech Republic) and instrument
Testovent 06995100 (Testo SE & Co., Titisee-Neustadt, Germany). The ventilation system
was used in full, especially in the summer months from June to August. Both external and
internal conditions were taken into account in the experimental simulation. The average air
flow velocity in a real cowshed in the summer period was in range (0.7–1.2) m·s−1, in the
winter period the air flow velocity was from 0.2 to 0.25 m·s−1. During the spring season,
the average value of the air flow velocity was 0.45 m·s−1, and in the autumn 0.56 m·s−1. In
calculating the air flow rate, we used the information presented by Holmes et al. (2013),
which states as an optimum 40 to 60 air changes per hour. During the measurements in
the model building, fifty times air changes per hour were ensured. It means the volume
flow, approximately 6 m3·h−1, corresponds to the average velocity of air 0.04 m·s−1 in
the model building. Herkner et al. (2002) claim that the required air flow depends on the
temperature, and for the temperature range (10–28) ◦C, they correspond to the air flow
rates in the cowshed (0.1–1.3) m·s−1. The exterior air flow velocities were also taken into
account for calculation.

One of the most important microclimate parameters is the temperature. Temperatures
were measured with a specially designed and constructed measuring device, which is
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described in the next part. The measurements were performed in two ways. At first,
temperatures in the different parts of model object were detected without installation of
the photovoltaic module on the model roof. The second experiment was focused on the
temperature measurements after installation of the photovoltaic module on the model roof
(Figure 1c).

For measurements, we used two different types of PV modules. Monocrystalline PV
module [39] type SZ-50-36M (Solarfarm, Utrecht, The Netherlands) and polycrystalline PV
module [40] type SPP50-10/3a (Victron energy, Almere, The Netherlands).

Temperature measurements were performed by temperature sensors REED TP-01 (REED
Instruments, Newmarket, ON, Canada) with the accuracy of measurement ± 0.75% [41]. A
measuring device was set up to measure the temperature 24 times per hour. Temperature
sensors were placed with transparent tape from the upside of the roofing, and also from the
downside of the roofing and photovoltaic module. One temperature sensor was located between
the photovoltaic module and roof sheet. The next one was placed near the roof of the model
cowshed. The function of mentioned sensor was detection of the ambient temperature.

Measurements were carried out in the interior of the model cowshed by 12 temperature
sensors. The temperature sensors were arranged in three levels: The 1st level-up (S1),
middle-the 2nd level (S2 and S3), and the 3rd level-down (S4). The levels are illustrated
in Figure 2a with red dots. Real positions of sensors are shown on Figure 2b. The sensor
distances are given in Table 1. Temperature sensors in the group were spaced 150 mm apart.
The layout of the temperature sensors allowed measuring the temperature across the whole
model cowshed. The data processing was applied on the measurement results obtained for
every season during the year, but detailed results are presented for three model days with
similar weather conditions. The model day was extracted from the data obtained for every
season (e.g., autumn) by comparison of experimentally obtained day data, and then the
average values were calculated for every time point. A correlation analysis was applied
on the experimental data. The model day was selected for the best correlation between
the data measured during the whole evaluation period and average values for the same
period. For every evaluated day the obtained parameters (ambient temperature, relative
air humidity, wind speed, intensity of solar radiation) were compared with the monthly
average for each point of graphical dependencies. The model day of the season had a high
degree of correlation with the average monthly parameters.
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Figure 2. (a) Layout of temperature sensors; (b) installed temperature sensors inside the model
cowshed.

In particular, the ambient temperature was approximately the same during the day.
Measured data for data analysis were selected in the time range from 12 p.m. to 3 p.m. The
mentioned time was chosen because the maximum intensity of solar radiation is reached
in this period. The next reason for the selection of the mentioned time range was the fact
that the PV system produces the maximum energy, and the last reason was the greatest
thermal stress of animals in this time interval, which has a direct influence on the THI (THI
reaches the maximum). The experiments were performed continuously during the day and
night, but no measurable effect on the interior conditions after the PV modules installation
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at night was found. From the solar radiation intensity point of view, the PV modules
installation on the cowshed roof was not considered as significant for night conditions.
Monitoring of cow behavior was not performed.

