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Rice cultivation is one of the largest users of the world’s freshwater resources. The
contribution of remote sensing observations for identifying the conditions under which rice
is cultivated, particularly throughout the growing season, can be instrumental for water,
and crop management. Data from different remote sensing platforms are being used in
agriculture, namely to detecting anomalies in crops. This is attempted by calculating
vegetation indices (VI) that are based on different vegetation reflectance bands, especially
those that rely on the Red, Green, and near-infrared bands, such as the Normalised
Difference Vegetation Index (NDVI) or the Green Normalised Difference Vegetation Index
(GNDVI). However, particular features of different crops and growing conditions justify that
some indices are more adequate than others on a case-to-case basis, according to the
different vegetation’s spectral signatures. In recent years, a vegetation index related to the
Red Edge reflectance band, the Normalised Difference Red Edge (NDRE) has shown
potential to be used as a tool to support agricultural management practices; this edge
band, by taking a transition position, is very sensitive to changes in vegetation properties.
This work, focusing on the rice crop and the application of different irrigation practices,
explores the capability of several VIs calculated from different reflectance bands to detect
variability, at the plot scale, in rice cultivation in the Lower Mondego region (Portugal). The
remote sensing data were obtained from satellite Sentinel-2A imagery and using a
multispectral camera mounted on an Unmanned Aerial System (UAS). By comparing
several vegetation indices, we found that NDRE is particularly useful for identifying non-
homogeneities in irrigation and crop growth in rice fields. Since few satellite sensors are
sensible in the Red Edge band and none has the spatial resolution offered by UAS, this
study explores the potential of UAS to be used as a useful support information tool in rice
farming and precision agriculture, regarding irrigation, and agronomic management.
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INTRODUCTION

Rice is an important cereal crop that plays a critical role in global
food security and sustainable development, feeding more people
in the world than any other crop (e.g., Cantrell and Reeves, 2002;
Yu et al., 2002; Nguyen and Ferrero, 2006; Normile, 2008).
However, since food security problems persist in many areas
of the world, robust, and reliable tools that can be used to improve
water and crop management and also for mapping and the early
forecasting of rice yields are very important.

The contribution of remote sensing (RS) observations in
identifying the conditions under which rice is cultivated,
particularly throughout the growing season, can be instrumental
in water, and cropmanagement. Images obtained from satellites and
Unmanned Aerial Systems (UAS) are offering attractive routes to
acquire field data of important temporal and spatial resolutions in a
fast and easy way (e.g.,Manfreda et al., 2018; Tmušić et al., 2020) that
could routinely assist to support better informed agronomic
management decisions. Moreover, reliable and timely estimates of
rice crop production areas and yields are essential for providing
information for planners and decision makers to formulate policies
in the case of shortfall or surplus (e.g., Mosleh et al., 2015). However,
whereas RS has the potential to contribute overall to these goals in a
variety of forms (we recall all advances in this research area and the
applications in agriculture that have boosted in recent years), at
present, the understanding of the potential of such contributions to
rice cropping lags behind other crops.

Nevertheless, in recent years several studies already started to
show the potential of RS in rice cultivation, namely using UAS (e.g.,
Duan et al., 2019;Wu et al., 2019; Hama et al., 2020; Zha et al., 2020).
This opportunity can be associated to the higher resolution of the
data provided byUAS platforms in relation to satellites, which allows
for more detailed surveys at the rice field plot scale; this scale is
particularly relevant for rice cultivation monitoring and
management. In addition, it is yet not clear which RS based
indicators could better depict the spectral signature of the rice
cultivation conditions, namely throughout the rice growing
season and for different irrigation, and agronomic management
practices. The need to guarantee worldwide the sustainability of rice
production makes these issues important research topics of practical
environmental and socio-economic interest.

The main objective of this study is thus to explore the application
of available RS tools to assess specific rice farming conditions
(aiming at improving crop and water management through the
better understanding of the rice cropping system and assessment of
the crop status) and, ultimately, the calculation of rice production
risk. In particular, we search for the most adequate Vegetation
Indices (VIs) to be applied in the rice growing region of the Lower
Mondego Valley (Portugal), based on available data from satellite
imagery and UAS field surveys.

REMOTE SENSING PRODUCTS AND
PRECISION AGRICULTURE

Precision agriculture is designed to target crop inputs according
to within-field requirements to increase profitability while

protecting the environment. Whereas precision rice crop
management is crucial to meet the double challenge of
sustainable development and food security (Zhao et al., 2013),
it requires data of adequate temporal and spatial resolutions and
coverage.

For already some time, the attributes of RS data and the suite
of tools offered by this technology have triggered the search for
attractive non-destructive approaches to obtain important data in
agriculture. This led to using innovative RS technologies and
products (e.g., Xiao et al., 2005; Zhang et al., 2016; Kawamura
et al., 2020), but further research is needed to understand the
usefulness and applicability of some of those products to rice
production. In fact, the majority of available studies using satellite
images to monitor rice growth (e.g., Kuroso et al., 1997; Le Toan
et al., 1997; Panigrahy and Sharma, 1997; Shao et al., 1997; Oette
et al., 2001; Shao et al., 2001; Dawe et al., 2004; Motohka et al.,
2009; Mosleh et al., 2015) had global concerns and used moderate
image resolution. Satellite RS provides both cost-effective and
multispectral and multi-temporal data, but data resolutions are
still too coarse to address plot (small) scale conditions. Thus,
although satellite data have witnessed increases in spatial
resolution, a process that has been developing fast, data
resolution does not yet satisfy copiously the needs of precision
agriculture.

