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Serious games have become an important tool to train individuals in a range of different 
skills. Importantly, serious games or gamified scenarios allow for simulating realistic time-
critical situations to train and also assess individual performance. In this context, 
determining the user’s cognitive load during (game-based) training seems crucial for 
predicting performance and potential adaptation of the training environment to improve 
training effectiveness. Therefore, it is important to identify in-game metrics sensitive to 
users’ cognitive load. According to Barrouillets’ time-based resource-sharing model, 
particularly relevant for measuring cognitive load in time-critical situations, cognitive load 
does not depend solely on the complexity of actions but also on temporal aspects of a 
given task. In this study, we applied this idea to the context of a serious game by proposing 
in-game metrics for workload prediction that reflect a relation between the time during 
which participants’ attention is captured and the total time available for the task at hand. 
We used an emergency simulation serious game requiring management of time-critical 
situations. Forty-seven participants completed the emergency simulation and rated their 
workload using the NASA-TLX questionnaire. Results indicated that the proposed in-game 
metrics yielded significant associations both with subjective workload measures as well 
as with gaming performance. Moreover, we observed that a prediction model based solely 
on data from the first minutes of the gameplay predicted overall gaming performance with 
a classification accuracy significantly above chance level and not significantly different 
from a model based on subjective workload ratings. These results imply that in-game 
metrics may qualify for a real-time adaptation of a game-based learning environment.

Keywords: cognitive load, in-game metric, adaptivity, serious games, simulation

INTRODUCTION

Serious games have become an important tool for educating and training people in a variety 
of different skills, ranging from military purposes to education and health care (for an overview 
see: Susi et  al., 2007; Boyle et  al., 2016); Unlike traditional analog learning, which cannot 
be automatically adapted to individual needs, serious games and simulations can be programmed 
to create targeted learning programs. While digital training in areas such as maths, language 
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learning, exercise, or healthy eating can easily be  replaced by 
analog setups, a range of situations such as aircraft crashes, 
surgical operations, or – more generally – time-critical emergency 
situations, can hardly be  trained in real-life situations, it may 
benefit considerably from simulations and/or serious games. 
The most pronounced advantage of such digital training consists 
not only of the potential to simulate dangerous and time-
critical situations, hard to recreate in analog surroundings but 
also of the fact that any digital training system also allows 
for the collection of individual in-game metrics (e.g., performance 
progression or computer mouse/keyboard usage) upon which 
learning analytics can be applied (Freire et al., 2016). Measures 
such as memory and learning outcomes may directly be  used 
for an adjustment of difficulty levels of the learning environment. 
However, these outcome measures are usually only available 
after a particular task has been completed. In contrast, estimations 
of players’ cognitive or emotional states based on in-game 
metrics (Nebel and Ninaus, 2019), might be  used to adapt 
systems to increase training effectiveness, performance, and 
motivation. Among different affective and cognitive components, 
cognitive load seems to be  particularly interesting as it is 
considered to reflect the degree to which available cognitive 
resources are engaged in the task at hand (Babiloni, 2019). 
As Gerjets et al. (2014) pointed out, the actual level of cognitive 
load is relevant in a variety of realistic settings, such as adaptive 
learning environments, where optimal learning content is 
characterized by an intermediate level of cognitive load. The 
researcher showed that the learners’ cognitive load while solving 
complex realistic tasks can be  classified by analyzing 
electroencephalography (EEG) data using machine learning 
algorithms. Moreover, previous results indicated that adaptations 
based on measured cognitive load can lead to significant learning 
improvements comparable to effects of failure-based adaptations, 
even when a generalized prediction model without user-specific 
calibration is used (Walter et  al., 2017).

In the current study, we  used a serious simulation game 
for training emergency personnel with the aim to assess 
participants’ cognitive load by in-game metrics using a theory-
driven approach. Below we provide a brief overview of cognitive 
load and its measurement methods. This is followed by a more 
detailed description of the time-based resource-shared (TBRS) 
model of Barrouillet et al. (2004), which provides the theoretical 
foundation for our approach on in-game metrics measuring 
cognitive load before we  describe the details of the current 
study and hypotheses.