Table 1. Temperature sensor distances.

Group of the Sensors Distance from the Roof
(mm)

Distance from the Wall A
(mm)

S1 80 30
S2 400 30
S3 80 330
S4 400 330

3. Results

The results are divided into five parts, according to the experimental set up.

3.1. Measurements of the Temperature in the Model Cowshed Interior and Exterior without
Installed Photovoltaic Module on the Roof

The example of measurement results for the 1st selected model day in October. The
simulation was performed without a photovoltaic module on the model roof. Average
ambient temperature in the mentioned time range was 24.2 ◦C. The upside part of the
aluminum roof sheet had an average temperature of 30.4 ◦C, and downside part, 32.4 ◦C
(Figure 3).
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Figure 3. Time dependencies of roof sheet temperature and ambient temperature for model cowshed
without installation of PV module.

The time-temperature dependencies for different parts of model cowshed without
PV modules are presented on Figure 4. From the presented results, it is evident that the
upper part of the model cowshed was the coldest with an average temperature of 21.5 ◦C.
The middle part of the object had an average temperature of 26.5 ◦C, and down part of the
model cowshed had an average temperature of 23.6 ◦C.



Appl. Sci. 2021, 11, 2140 6 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 20 
 

upper part of the model cowshed was the coldest with an average temperature of 21.5 °C. 
The middle part of the object had an average temperature of 26.5 °C, and down part of 
the model cowshed had an average temperature of 23.6 °C.  

 
Figure 4. Time-temperature dependencies measured in different distances from the roof of model 
cowshed without installation of PV module and the ambient temperature. 

3.2. Measurements of the Temperature in the Model Cowshed Interior and Exterior with Installed 
Polycrystalline Photovoltaic Module on the Roof 

In the frame of this measurement, the polycrystalline photovoltaic module 
SPP50-10/3a was installed on the model cowshed roof. Because aluminum roofing has 
corrugation, the distance between the roofing and photovoltaic module was 20 mm 
(minimum) and 40 mm (maximum). The temperature sensor was installed in a distance 
of 20 mm from the roof. 

The results obtained from the 2nd selected model day in October were evaluated 
and processed. Time temperature dependence (Figure 5) showed the course for sheet 
upside, downside, and ambient temperature. Ambient temperature and temperature of 
aluminum roof sheet downside was very similar, on average ± 24.5 °C. The average 
temperature 26.8 °C was experimentally detected on the upside roof sheet surface.  

 
Figure 5. Time dependencies of roof sheet temperature and ambient temperature for model  
cowshed with installation of polycrystalline PV module. 

18

20

22

24

26

28

30

12 PM 1 PM 2 PM 3 PM

Te
m

pe
ra

tu
re

 (°
C

)

Time (h)

Up

Middle

Down

Ambient
temperature

20

22

24

26

28

30

12 PM 1 PM 2 PM 3 PM

Te
m

pe
ra

tu
re

 (°
C

)

Time (h)

Sheet upside

Sheet downside

Ambient
temperature

Figure 4. Time-temperature dependencies measured in different distances from the roof of model
cowshed without installation of PV module and the ambient temperature.

3.2. Measurements of the Temperature in the Model Cowshed Interior and Exterior with Installed
Polycrystalline Photovoltaic Module on the Roof

In the frame of this measurement, the polycrystalline photovoltaic module SPP50-
10/3a was installed on the model cowshed roof. Because aluminum roofing has corrugation,
the distance between the roofing and photovoltaic module was 20 mm (minimum) and
40 mm (maximum). The temperature sensor was installed in a distance of 20 mm from the
roof.