On the other hand, UAS constitute a useful solution to obtain
higher resolution RS data. These aerial systems have the potential
to fill the scale gap between space borne observations and detailed
field observations, and are contributing to increase our
knowledge about e.g., surface processes and land cover
dynamics (e.g., González-Jorge et al., 2017; Tatum and Liu,
2017; Manfreda et al., 2018; de Jong, 2020; Tmušić et al., 2020).

In recent decades, advances in UAS have made this technology
a promising tool that involves relatively smaller investments
(Manfreda et al., 2018; Yang et al., 2021). Also, continued
improvements of aerial vehicles and of the imaging and
sensing equipment mounted on these platforms classify UAS
as alternative environmental monitoring platforms. This
technology provides an opportunity to capture spectral signals
at spatial and temporal scales of interest across a range of
applications. Whereas satellite RS is mostly useful for large
geographical scales monitoring, UAS offer advanced crop
image data analytics at high spatial and temporal resolution
and crop monitoring in near real-time, which are important
elements in agriculture and water management (Nhamo et al.,
2020). We stress, however, that since studies reported by different
authors report results that, in general, were obtained using
different sensors at different levels, ground truth
measurements have a complementary and essential role for
validation and comparability purposes.

Different vegetation reflectance bands’ data obtained from
different RS platforms are used to calculate VIs, especially those
that rely on the Red, Green, and near-infrared (NIR) wavelength
bands. The calculation of most VIs is based on two of the most
stable sections of the plants’ spectral reflectance curve, thus
involving different spectral ranges of RS data. The
effectiveness of VIs in assessing different attributes of the
plants at the image’s pixel scale is determined by the
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characteristics of reflectance. Vegetation reflectance is low in both
the blue and red regions of the visible spectrum, it peaks locally in
the green region, and it is highest in the NIR range. Thus, by
algebraically combining these bands, VIs allow that different
spectral signatures are enhanced for different vegetation
properties.

Overall, VIs are related to several physical attributes of
vegetation, e.g., plant height, leaf area, leaf greenness, canopy
greenness, aboveground biomass, percent cover, photosynthetic
activity, evapotranspiration. The advantage of using VIs, in
comparison to using single spectral bands, is reducing the
spectral data to a single number that is related to those
physical characteristics of vegetation while minimising the
effect of internal (e.g., canopy geometry, and leaf and soil
properties) and external (e.g., sun-target-sensor angles, and
atmospheric conditions at the time of image acquisition)
factors on the spectral data. In this way, VIs assist to predict
crop yields and monitor crop disease development and water
stress (Tilly et al., 2014; Stroppiana et al., 2015; Hoffmann et al.,
2016; Cen et al., 2019; Duan et al., 2019; Maes and Steppe, 2019;
Poley and McDermid, 2020; Zhou et al., 2021), having therefore
the potential to be incorporated in risk assessment and the
definition of management strategies and policies, and income
compensation (Kasampalis et al., 2018; Huang et al., 2019; Shiu
and Chuang, 2019).

During drought events, vegetation canopies can be affected by
water stress. This can have major impact on the plant
development in general and can cause crop failure or lower
crop production in agricultural areas. Early recognition of
plant water stress can be critical to prevent such consequences.
By providing RS near-real time information on the plant water
stress to stakeholders, water and agricultural management can be
much improved, notably by specifically irrigating areas where
plant water needs are not completely fulfilled anymore (e.g.,
Norasma et al., 2018; Wan et al., 2020; Yang et al., 2020; Cao
et al., 2021).

However, using any vegetation index requires careful attention
in identifying its strengths and weaknesses in relation to a specific
analysis goal, thus, its adequacy for different applications (e.g.,
Akbarian et al., 2020). Critical issues that are not yet completely
solved include the selection of the most appropriate temporal,
spatial, and spectral resolutions of the data. Spectral resolution
describes the ability of a sensor to define fine wavelength
intervals: the finer the spectral resolution, the narrower the
wavelength range for a particular channel or band.

Among the many VIs calculated from multispectral RS data
that are often used in different applications (for a review see e.g.,
Xue and Su, 2017), we highlight the Normalized Difference
Vegetation Index (NDVI), the Green Normalized Difference
Vegetation Index (GNDVI), the Normalized Difference Red
Edge index (NDRE), and the Normalized Difference Water
Index (NDWI). These normalized indices, which will be used
in this study, take values between −1.0 and +1.0. They are defined
in Table 1 and revisited in Revisiting the Remote Sensing Based
Indicators. For rice cultivation conditions, the usefulness of these
and other RS based indices needs better insight.

MATERIALS AND METHODS

Description of the Study Area
Similar to other main European rice producer countries, such as
Italy and Spain, Portugal is concerned with rice cultivation
(global) sustainability. Here, attention is devoted to rice
farming in the Lower Mondego Valley (Portugal), which is
found mostly in the lowlands of this valley where soils have
alluvial origin and high agricultural value. Rice cultivation has
long been a tradition in this area and generates significant local
rural employment and direct and indirect economic activity (e.g.,
rice industry, machinery, agrochemicals). There is also a cultural
value associated with the tradition of rice production in this
region, which influences other activities of a social and
gastronomic nature.