Cognitive Load and Adaptation to 
Cognitive Load
The concept of cognitive load goes back to the finding that 
working memory capacity is limited to approx. Seven chunks 
of information (Miller, 1956), and thus cognitive resources, 
in general, are limited. According to the definition of  
Paas and Van Merriënboer (1994), cognitive load is a 
multidimensional construct and represents demands that a 
particular task imposes on the cognitive system. While this 
definition offers a good initial idea of the construct, the 
theoretical details of how cognitive load should be precisely 

conceptualized are still under discussion. Thus, even though 
the research on cognitive load has a long history (Linton et  al., 
1978; Welford, 1978; Sheridan and Simpson, 1979; Eggemeier 
et  al., 1985; Meshkati, 1988; Sweller et  al., 1998; Barrouillet 
et  al., 2004) it’s still a scientifically vibrant field of interest given 
its crucial importance for everyday life. As noted by Babiloni 
(2019) in his recent review on the topic, cognitive load can 
be  characterized by a complex interplay between different task 
demands and a variety of mental processes such as alertness, 
vigilance, fatigue, etc., and thus represents a result of a complex 
interaction of different aspects. That is, cognitive load is a dynamic 
variable that may change rapidly during task processing. 
Nevertheless, three general assumptions regarding the construct 
of cognitive load can be derived from the literature (cf. Babiloni, 
2019). First, human cognitive and attentional resources are limited. 
Second, different tasks can require different cognitive resources 
to varying degrees. And third, different individuals may experience 
different levels of cognitive load when conducting a task even 
when achieving the same performance level on it.

Ample evidence emphasizes the importance of cognitive 
load in our everyday life. For instance, cognitive load plays 
a crucial role in performing everyday activities such as learning/
education (Ruiz et  al., 2010), car driving (Kohlmorgen et  al., 
2007; Hancock et  al., 2012), rail industry (Fan and Smith, 
2017), air force (Hancock, 1989), office work (Smith-Jackson 
and Klein, 2009), and medicine (Yurko et  al., 2010). Thus, 
accurately measuring cognitive load seems of considerable 
importance for a better understanding of the fluctuations in 
human performance.

According to an influential theoretical account, the 
relationship between cognitive load and performance is 
non-linear and can be  described following an “inverted-U” 
shaped function (Veltman and Jansen, 2005; Babiloni, 2019), 
see also Yerkes and Dodson (1908). Importantly, the general 
idea of this “inverted-U” shaped relationship is also closely 
related to the concept of “flow” proposed by Csikszentmihalyi 
(1987). Flow is described as a positive emotional and cognitive 
state (Kiili et al., 2018) of optimal concentration and absorption. 
The state of flow is achieved when there is a good balance 
between the demands of a given task and the perceived skills 
and resources of an individual to solve the task. That is, a 
given task should not be too difficult (i.e., cognitive overload) 
or too easy (i.e., cognitive underload and boredom) to elicit 
a flow state allowing for optimal performance. Consequently, 
optimal learning content should be  moderately challenging 
but should neither induce cognitive over- nor underload. The 
very same consideration is also reflected in classical theories 
of instructional design. So moderately challenging optimal 
training state corresponds to the “zone of proximal development” 
(cf. Vygotsky, 1980) and “amount of invested mental effort” 
(cf. Salomon, 1984).

Empirical evidence substantiated this theorized relationship 
between cognitive load and performance. For instance, Cummings 
and Nehme (2009) evaluated the relationship between cognitive 
load and performance of operators supervising multiple unmanned 
vehicles during a simulation of a military mission. In a series 
of two experiments, they showed that the addition of non-linear 
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parabolic components into their performance prediction model 
improved its predictive power significantly. This demonstrated 
the non-linear character of this relationship and indicates that 
individuals perform best at medium levels of cognitive load 
(e.g., Anderson, 1994; Watters et  al., 1997; Montani et  al., 
2020). These results generalize to educational environments as 
well as serious games and reflecting that to achieve the best 
learning outcomes learners should be  kept in an intermediate 
range of cognitive load where they are not bored (Pekrun 
et  al., 2010) but also not overstrained (Niederhauser et  al., 2000; 
Chang et  al., 2018; Geng and Yamada, 2020).

In this way, it becomes clear that an ideal learning environment 
should not only be tailored to the specific needs of the learners 
(Gerjets and Hesse, 2004; Richards et  al., 2007), for instance 
distinguishing between different expertise levels (cf. “expertise 
reversal effect” by Kalyuga, 2007). But also needs to consider 
that cognitive load is a dynamic variable that depends on 
different cognitive processes and may change during task 
accomplishment. Therefore, in order to keep learners within 
an optimal intermediate range of cognitive load, such systems 
should be  able to identify undesirable states of under- and 
overload in real-time and adapt an ongoing task accordingly. 
In this way, performance and learning outcomes might 
be  optimized.