The results obtained from the 2nd selected model day in October were evaluated and
processed. Time temperature dependence (Figure 5) showed the course for sheet upside,
downside, and ambient temperature. Ambient temperature and temperature of aluminum
roof sheet downside was very similar, on average ±24.5 ◦C. The average temperature
26.8 ◦C was experimentally detected on the upside roof sheet surface.
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The graphical relations on Figure 6 present experimentally obtained time-temperature
dependencies. From the dependencies, it is obvious that the smallest difference was
identified between the temperature in the middle part of the model cowshed and the
ambient temperature, and the average difference was 0.9 ◦C. The upper part of the model
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cowshed was the coldest, with an average temperature of 20.9 ◦C. The down part had an
average temperature of 22.6 ◦C.
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Figure 6. Time-temperature dependencies measured in different distances from the roof of model
cowshed with installation of polycrystalline PV module and the ambient temperature.

Trend of the temperature changes between the aluminum roof sheet and polycrys-
talline photovoltaic module is presented on the Figure 7. The temperature between roof
and photovoltaic module was on average 27.2 ◦C, 2.6 ◦C above the ambient temperature.
The average temperature of the polycrystalline photovoltaic module upside was 36.7 ◦C.
The downside part of the photovoltaic module was hotter, with an average temperature of
41.9 ◦C.
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Figure 7. Time dependencies of polycrystalline photovoltaic module parts temperature, ambient
temperature, and temperature between photovoltaic module and roof sheet.

3.3. Measurements of the Temperature in the Model Cowshed Exterior and Interior with Installed
Monocrystalline Photovoltaic Module on the Roof

The experimental set up was the same as in the previous experiments, but the
monocrystalline photovoltaic module SZ-50-36M was installed on the roof of model cow-
shed. The same time-temperature relations were measured, analyzed, and evaluated for
the 3rd selected model day in October. The measured data for two different parts of the
roof sheet and the ambient temperature are shown in Figure 8. From the presented depen-
dencies, it is obvious that the roof sheet’s downside part had almost the same temperature
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as the ambient temperature. On average, it is ±25.1 ◦C. The aluminum roof sheet upside
part had a higher average temperature of 28.3 ◦C.
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Figure 8. Time dependence of roof sheet temperature and ambient temperature for model cowshed
with installation of monocrystalline PV module.

As in the previous case, the trend of graphical relations for ambient temperature and
the temperature of model cowshed middle part was similar. From measured data, it was
calculated that the average ambient temperature was 25.1 ◦C, and the average value of the
temperature in the middle part of the model object was 25.4 ◦C. From the temperature point
of view, the coldest was the upper part of the model cowshed, with an average temperature
of 21.4 ◦C, and for the down part of the model cowshed, the average temperature was
23.1 ◦C (see Figure 9).
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Figure 9. Time-temperature dependencies measured in different distances from the roof of the model
cowshed with installation of monocrystalline PV module and the ambient temperature.

Average temperature identified between the roof sheet and the monocrystalline pho-
tovoltaic module was 28.8 ◦C, which is 3.7 ◦C above the ambient temperature. The upside
part of the photovoltaic module had an average temperature of 30.1 ◦C. The average
temperature calculated for the downside part of the PV module was 46.1 ◦C (Figure 10).
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Figure 10. Time dependencies of monocrystalline photovoltaic module parts temperatures, ambient
temperature, and temperature between the PV module and roof sheet.

3.4. Measurements of the Temperature in the Real Cowshed with and without Installed Photovoltaic
Module on the Roof

For validation of the obtained results, the same experiments were repeated in the real
conditions. The measurements were performed in the cowshed, which is located in the farm
situated in the southern region of Slovakia. There were measured temperatures on the two
different animal production objects, which had the same azimuth orientation and the roof
slope. The first building was without installation of the PV modules on the roof, and the
second building had installed the PV modules on the roof. For data comparison, we selected
days with similar weather conditions as in the previous experiments. Measurements were
done in two model days in October. First, we performed measurements in the building
without installation of the PV modules, and then we repeated the same experiments in
the building with installed PV modules. The layout of the sensors was the same as in the
model cowshed. The data identified by the measurements were numerically processed
and then the average values of the temperatures were calculated, as presented in Table 2.
Ambient temperatures during measurements were very similar in average 23.6 ◦C and
23.7 ◦C.

Table 2. Average temperatures calculated from measured data in real operating conditions of the
cowshed.