It is anticipated that the current situation, that faces a number
of problems, is aggravated by the consequences of the increasing
pressure on water resources, and the expected changes in the
climate, in particular increased climate variability. Research in
progress explores alternative irrigation and agronomic practices
adapted to different local conditions that might lead to less
irrigation water applications, keeping crop productivity high
and environmental impacts low; for this purpose, it is
important to increase the knowledge about the water
dynamics of rice growing.

Traditional rice irrigation is by continuous flooding. This
practice is repeatedly identified as contributing largely to low
agricultural water use efficiency, an issue that is often studied
(e.g., Howell, 2001; Gonçalves and de Lima, 2018) and discussed
in water users and managers’ forums. In the Lower Mondego
area, local farmers have empirically introduced alternative
irrigation practices, alternating between wet/flooded and dry
conditions of the rice fields. However, this irrigation practice
is adjusted to the particular conditions of the different plots; the
length of the periods when the rice plot is flooded or dry is
decided upon the farmers’ assessment of the actual conditions of
the field crop. At present, the local irrigation practice often
applies a type of Alternate Wet and Dry (AWD) irrigation,
which aims at water saving, but it is not based on any specific
irrigation scheme. This study aims at clarifying the usefulness of
different RS tools for assessing field conditions during the rice
cultivation season and assisting in water management practices
decisions that could improve rice farming in the area. For this
purpose, several RS based indices are explored and discussed.

The selected study area (Figure 1A), of approximately 335 ha, is
an irrigation unit (Bloco 1—Quinta do Canal, coordinates: 40° 7′
0.16″ N, 8° 47′ 47.34″W) of the Lower Mondego Irrigation District
(LMID) that is predominantly dedicated to rice cultivation (about
332 ha). Quinta do Canal is located in the left bank of the Mondego
River, in the downstream part of the Lower Mondego Valley. The
area is bounded to the north by the Mondego River, to the south by
the Pranto River and to the west by the Mondego River estuary.
Quinta do Canal is amongst the most downstream irrigated lands of
the LMID and it integrates 71 rice field plots. Ten of these plots were
selected to be studied using RS products from satellite andUAS; their
area ranges between 1.6 and 5.7 ha (Figure 1A). The rice produced
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has long grain, of the variety Ariete, sub-species Oryza sativa L. ssp.
japonica; commercially, it is known as “Carolino” rice.

Remote Sensing Data Acquisition and
Processing
Data from satellite Sentinel-2 and data obtained through
dedicated UAS flights undertaken in 2020, during the rice
crop cultivation season (from early May to October), were
explored.

Available satellite Sentinel-2 images were downloaded from
the Copernicus open-access website (https://scihub.copernicus.
eu) for the period from January 1 to October 31, 2020. Level-2A
images, already atmospheric corrected, were selected. Only
images showing a cloud cover lower than 8% were retained.

The satellite data that supported the estimation of VIs were
available at 10 m full spatial resolution, although the data used
to calculate NDWI were only available at 20 m spatial resolution.
The corresponding multispectral wavelengths bands used to
calculate the vegetation and water indices are given in Table 1
and are centred as follows: Band 3 (560 nm), Band 4 (665 nm),
Band 8 (842 nm), Band 8a (865 nm), and Band 11 (1,610 nm).

The UAS data were collected during a flight conducted
between 2:30 pm and 4:00 pm on July 9, 2020, under
conditions of no wind and clear sky (Figure 1b3). A DJI
Matrice 600 drone (Figure 1b1) equipped with a camera X5
for RGB and aMicasense RED Edge—Mmultispectral sensor was
used (Figure 1b2), which collected images having a spatial
resolution of 0.074 × 0.074 m2; relevant spectral wavelength
bands (centre) are Blue (475 nm), Green (560 nm), Red

TABLE 1 | Spectral indices calculated in this study. For Sentinel-2 (S2), multispectral wavelength band centres are: Band 3 (560 nm), Band 4 (665 nm), Band 8 (842 nm),
Band 8a (865 nm), and Band 11 (1,610 nm).

Vegetation index Abbreviation Equation Formula with
S2 bands

Attributes assessed References

Normalized difference
vegetation index

NDVI NIR−Red
NIR+Red

Band8−Band4
Band8+Band4

Biomass, canopy structure, leaf area, chlorophyll
content

Rouse et al. (1974)

Green normalized
difference vegetation
index

GNDVI NIR−Green
NIR+Green

Band8−Band3
Band8+Band3

Biomass, leaf area, photosynthesis, plant stress, ratio
of photosynthetically absorbed radiation

Gitelson andMerzlyak (1994), Gitelson
and Merzlyak (1996), Gitelson et al.
(1996)

Normalized difference
red edge index

NDRE NIR−Red Edge
NIR+Red Edge

Band8−Band8a
Band8+Band8a

Vegetation density and condition, plant vigour, leaf
chlorophyll content, leaf area, stress detection,
fertilizer demand, nitrogen uptake

Fitzgerald et al. (2006)

Normalized difference
water index

NDWI NIR−SWIR
NIR+SWIR

Band8a−Band11
Band8a+Band11 plant water content, nitrogen content, surface waters Gao (1996), McFeeters (1996)

FIGURE 1 | Study site and UAS survey. (A) Location of the rice production irrigation area “Quinta do Canal,” in Portugal (adapted from Google Maps, 2021) and
limits of the ten selected study field plots and (B) Views of the UAS field survey in Quinta do Canal (July 9, 2020): (b1) DJI Matrice 600 drone, (b2) Micasense RED
Edge—M multispectral sensor, and (b3) rice fields.
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(668 nm), Red Edge (717 nm), and NIR (840 nm). Ground
sample distance was 7.21 cm/pixel. The radiometric correction
processing option was Camera, Sun Irradiance and Sun Angle
using DLS IMU.