Empirical evidence suggests that such online adaptation is 
indeed practicable (Gerjets et  al., 2014; Appel et  al., 2019) 
and can improve performance. For instance, Kohlmorgen et al. 
(2007) examined whether an adaptive reduction of cognitive 
load would lead to improved performance in a real-world 
driving task. Using EEG they were able to detect drivers’ 
cognitive overload and to adapt to it accordingly by making 
the task easier. In turn, this led to improved driving performance. 
Similarly, Yuksel et  al. (2016) reported better performance as 
a result of adapting task difficulty to cognitive load. They used 
near-infrared spectroscopy (NIRS) to detect states of cognitive 
underload in pianists during a musical learning task and 
increased difficulty of the respective lessons accordingly. 
Moreover, Walter et al. (2017) developed a learning environment 
that adapted task difficulty based on EEG recordings reflecting 
the cognitive load of learners. Optimal cognitive load was 
deduced from EEG data and was not individually calibrated. 
Nonetheless, this system led to learning outcomes similar to 
that observed for error-based adaptation.

These examples indicate the growing popularity of this 
approach and its importance for future studies. However, they 
also point to the diversity of measurement techniques in this 
field. The following section introduces and classifies different 
ways of measuring cognitive load.

Measurement of Cognitive Load
Cognitive load assessment techniques that might be  used to 
guide adaptations to cognitive load should be able to respond 
sensitively to variations in cognitive demands of the task at 
hand or interaction with learning systems without causing 
external disturbances to performance on the primary task 
(Orru and Longo, 2018). The literature distinguishes between 
four main categories of cognitive load measurement techniques: 

subjective measures, performance measures, behavioral 
measures, and physiological measures (Johannsen, 1979; 
Eggemeier et  al., 1991; Scerbo, 1996; Brünken et  al., 2010).

Subjective Measures
Subjective measurements are based on the observation that 
people are able to interpret and adequately describe their 
experienced cognitive load during a particular task (Gopher 
and Braune, 1984). These self-reported descriptions are collected 
using questionnaires such as SWAT (Reid and Nygren, 1988) 
and NASA-TLX (Hart and Staveland, 1988), which require 
participants to rate their experiences using predefined scales 
immediately after completing a specific task. Subjective measures 
are easy to collect, they are inexpensive and they usually provide 
consistent results (O’Donnell and Eggemeier, 1986). Therefore, 
these measures are widely accepted and have been thoroughly 
evaluated. Despite their advantages, subjective measurements 
have also a number of limitations. The main issue is that 
responding to a questionnaire interrupts task execution and 
thus can only be  carried out after the task has already been 
completed, which has some potentially confounding 
consequences. Firstly, a retrospective view of an experienced 
cognitive load may be  distorted by fading memory. Secondly, 
experienced failures (or successes) can bias the post hoc perception 
of cognitive load (Hancock, 1989). Thirdly, only a rough 
summary of the experience can be  grasped in this way, which 
is not capable of tracking fine variations of cognitive load 
over time. And finally, self-reported measurements are only 
able to reflect conscious aspects of the cognitive load experienced 
during task accomplishment.

Performance Measures
Performance-based approaches evaluate variations in human 
performance. Based on empirical evidence, performance should 
decrease in case of cognitive overload (Yerkes and Dodson, 
1908; Veltman and Jansen, 2005; Babiloni, 2019). Accordingly, 
a drop of performance may help to detect cognitive overload. 
As a main objective of cognitive load measurement is the 
prediction of task performance, this cluster of measurement 
techniques appears intuitively to be the most obvious and direct 
to apply. Unfortunately, it cannot be  determined whether 
observed variations in performance have actually occurred due 
to changes in cognitive load or due to other relevant factors 
such as arousal or motivation (Brünken et al., 2010). Therefore, 
these measures yield no independent assessments of cognitive 
load for performance prediction. Moreover, in many cases it 
is not possible to obtain performance data during actual task 
completion, so that performance-based measurements can very 
often only be  calculated and analyzed post-factum, rendering 
them useless for prediction or adaptation.

Behavioral Measures
Behavioral measures rely on the analysis of differences in 
interaction behavior during task processing, such as speech 
and voice patterns (Berthold and Jameson, 1999; Ruiz et al., 2010; 
Magnusdottir et  al., 2017) or differences in the usage of input 
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modalities such as keyboard or mouse (Ikehara and Crosby, 
2005; Lim et al., 2014). These measures are usually unobtrusive 
and do not distract participants from the task at hand. Moreover, 
they do not require additional equipment and are usually 
inexpensive. Behavioral measures potentially allow for a 
continuous online measurement of cognitive states during task 
execution. However, identifying in the data related to cognitive 
load behavioral patterns is by no means a trivial endeavor, as 
these behavioral patterns might also be  influenced by other 
factors such as emotions or stress.