Cowshed Roof
Ambient

Temperature
(◦C)

Roof Sheet
Downside

Temperature
(◦C)

Inside—Under Roof
Temperature

(◦C)

Without PV 23.6 31.0 21.8
Polycrystalline PV 23.7 25.1 20.4

Cowshed Roof
Inside—Middle Part

Temperature
(◦C)

Inside—Down Part
Temperature

(◦C)

Inside—Average
Temperature

(◦C)

Without PV 24.4 23.1 23.1
Polycrystalline PV 23.7 21.6 21.9

Graphical results of the temperature measurements in cowshed without photovoltaic
modules on the roof are shown in Figure 11. From the trend of dependency, it is clear
that temperature inside was the lowest. The average difference between the ambient
temperature and the inside temperature value was about 0.5 ◦C. The roof sheets downside
part had an average temperature of 31 ◦C.
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Figure 11. Time dependence of roof sheet temperature and ambient temperature for real cowshed
without installation of photovoltaic modules on the roof.

The time-temperature dependencies in case of the roof with installed photovoltaic
modules are presented as a graphical relation in Figure 12. The experimentally detected
data were processed and compared. The obtained results show that the difference between
temperature inside and ambient temperate is approximately 1.8 ◦C. This difference is bigger
than in the previous case.
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Figure 12. Time dependence of roof sheet temperature and ambient temperature for real cowshed
with installation of photovoltaic modules on the roof.

In general, experimentally obtained results under real conditions confirmed the fact
that the inside temperature is higher under the roof without installed photovoltaic modules
in the model cowshed.

For the results comparison, a correlation analysis was performed. A correlation was
detected between temperatures obtained from the model cowshed and real cowshed. There
was a significant correlation for the inside temperatures, with a correlation coefficient of
0.9.

The same experiments were also performed during the winter and summer season,
and the results confirmed the fact that installation of PV modules on the cowshed roof in
real conditions has a positive influence on the interior temperature and also on the internal
microclimatic conditions. During the summer, a decreasing of the interior temperature
under the cowshed roof after the PV modules installation was detected, but the opposite
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temperature effect was observed during the winter, after the installation of PV modules.
The temperature in the interior of the cowshed increased. The influence of the PV modules
installation on the cowshed macroclimate is discussed in detail in the next part.

3.5. The Summary of Experimental Results for Different Seasons

In order to confirm the validity of the results, Table 3 shows the summary of the
average values for exterior conditions (ambient temperature, solar radiation intensity,
relative air humidity, and wind velocity) and interior conditions (interior temperature,
relative air humidity, and average air velocity). The interior temperatures are presented as
ranges. The maximum temperatures (22–26) ◦C were detected for summer, but the hottest
days have temperatures during the evaluated time period about 32 ◦C. The temperature
minimum (0–12) ◦C was obtained for the winter season. Since the temperature values in
the exterior and interior are directly related to the intensity of solar radiation, a correlation
analysis was performed. The correlation between indoor and outdoor temperature is
expressed by a correlation coefficient of 0.928 and the correlation between the intensity of
solar radiation and indoor temperature by a coefficient of 0.958 during the model day in
autumn (Figure 13). The graphical relations for solar radiation intensity in sunny, cloudy,
and model day are presented in the Figure 14.

Table 3. The summary of external and internal conditions in context of Temperature—Humidity—
Index (THI).

Exterior Conditions

Average Values Spring Summer Autumn Winter

Ambient
temperature (◦C) 8.8 23.9 12.2 1.4

Solar radiation
intensity

(kWh·m−2)
2.15 3.15 1.26 0.71

Relative
humidity (%) 66.7 64.0 76.3 78.7

Wind velocity
(m·s−1) 1.4 1.0 0.9 1.2

Interior Conditions

Average Values Spring Summer Autumn Winter

Interior
temperature (◦C) 12–19 22–26 11–18 0–12

Relative
humidity (%) 46–63 35–55 40–65 45–78

Average air
velocity (m·s−1) 0.22 0.90 0.22 0.22

Average THI
without PV
system (-)