The UAS was autonomous and was operated respecting a pre-
set flight plan corresponding to a simple grid with a distance
between flight lines of 25 m. There was 75% overlap and 70%
sidelap; the flight height above the ground was 100 m. The speed
of the DJI Matrice 600 drone was set to 7.5 m/s. A quick
calibration was performed prior to the flight using a
calibration target.

The UAS flight images’ data, including orthorectification,
atmospheric correction and elaboration of VIs maps (section
3.3.), were processed using the Pix4D software (Pix4D S.A., Prilly,
Switzerland).

Computation of Vegetation and Water
Indices
Rice plants have specific land cover properties. In addition to the
fact that rice land coverage changes during the rice crop life cycle,
in irrigated rice fields the land coverage dominated by water also
changes, which might depend on the crop growth stage and the
irrigation practice.

During the rice crop season, rice vegetation coverage grows
and reaches a maximum (at rice age of approximately 2 months)
and then gradually decreases until harvest time. The traditional
irrigation is by continuous flooding of the rice fields, although
AWD irrigation is applied at many locations, mostly aiming at
water saving. The fields are flooded at the time of sowing; the
flooding is interrupted 2–3 weeks before harvest.

In this study, the vegetation and water indices computed for
the rice crop were NDVI, GNDVI, NDRE, and NDWI. Their
descriptions can be found in Revisiting the Remote Sensing Based
Indicators. Depending on data availability, the indices were
calculated from satellite Sentinel-2A, and UAS data. Basic
descriptive statistics were obtained for the collected data,
extracted using the zonal statistics plugin in Quantum GIS
(QGIS) software.

Revisiting the Remote Sensing Based
Indicators
References and the calculation equations for NDVI, GNDVI,
NDRE, and NDWI, which are the indices used in this exploratory
work, are given in Table 1. Main features of these indices are
revisited below.

The NDVI is one of the most widely used vegetation indices in
agriculture, in particular to detect live green plant canopies, thus,
displaying greenness. This index takes advantage of
characteristics of two spectral bands: the chlorophyll pigment
absorptions in the Red spectral band (0.62–0.69 μm) and the high
reflectance of plant materials in the NIR band (0.75–1.3 μm). It is
calculated as the normalized ratio between the Red and the NIR
wavelength bands. Since high photosynthetic activity leads to lower
values of reflectance coefficients in the red region of the spectrum
and large values in the NIR region of the spectrum, the ratio between

these indicators allows to clearly separate the vegetation from other
natural objects. Values between −1 and 0 indicate dead plants, or
inorganic objects such as stones, roads, and houses. For live plants,
NDVI values range between 0 and 1, with 1 being the healthiest and
0 being the least healthy.

Thus, NDVI is directly related to the plants’ photosynthetic
capacity and hence energy absorption of plant canopies. As a
result of the spectral analysis, this index has the potential to assess
canopy growth or vigour, the density of vegetation, and to identify
areas that need reseeding, application of plant protection
products or fertilizers (e.g., Karnieli et al., 2010; Xue and Su,
2017); it can allow farmers to assess crop germination and
growth, the presence of weeds or diseases, and to predict the
productivity of the agricultural fields. One limitation in this index
is that it shows low sensitivity to detect minor differences in high
chlorophyll content and biomass, which is known as the
“saturation effect” (e.g., Gao, 1996; Schaefer and Lamb, 2016);
saturation occurs when NDVI is applied to images over areas
having dense vegetation, i.e., when the level of the Leaf Area Index
becomes high (i.e., LAI ≥ 3, see Gao, 1996). Consequently, NDVI
is not always the most accurate index to detect anomalies in crops,
particularly at small scales (Jorge et al., 2019). The index is
moderately sensitive to changes in soil and atmospheric
background, except in cases of poor vegetation.

The GNDVI is similar to NDVI except that instead of the red
spectrum it assesses the green spectrum in the range
0.54–0.57 μm; it is derived from the Green and NIR spectral
bands. GNDVI allows also to estimate photosynthetic activity of
the vegetation cover; in fact, this index has been found to be more
sensitive to chlorophyll content than NDVI (Gitelson and
Merzlyak, 1998). GNDVI is also used to determine moisture
content and nitrogen concentration in plant leaves and canopy
according to multispectral data that do not have an extreme red
channel, and for assessing depressed and aged vegetation.