59.35 69.90 58.03 45.97

Average THI
with PV system

(-)
58.31 66.90 57.05 46.48

Overview of the solar radiation intensity values for different seasons is presented
in Table 3. There is evidence that solar radiation intensity varies from 0.71 kWh·m−2 in
the winter season to 3.15 kWh·m−2 during the summer. From summary results, it is clear
that the intensity of solar radiation has a direct influence on the exterior temperature. The
values of the wind velocity values change depending on the season from 1.4 m·s−1 in
spring to 0.9 m·s−1 in autumn. There was no detected correlation between the exterior
wind velocity and average air velocity in the interior due to the usage of the ventilation
system in the interior. The air velocity in the real cowshed was on average 0.2 m·s−1 during
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the spring, autumn, and winter, but in summer the air velocity reached a maximum value
0.9 m·s−1 due to the increased demand for the interior cooling.
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Figure 13. The relations for solar radiation intensity, ambient temperature, and interior temperature
during the evaluated time period.
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Figure 14. The relations for solar radiation intensity during the sunny, cloudy, and model day.

Relative humidity was measured in the exterior and interior. The exterior humidity
varies from 64.0% to 78.7%. The highest difference between the exterior and interior
relative humidity was 19%. Figure 15 displays relations for ambient temperature and
relative humidity during the year. There was no confirmed correlation between mentioned
parameters because of a very small correlation coefficient, −0.618. The interesting results
were identified during the model day in October presented in Figure 16. The correlation
coefficient for relations between the exterior and interior relative humidity dependencies
was near 1. The connection between exterior and interior humidity during the spring and
autumn is also evident from values in Table 3.
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Figure 16. Dependencies for relative interior and exterior humidity during the model day in October.

All external and internal parameters were put into the context of THI. In the conditions
of Central Europe, the highest THI values are reached in the summer, when the significant
effect of temperature was confirmed, as the humidity had the minimum values. For this
reason, the dependencies for the hottest month of the year (July) are presented in Figure 17.
The influence of PV modules installation on the THI is summarized in Figure 18.

The results of correlation analysis declared the very high correlation with a coefficient
near 1 in both cases. Dependencies were created for extreme values that may occur. The
green curve represents the values of THI for maximum temperature and maximum relative
humidity, the blue curve represents the THI for maximum temperature and minimum
relative humidity. The average difference between values of THI was 2.88. The calculated
value of the THI difference could mean that the comfort limit was exceeded. The opposite
extreme represents the dependence of the THI for the minimum temperature and maximum
relative humidity (red curve), as well as the dependence for the minimum values of
temperature and humidity (orange curve). The average difference in THI values in this
case was 0.05.



Appl. Sci. 2021, 11, 2140 14 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 
Figure 16. Dependencies for relative interior and exterior humidity during the model day in   
October. 

All external and internal parameters were put into the context of THI. In the    
conditions of Central Europe, the highest THI values are reached in the summer, when 
the significant effect of temperature was confirmed, as the humidity had the minimum 
values. For this reason, the dependencies for the hottest month of the year (July) are 
presented in Figure 17. The influence of PV modules installation on the THI is     
summarized in Figure 18. 

The results of correlation analysis declared the very high correlation with a      
coefficient near 1 in both cases. Dependencies were created for extreme values that may 
occur. The green curve represents the values of THI for maximum temperature and 
maximum relative humidity, the blue curve represents the THI for maximum      
temperature and minimum relative humidity. The average difference between values of 
THI was 2.88. The calculated value of the THI difference could mean that the comfort 
limit was exceeded. The opposite extreme represents the dependence of the THI for the 
minimum temperature and maximum relative humidity (red curve), as well as the   
dependence for the minimum values of temperature and humidity (orange curve). The 
average difference in THI values in this case was 0.05. 

 
Figure 17. The dependencies for limit values of temperatures and relative humidity and its impact 
on the THI in July. 

40

50

60

70

80

90

100

12 AM 12 PM 12 AM

R
el

at
iv

e h
um

id
ity

 (%
)

Time

Exterior
humidity

Interior
humidity

45
50
55
60
65
70
75
80
85
90

0 10 20 30

TH
I (

-)

Day 

Tmax
RHmin
Tmin
RHmax
Tmax
RHmax
Tmin
RHmin

Figure 17. The dependencies for limit values of temperatures and relative humidity and its impact
on the THI in July.
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Figure 18. The influence of PV modules installation on the THI values during the year.