A somewhat less commonly used index is the NDRE, which is
based on differences in reflectance between the Red Edge (RE)
and NIR wavelengths. RE wavelength extends across the band
0.68–0.75 μm (Horler et al., 1983), therefore between the visible
Red and NIR electromagnetic spectra (Cui and Rekes, 2018). This
region of the spectra depicts the limit between absorption by
chlorophyll in the Red band, and scattering due to leaf internal
structure in the NIR band (e.g., Jorge et al., 2019). Thus, the Red
and RE wavelengths are strongly absorbed by the chlorophyll
pigments, while the NIR reflectance is highly influenced by the
leaf structure (e.g., Kanke et al., 2016).

Thus, the NDRE is offering a new alternative for estimating
photosynthetic activity, with the RE band being very sensitive to
changes in foliar chlorophyll content, which is strongly related to
plant nitrogen concentration; it allows thus to quantify vegetation
density and conditions (e.g., Broge and Leblanc, 2001). It is
especially useful for estimating crop health in the mid to late
stages of growth, when the chlorophyll concentration is relatively
higher. In recent years, NDRE has shown potential to be used as a
tool to support agricultural management practices since this edge
band, by taking a transition position, is very sensitive to changes
in vegetative properties: e.g., 1) it can be used to map the within-
field variability of nitrogen foliage to understand the fertilizer
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requirements of crops and 2) it has been found more
advantageous than the NDVI to optimising harvest times
based on transitions of photosynthesis activity (Maccioni et al.,
2001).

In the last few years, many new sensors have become available
that are capable of detecting radiation in the red-NIR transition
zone, or RE band; note that the limits of the RE band might
depend on the sensor. Unfortunately, only a limited number of
remote-sensing satellites are equipped with this type of sensors
and in some cases their spatial resolution is modest (e.g., Sentinel-
2 satellite, with a spatial resolution of 20 m). However, most
commercial multispectral cameras that are installed in UAS
detect RE radiation, providing detailed data that are relevant
for small spatial scale studies.

Finally, the NDWI is a satellite-derived index that is used to
delineate open water features and enhance their presence in
remotely-sensed digital imagery: NDWI varies almost linearly
with liquid water thickness (Gao, 1996). Moreover, NDWI is
known to be also strongly related to plant water content. NDWI
is computed using the NIR and the short wave infrared (SWIR)
reflectance using MODIS data or using Green and NIR reflectance
using LandSat-8 or Sentinel 2 data (Table 1), which makes it
sensitive to changes in liquid water content and the spongy
mesophyll of vegetation canopies (Gao, 1996; Ceccato et al.,
2001). It is therefore a very good proxy for plant water stress and
changes in surface water, and it is useful for drought monitoring and
early warning (e.g., Ceccato et al., 2002; Gu et al., 2007). High/low
values of NDWI correspond to high/low vegetation water content
and to high/low vegetation fraction cover. In periods of water stress,
the NDWI decreases It is possible to infer Equivalent Water
Thickness (EWT) from NDWI over areas fully covered by green
vegetation (Gao, 1996); however, it is difficult to do so from NDWI
over partially vegetated areas, because soil contributions to NDWI
are mostly negative, whereas green vegetation contributions are
positive. Thus, NDWI is complementary to, not a substitute for
other VIs.

RESULTS AND DISCUSSION

Usually, the rice cropping season in Quinta do Canal (Portugal)
runs from May to October, when harvest takes place, with the
growing peak occurring between July and August. For the 2020
rice growing season, the temporal variation of the NDVI average
values was estimated from Sentinel-2A data (Figure 2) for the 10
selected rice fields in Figure 1. Results reveal the limited number
of images that are usually available during the approximate 120-
days rice growth period but, overall, the satellite data are enough
to perceive well the crop life cycle.

As expected, the 10 NDVI profiles reflect the different
conditions, over time, of the field plots, and the different rice
cropping phases: initial growth, crop development, reproduction
and maturity phases. NDVI values closer to +1 indicate
vegetation with high photosynthetic activity, under the
premises that the photosynthetic process is carried out mainly
by plant leaves and that solar radiation in the visible region
(0.40–0.72 μm) is mostly absorbed by photosynthetic pigments;
thus, NDVI values in this range indicate denser vegetation cover.
In contrast, lower values of NDVI values indicate the conditions
of lower vegetation cover.

In Figure 2, the lowest NDVI values, around zero (−0.1 to 0.1),
are observed in the initial phase of rice crop cultivation; they are
related to the flooding of the fields close to the crop (wet) sowing
time. The highest NDVI values, of approximately 0.90, are
reached in August, and reflect the peak greenness of rice
attained during the heading stage. Towards the end of the
cultivation period, the NDVI values decrease until the plant
reaches full maturation and is harvested, in the beginning of
October. In irrigated rice fields, especially in early periods, water
environment is expected to play an important role in the rice
spectral signal.

The differences between the field plots (Figure 2) are
explained by differences in field conditions and crop responses
to the applied water and agronomic practices. A somewhat larger
discrepancy in NDVI was found for plots 4 and 10, around the
date when the UAS flight took place (i.e., July 9, 2020). This led us
to further investigate the conditions in these plots, at that time.

In view of the issues mentioned above, and since the irrigation
scheme and timing differ among the selected rice field plots, the
NDWI derived from satellite Sentinel-2A data was used
complementary to NDVI to assist in assessing the water
conditions/status prevailing in the rice fields at the time of the
UAS survey (Figure 1b3). Satellite data were available for July 8,
2020, the day before the UAS survey took place.

The NDVI and NDWI maps are shown in Figure 3, at 20 m
spatial resolution. The NDVI scale applies a red-yellow-green
palette to NDVI-processed imagery, which is generally seen as
more intuitive: green signals healthy vegetation and red
highlighting hotspots of concern, or areas lacking vegetation.
In the NDWI map, the NDWI values over areas with dead grass
are negative, while those over green vegetation areas are positive;
high NDWI values (in blue) correspond to high vegetation water
content and to high vegetation fraction cover, whereas lowNDWI
values (in red) correspond to low vegetation water content and
low vegetation fraction cover. For both indices, NDVI, and

FIGURE 2 |NDVI average values calculated for the selected irrigated rice
field plots (Quinta do Canal, Figure 1) using satellite Sentinel-2A imagery
available for 2020, at 10 m spatial resolution. The period plotted include the
rice cropping season, which lasted 151 days in 2020: sowing date was
May 10 and harvest date was October 10.
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NDWI, the field plots’ average indices and coefficients of
variation are shown in Figure 4.

Field plots 4 and 10 exhibit the smallest NDVI and NDWI
(Figures 3, 4), which is in agreement with the fact that these
plots were only recently flooded (i.e., the day before) when the
UAS data were collected; therefore, it is expected that the
thickness of the water layer over the soil is smaller for these
two plots and that this reflects in the index value. The situation
for NDVI has been already identified above. Complementary,
NDWI reveals spatial non-uniformity in water conditions
between the 10 selected plots and at the plot scale
(i.e., within each plot), which confirms that NDWI is a good
indicator for vegetation liquid water content.

Results confirm that contrary to NDWI, NDVI has limited
capability for retrieving vegetation water content information.
NDVI provides information on vegetation greenness
(chlorophyll), which is not directly and uniformly related to
the quantity of water in the vegetation (Ceccato et al., 2002).
On the other hand, NDWI varies almost linearly with liquid water
thickness and it also strongly relates to plant water content, which
could be important to assess the water conditions in rice fields. Gu
et al. (2007) found that NDWI values exhibited a quicker
response to drought conditions than NDVI, a study that led to
the testing of NDWI as a drought indicator (Gu et al., 2008).

According to Gao (1996) this index is less sensitive to
atmospheric scattering effects than NDVI.

However, in general, drought and water stress are not the only
factors that can cause a decrease of NDWI values/anomalies.
Changes in land cover or pests and diseases can also be
responsible for such variation in the signal. Therefore, this
indicator must be used jointly with other indicators that give
information on the deficit of rainfall/soil moisture in order to
determine if the variation in the vegetation response (signal) is
associated with a drought event or not.

For the selected study plots, maps of NDVI (Figure 5A),
GNDVI (Figure 5B), and NDRE (Figure 5C) have been created
from the data collected using UAS during the last period of the
rice vegetative phase, on July 9, 2020. For all indices, the red,
green, and yellow colours in the images indicate, respectively, the
lowest, the highest, and intermediate biomass production. Since
the spectral classes used in the maps are the same, comparison of
themaps permits to appreciate that there are indeed differences in
the way the spectral signature of the rice fields is captured by each
of the indices. In particular, differences in the visual assessment of
the spatial variability within each field are notorious, in addition
to the differences observed between neighbouring rice fields.

For better insight, Figure 6 shows the NDVI, GNDVI, and
NDRE average values and coefficients of variation obtained from

FIGURE 3 |Maps of the (A)NDVI and (B)NDWI for the selected rice fields in Quinta do Canal, on July 8, 2020. Data are from Sentinel-2A, at 20 m spatial resolution.
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the data collected during the UAS campaign. Overall, although
apparently there is no much difference in the average value of the
indices for the different plots, there are consistent relative
differences exhibited by the different VIs at the plot scale, for
all 10 rice plots. The NDVI average values ranged from 0.83 to
0.89: the minimum average value was reached in plot 4 and the
maximum value in plot 5. The GNDVI average values ranged
from 0.61 to 0.70: the minimum average value is for plot 10 and
the maximum value for plot 5. The NDRE average value ranged

from 0.32 to 0.41, also with the minimum average value reached
in plot 10 and the maximum average value reached in plot 5; the
second lowest NDRE value is for plot 3. The NDVI is higher than
the remaining VIs at the time of the UAS data collection; this is
explained by the fact that the rice crop is richer in chlorophyll
content during its latest growing stages, which is the plant
attribute more strongly captured by this VI.

On the other hand, the coefficients of variation (Figure 6B)
were higher for the NDRE index than for the NDVI and

FIGURE 4 | Vegetation indices NDVI and NDWI for the selected rice field plots, in Quinta do Canal, on July 8, 2020: (A) average values, and (B) coefficient of
variation. Data are from Sentinel-2A, at 20 m resolution.