Statistical ANOVA test was used to determine the effect of PV on THI (software
STATISTICA 10, StatSoft CR Ltd.). F-test in the ANOVA table tests whether there are
any significant differences amongst the means. If there are, the Multiple Range Tests tell
us which means are significantly different from which others. The F-ratio, which in this
case equaled 0.0305954, was a ratio of the between-group estimate to the within-group
estimate. The effect of the THI without PV modules installation on THI with PV installation
was caused mainly by the effects within groups THI without PV modules or THI with
PV modules because the sum of squares 498.196 was greater than 2.440. That means the
variance in the groups was not caused by the interaction between groups. Since the p-value
0.8669 of the F-test was greater than 0.05, there is not a statistically significant difference
between the averages of the 2 variables at the 95% confidence level. The method currently
being used to discriminate among the averages was Fisher’s least significant difference
(LSD) procedure. The results of variation analysis could be influenced by small number
of values in Table 3, and also by small changes of parameters. In this case, it is better to
apply variance analysis on the day data or for the selected time range during the solar
radiation intensity culmination. From the statistical results, it seems that installation of PV
modules has not influenced the THI. The external and internal conditions vary during the
day. Very important statistical results were obtained for days with extreme temperatures,
which are reached during the summer season. For these days a p-value of F-test near
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p = 0.0446 was obtained, which is statistically significant. The same F-test was applied on
the data experimentally detected for the winter season, and there were calculated p-values
near 0.0513 during the days with extreme external conditions. From the comprehensive
assessment point of view, even small changes in internal conditions can cause only a slight
difference in the THI value. However, during the year, there are many days when small
differences in conditions decide whether the THI limit value is exceeded. In terms of
ensuring comfortable conditions for breeding, the impact of PV installation in practice is
evident.

4. Discussion

The similar experiments were performed and summarized by authors [42], but the
benefits of our research are results specified for the Central European region, which have
not been published yet. They measured the effect of the photovoltaic system installation
on the roof to the temperature in the Powell Structural Laboratory in San Diego, California.
They used a similar experimental set up as in our research. The temperature differences
were also detected by thermal IR camera Fluke TiR1 (Fluke, Washington USA). After the
comparison between our results and values in ref. [42] is clear, that ceiling under the
roof without photovoltaic module had higher temperature. Ref. [42] presents the time
temperature dependencies of ceiling temperatures under the exposed roof and a flat, tilted
photovoltaic array.

The difference between exposed roof and flat photovoltaic array is in the temperature
peak approximately 2 ◦C. Results from temperature measurement declared the temperature
difference during the temperature culmination was 7.7 ◦C. The higher value of temperature
difference can be caused by the different roof construction. The model roof had no roof
insulation (the authors of [42] had a 200 mm layer of concrete).

The authors of [43] performed similar measurements, and they measured indoor tem-
perature under the fiber-cement roof and photovoltaic roof. They obtained approximately
the same values in the time range from 8 a.m. to 12 p.m. From the results, it is evident that
that the difference between the temperatures inside was between 1.1 ◦C–1.2 ◦C.