FIGURE 5 |Maps of (A)NDVI, (B)GNDVI, and (C)NDRE, for the selected rice plots in Quinta do Canal (July 9, 2020). The UAS field images have a spatial resolution
of 0.074 × 0.074 m2.
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GNDVI indices. This suggests that the NDRE index may be
more responsive to variations in crop vigour than the other
indices and could present greater sensitivity in detecting
differences in chlorophyll content, a pigment that is closely
linked to plant vigour (de la Casa et al., 2018). This is expected
to result from the conditions of the rice fields, since
chlorophyll content might have reached the point at which
NDVI “saturates” (Revisiting the Remote Sensing Based
Indicators). Under this condition, which is usually found at
the stage of the rice growing season, and captured by the data
in this particular case, variability in the rice crop at the plot
scale is hard to detect with NDVI and GNDVI; in particular,
this can be appreciated in Figure 5A. Nevertheless, results
confirm that GNDVI presents greater sensitivity than NDVI
(as suggested by the relatively higher coefficient of variation,
Figure 6B), which can be explained by variations in the
underlying vegetative surface, that is, the soil and the
elements that constitute it, such as organic matter, texture,
mineralogical composition, moisture, roughness (e.g., Ben-
Dor et al., 1999). Thus, among the three indices, NDRE is
likely the one that is able to identify better existing differences
among and within crop fields. In contrast, the lower the value
of the coefficient of variation, the more precise the estimate of
the vegetation index is at the field scale.

Overall, results suggest that NDRE should be taken as a valid
and alternative vegetation index (e.g., in relation to NDVI), and
that it may constitute a useful (and more adequate) tool to inform
farmers and support agronomic management decisions. This has
already been discussed in previous studies, but results of this
study show that it applies also to the rice growing conditions in
the Lower Mondego Valley and, expectedly, also elsewhere, at
least for similar rice growing conditions. Yuhao et al. (2020)
studied multispectral images in the early season of rice growth,
which were obtained using UAS technology, and correlated
vegetation indices, including NDRE, to soil plant analysis
development (SPAD) data chlorophyll meter readings to assess
the potential of those indices for examining the amount of
chlorophyll concentration present in rice.

The positive relationships between the different VIs obtained
at the plot scale and for the conditions surveyed are shown in
Figure 7. The lowest value (R � 0.56) of the Pearson correlation
coefficient, R, was found between NDRE and NDVI (Figure 7B)

and the highest (R � 0.95) was exhibited between NDRE and
GNDVI (Figure 7C); the positive relationship that is studied
more often, between the GNDVI and NDVI, exhibited a
correlation coefficient of R � 0.76 (Figure 7A). The low NDVI
value calculated for plot 4 might somehow influence these
corresponding results. A crude appraisal of the strength of the
correlations would classify them as strong for the first case
(NDRE and NDVI) and very strong for the other cases
(NDRE and GNDVI, and GNDVI and NDVI).

Note that rice plots 4 and 10 exhibit the lowest values of
NDWI, with the lowest average values of all studied indices found
for plot 10. It is thus clear that there is variability between the
plots. It is expected that this variability is partially explained by
the different stages of crop development in the plots and perhaps
by different watering practices adapted to specific field
conditions. These are nevertheless neighbouring plots and
overall managed according to the same general judgment. It is
also expected that within each plot, the spatial variability in
cultivation conditions influences the output VI value for that
plot. In this respect, it is remarkable that the NDRE, followed by
GNDVI, performed better than NVDI for identifying that
variability, as highlighted by the higher coefficient of variation
of NDRE and GNDVI found for plots 4 and 10 (Figure 6B).
These results catch the eye, whereas the NDVI results give no
indication that these plots might present any particular striking
difference, within the group of plots.

Thus, more data are needed to better understand the
relations between the vegetation indices, and their
signatures concerning rice cropping. Nevertheless, results
suggest that NDRE index can indeed play an important role
for identifying non-homogeneities in rice fields, and that
analysis based on NDVI alone might not fulfil all
requirements for assessing the status of this particular crop.

Finally, a word goes to the comparison of the NDVI values
obtained from satellite Sentinel-2A (July 8) and UAS data (July 9)
during the rice reproductive phase, for the study plots and the spatial
resolution of, respectively, 10 m and 0.074m. Results show that the
NDVI average values estimated from UAS data are on average
higher than the values estimated based on Sentinel-2A data. For the
specific case reported in this work, the ratio between the satellite and
the UAS based indices is on average 1.22: for the 10 plots, average
NDVI is 0.87 ± 0.02 (UAS) and 0.71 ± 0.06 (Sentinel-2A). For

FIGURE 6 | Vegetation indices NDVI, GNDVI, and NDRE, for the selected rice fields (Quinta do Canal): (A) average values, and (B) coefficient of variation. The data
are for July 9, 2020, from UAS images, at 0.074 m resolution.
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illustration, the corresponding NDVI maps are shown for rice field
plot 6 (Figure 8): average NDVI estimates are 0.87± 0.05 (6.26× 106

pixels) fromUAS data and 0.74 ± 0.07 (321 pixels) from Sentinel-2A
data, for this plot. For the data analysed, it was also found that the
satellite data identified a larger deviation in the conditions in plots 4
and 10 than the UAS data, which could nevertheless be biased by
border effects.

Between the two RS platforms (Sentinel-2A and UAS),
differences in the NDVI estimates could be explained by using
reflectance measurements that were not recorded exactly
simultaneously, the fact that different instruments acquire
different spectral channels through different cameras or focal
planes (since each sensor has its own characteristics and
performance, e.g., spectral resolution), and also by the different
spatial resolution of the data. It is also to be expected that the NDVI
estimates obtained at other times from data of different origins and
other conditions (e.g., weather, rice growing stages, water stress)
could be diverse between the platforms.