Our experiment confirmed the same results, that the temperature inside is higher
under the roof without installed photovoltaic modules (Figure 19). Average indoor temper-
ature with roof without photovoltaic module was 23.9 ◦C. For comparison, we selected
the day with a polycrystalline module on the roof. It was for this reason that this day
had a closer average ambient temperature. Average indoor temperature with roof with
photovoltaic module was 22.8 ◦C. The difference between these two values was 1.1 ◦C, the
same value of temperature difference was presented by authors [43].
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Figure 19. The comparison of temperatures under the roof and under photovoltaic module.
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The heat stress problem is acutely felt in the Central European countries. The weather
of these countries is characterized by moderate to high summer temperatures coupled with
moderate humidity levels [44,45]. Hot weather causes heat stress in dairy cows, leading to
declines in milk production each summer. These declines can be reduced or eliminated
by using open barns for optimum milk production [46]. The heat stress problem is getting
worse as production levels continue to rise [47,48]. The basic condition of management in
dairy farms consists in understanding what factors affect milk production the most, i.e.,
with the exception of nutrition and dairy cow health status, also the parity and season
of calving, technological systems, and especially microclimatic conditions [49]. Livestock
performance is affected by heat stress because an animal having difficulty in losing heat
will decrease its heat production by lowering feed intake [32,50]. The upper critical air
temperature for lactating cows is in the range of 24 to 27 ◦C [23]. However, critical
temperatures will vary depending on several factors including degree of acclimatization,
rate of production, pregnancy status, air movement around the animals, and relative
humidity [18,51]. The effect of using the cooling system on thermal comfort was studied
by Lendelová et al. (2012) [52].

The facts presented above are in good agreement with the summary of experimental
results obtained in the real cowshed. There were calculated values of the Temperature—
Humidity—Index (THI) for the real cowshed without PV modules installed on the roof,
and also with PV modules placed on the roof. Calculated numerical results created the
platform for discussion about the effect of microclimate changes in the animal production
building on the animal heat stress.

From the presented experimental results, it is evident that the installation of a PV
system on the cowshed decreases the indoor temperature on average by 1.2 ◦C. The average
ambient temperature during the measurements was 23.6 ◦C. For identification of the PV
system installation effect on the THI, the interior temperature for ambient temperature
in the range (20–40) ◦C (see Figure 20) was calculated. Then the THI was calculated by
Equation (1). The calculation was done for humidity value 65%. Results are presented
in Figure 16. From the mentioned figure, it is clear that the PV system installation has a
positive impact on the THI. In the graph are three important points. At ambient temperature
25 ◦C, which is THI for the cowshed without an installed PV system 73.29, it represents
mild stress. The THI for the cowshed with an installed PV system is 71.4, and it represents
no stress. At ambient temperature 29 ◦C, which was cowshed without PV system THI
79.09, which means severe stress. If the ambient temperature in the cowshed with an
installed PV system was 29 ◦C, the THI had value 76.9, which represents mild stress for
animals. The THI 89.24 was found for the cowshed without an installed PV system at
ambient temperature 36 ◦C. This value of the THI represents very severe stress for animals.
This condition was identified for the cowshed with an installed PV system at the ambient
temperature 38 ◦C.

At the end of the discussion, we can state that all presented results are also in agree-
ment with thermal theory, where the U thermal transmittance coefficient is defined as the
measurement unit for determining the loss of heat in a building element. It expresses the
quantity of heat which crosses a square meter of a building element per second for a tem-
perature difference of 1 ◦C between internal and external air. The lower U value represents
the higher thermal insulation. For example, the polycrystalline photovoltaic module with
insulated glazing has, according to the standard EN 673 (Glass in building—Determination
of thermal transmittance U value—Calculation method), the U value 1.1 W·m−2·K−1 [53].
The same U value applies to a double insulated glazing window with argon filling [54]
and approximately the same U value also applies to the PV module. The commercial PV
modules have the U value from range (0.8–2.5) W·m−2·K−1, in our experiments we used
PV modules with a U value ca. 1.5 W·m−2·K−1.

The next problem which can be discussed is the type of installation. There were
performed measurements in the frame of bilateral cooperation between SUA in Nitra and
Mendel University in Brno. The research was focused on the comparison of PV system
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energy for two ways of the PV modules installation. At first, the PV modules were installed
on the roof, and the same PV system was installed on the wall of the same building. The
research results showed fact that better results were obtained for the PV modules placed
on the facade of the building, but only in the winter season. In other seasons, the vertical
installation had a negative effect on the PV system energy balance. This result was found
only for the conditions of Central Europe. The comprehensive summary of study results
has not been published yet.
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installed PV system on the roof.

5. Conclusions

The installation of a PV system on the roof of animal production building had some
benefits from the practice point of view. The first benefit is well known, it is positive
energetic balance, because the PV system can produce the electricity for consumption,
ventilation, and heating. The second benefit is the improvement of the microclimate in
the cowsheds. This fact was confirmed experimentally for the model and real cowshed,
because after the PV module’s installation, the interior temperature of the cowshed in the
cold seasons (winter, late autumn, early spring) increased, because the PV modules form
a thermal insulation layer, which helps to some extent increase the temperature inside.
During the hot seasons (summer, late spring, and early autumn) the situation was opposite;
the installation of the PV modules reduces the internal temperature in the cowshed, thereby
reducing the thermal stress of the animals. The results of the performed experiments on
the model building and real building confirmed that the installation of the PV system
on the roof of cowshed has a positive influence on the internal temperature, and thus
on the animal heat stress during the year. All presented results were evaluated in the
context of the internal and external conditions. There were detected correlations between
the intensity of solar radiation and ambient temperature as well as interior temperature.
Because heat transport can be separated from the moisture transport, the changes of interior
temperatures are in connection with humidity changes, and these factors are unified by
the THI, which was calculated and discussed, because it can characterize the animal stress,
which is influenced by changes of microclimate conditions. The presented results declared a
strong impact of the temperatures and the partial influence of the air relative humidity and
its velocity on the THI. The results mentioned before are very valuable for practice because
they provide a platform for optimizing internal conditions in cowsheds by monitoring
internal and external breeding parameters. The results also confirm the positive effect of
installing PV to achieve a slight improvement in THI values. This fact is important mainly
during the seasonal temperature extremes in summer in the Central European region. From
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the practice point of view, heat stress has become a major concern for dairy producers
because of the associated decreases in milk production and large economic losses.
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45. Brouček, J.; Mihina, Š.; Ryba, Š.; Tongel’, P.; Kršac, P.; Unrinčat’, M.; Hanus, A. Effects of high air temperatures on milk efficiency

in dairy cows. Czech J. Anim. Sci. 2006, 51, 93–101. [CrossRef]

http://doi.org/10.1016/S0301-6226(01)00330-X
http://doi.org/10.3168/jds.2006-513
http://doi.org/10.2527/2004.82103077x
http://doi.org/10.15226/2381-2907/1/1/00103
http://doi.org/10.3168/jds.S0022-0302(00)75095-8
http://doi.org/10.1175/1520-0450(1979)018&lt;0861:TAOSPI&gt;2.0.CO;2
http://doi.org/10.3168/jds.S0022-0302(94)77151-4
http://doi.org/10.1007/BF01208917
http://www.ncbi.nlm.nih.gov/pubmed/1634283
http://doi.org/10.1007/s004840050103
http://doi.org/10.1007/s00484-018-1629-9
http://doi.org/10.13031/2013.34325
http://doi.org/10.1007/s00484-009-0244-1
http://doi.org/10.1016/j.jtherbio.2018.08.012
http://doi.org/10.1016/j.apenergy.2018.03.081
http://doi.org/10.1016/j.landurbplan.2017.10.011
http://doi.org/10.1016/j.rser.2015.10.024
http://doi.org/10.1021/acs.estlett.0c00349
http://doi.org/10.1016/j.apenergy.2017.09.113
http://www.solarfam.nl/_voltronicpower/download/solarfam-rigid-solar-panels.pdf
https://www.mulac.cz/userfiles/file/Datasheet-BlueSolarPolycrystallinePanels-09.pdf
http://www.reedinstruments.com/product/reed-tp-01-type-k-thermocouple
http://www.reedinstruments.com/product/reed-tp-01-type-k-thermocouple
http://doi.org/10.1016/j.solener.2011.06.010
http://doi.org/10.7454/mst.v16i2.1506
http://doi.org/10.2527/2006.844972x
http://www.ncbi.nlm.nih.gov/pubmed/16543576
http://doi.org/10.17221/3915-CJAS


Appl. Sci. 2021, 11, 2140 20 of 20

46. Mihina, Š.; Kažimírova, V.; Copland, T.A. Technology for Farm Animal Husbandry, 1st ed.; Slovak Agricultural University: Nitra,
Slovakia, 2012.
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