In particular, scale issues in RS (e.g., Wu, 2009; Lausch et al.,
2013) require the collection of larger data sets and further
investigation before such issues come to a closure. Whereas scale
is a basic concept for describing the hierarchical structure of
landscapes, structures, and processes, RS techniques involve
different spatial and spectral resolutions. It is thus not surprising
that results obtained using many common methods are doubtful or
not adequately understood, as the applicability of such methods

across different scales is not always obvious and sometimes
questionable. On the one hand, each method has its specific
problems, limitations, and applicability conditions and, on the
other hand, the effects of different scales, methods of scaling, and
scale transitions cannot be overlooked.

In short, using different VIs for quantitative assessments as
opposed to qualitative surveys demand that a number of issues
are properly addressed for interpretation and comparability
of results to be meaningful. Such discussion is outside the
scope of this text. However, in particular, we stress the
importance of assessing ground truth measurements
(spectral and chemical) in future similar studies. Without
ground truth measurements and spectral similitude analyses
that compare field against aerial (and S2) observations it is
not possible to fully clarify the relationship between spectral
signals from different RS platforms, which is as yet a big gap
in the already existing knowledge on the complementarity
role of RS products.

Alongside, developments are expected in image processing
and in transferring analysis outputs to automation and robotics;
in real time, this would constitute a useful information tool that
would greatly support decisions in rice farming and quick
responses, leading to improvements in rice irrigation and
agronomic management. In particular, it would support the
adoption, and assessment of water saving irrigation
management practices in rice cultivation.

FIGURE 7 | Relationship between the VIs for the study plots in Quinta do Canal: (A)GNDVI and NDVI, (B) NDRE and NDVI, and (C) NDRE and GNDVI. Data are for
July 9, 2020, from UAS images. The relations obtained by linear regression and the corresponding coefficients of determination are given.

FIGURE 8 | NDVI maps calculated for rice plot 6 (Quinta do Canal) using data from Sentinel-2A (left) and UAS (right) imagery. The data were obtained during the
rice reproductive phase, respectively, on the 8th and 9th of July, 2020.
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CONCLUDING REMARKS

This study explores the role of RS as a tool to better
characterize, e.g., rice crop responses and water
requirements, and to support water management and
agronomic decisions, namely in precision agriculture.
Whereas literature report many RS applications in
agriculture, those dedicated to rice farming are scarce.
Moreover, to the best of our knowledge, no such study has
yet been reported for the specific rice farming field conditions
in the Lower Mondego Valley (Portugal); this rice production
region contributes significantly to the rice production in
Portugal.

Thus, this study contributes to the existing knowledge in this
field. It investigates the potential usefulness of different RS
technologies and products to assess rice cultivation conditions
by calculating and comparing vegetation and water indices
obtained from satellite and UAS multispectral and multi-
temporal data. Main outcomes are:

1) The different data (from satellite and UAS) play a
complementary role: while, overall, not offering yet high
enough resolutions to allow for detailed surveys (which can
be secured by the high resolution UAS technology) at the
rice field plot scale, satellites’ images are nevertheless
providing attractive routes to acquire field data of
important temporal and spatial resolutions in a fast and
easy way. Thus, overall, RS can play a crucial role in the
process of rice cultivation, providing trustful tools for
timely monitoring crop growth, and field conditions.

2) Particular features of the rice crop physiology and production
systems demand that meaningful RS based indices are
identified to adequately depict the spectral signature of
specific local/regional rice growing conditions, because
some vegetation indices could be more adequate than
others on a case-to-case basis.

3) Land-use classifications based on multispectral data may
generally benefit from using the NDRE index, which
demonstrated to be particularly useful for identifying non-
homogeneities in rice crop vigour during the crop’s vegetative
phase, for the studied conditions. Since few satellite sensors
are sensible in the Red Edge band and none has the high
spatial resolution offered by UAS, this study confirms the
potential of UAS to collect pertinent high-resolution images
for spatial data on rice growing.

Whilst, more studies and tests dedicated to the whole rice crop
season and diverse environmental conditions are still needed and
being pursued, aiming at the increased understanding of different
issues in RS satellite and UAS data. For example:

1) How much different from the description of the rice
cultivation ground truth (as observed by ground RS
measurements) is the signal provided by the sensors used
in different RS platforms (e.g., satellite, UAS), so that
comparability studies are meaningful? It is well known

that one of the key requirements of RS applications is the
need of ground truth measurements due to the several
unknown factors that affect the quality of aerial spectral
readings.

2) One specific problem of applying RS to study vegetation is the
fact that different spectral signatures can be obtained at
different hours along the day; thus, future studies with
UAS should clarify this daily variation by examining the
rice cultivation system at different times of the day and,
moreover, confront results with companion ground truth
measurements.

3) How to deal with the different spatial and spectral resolutions
involved in RS data, acquired by different sensors at different
levels, which involves non-trivial scale issues, and multiscale
analysis methods?

All these issues highlight the importance of ground truth
measurements, which are sometimes missing as a reference
signal in many studies. Overall, there is still the need to
deepen the knowledge in the field, with particular emphasis on
the potential practical applications foreseen in precision
agriculture, in particular those that pursue rice production
sustainability.
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