Physiological Measures
Physiological measures of cognitive load rely on detecting 
physiological changes associated with cognitive states (Johannsen, 
1979). Depending on the type of signal to be  recorded, they 
can be more or less obtrusive. While sensors for electrodermal 
activity (EDA) or heart rate variability (HRV) can be  rather 
discreet, EEG or functional magnetic resonance imaging (fMRI) 
are less practical or even impracticable in real-life situations 
because of their complexity, immobility, and obtrusiveness (for 
an overview see Ninaus et  al., 2013). One major advantage 
of physiological measures is that they allow for continuous 
online recording. However, physiological measures require special 
equipment, cause additional costs, and the detection of cognitive 
states based on physiological signals is also not a trivial task 
(Gerjets et  al., 2014; Appel et  al., 2019). Because physiological 
processes are not only driven by cognitive states but can also 
be  influenced by a variety of other factors, such as motor 
actions or emotions, it is not always unambiguously clear 
whether a change in a physiological signal was actually caused 
by the targeted cognitive state (Kramer, 1991). Moreover, 
physiological signals often require user-specific calibrations due 
to the signals’ high inter-subject variability.

Conclusion
While there seem to be  numerous methods for measuring 
cognitive load, a perfect single assessment approach capable 
of capturing all relevant facets of cognitive load, preferably in 
real-time, simply does not exist. In recent years, a trend towards 
the development of complex multimodal measurement systems 
to capture cognitive load can be observed (Ikehara and Crosby, 
2005; Herff et  al., 2014; Zhou et  al., 2020). However, due to 
their inherent complexity, multimodal approaches seem to 
be  primarily useful for extensive online data acquisition in 
the laboratory. In real-world scenarios outside the laboratory, 
such as gameplay, it seems reasonable to focus on metrics 
that on the one hand reflect users’ behavior and performance 
and on the other hand can be easily collected during gameplay 
without requiring additional equipment. In view of future 
developments, such simple but reliable metrics might also 
become part of more complex monitoring systems. However, 
as argued above, changes in users’ behavior and performance 
do not necessarily directly reflect changes in cognitive load, 
so that a solid theoretical framework for the development of 
such metrics will be  needed. In this paper, we  will rely on 
the TBRS model described below to provide a suitable theoretical 
basis for assessing cognitive load based on behavioral and 

performance measures in time-critical multitasking environments 
requiring simultaneous execution of several tasks under severe 
time constraints.

The Time-Based Resource-Sharing Model
Time-based resource-shared (for a comprehensive overview of 
the model and its development history see Barrouillet et  al., 
2004; Barrouillet and Camos, 2015) describes working memory 
as the core system of cognition dedicated to the processing 
and storage of information, whereby both storage and processing 
components of working memory are required for the execution 
of a cognitive task. This idea can be  illustrated by a simple 
example. Considering an arithmetic task, such as two-digit 
multiplication, the processing component would be  occupied 
with arithmetic operations, while the storage component would 
be  needed to memorize intermediate results. Similarly, in a 
reading task, one needs to remember the context of what is 
currently being read as well as to decode a sequence of words 
to understand the meaning of a new sentence.

From these examples, it seems intuitively clear that processing 
components of working memory requires attention, but at the 
same time one must also somehow “refresh” the intermediate 
results of processing by means of intentionally thinking about 
them. That means that attention must be  shared between both 
components of working memory. This idea is responsible for 
the second part of the models’ name as TBRS assumes that 
attention is a limited resource that must be  shared in a way 
that only one central process such as storage or processing of 
information can be  performed at a time. As soon as attention 
is directed to the processing component (e.g., to an arithmetic 
operation), the stored information (e.g., an intermediate result 
from a previous calculation step) will begin to fade from 
memory. This so-called decay of memory traces is progressing 
in the time during which attention is captured due to the 
ongoing calculation process. However, TBRS postulates that 
simultaneous task execution can be mimicked by rapid switches 
of attention between to-be-performed subtasks – potentially 
interrupting the processing component of the current task (i.e., 
one may briefly interrupt a simple arithmetic operation to 
remind oneself of the intermediate result). This leads to a 
complex and time-critical interplay between executed processing 
and storage activities yielding that attention sharing happens 
in a time-based manner, which explains the full name of the 
TBRS model: TBRS model.

Coming back to the example of a two-digit multiplication, 
what if a subject is perhaps very young and not very skilled 
in this type of task so that the arithmetic operation captures 
all of his attention without providing the storage process with 
any chance of refreshing intermediate results? Probably, after 
some time these results cannot be  retrieved from memory 
anymore so that further calculations would be  rendered 
impossible, yielding a drop in performance. In the contrary, 
for a very skilled subject, the arithmetic operations might 
be carried out in a more automated way requiring less attention, 
so that it would not be difficult to “refresh” intermediate results 
and show optimal performance. Taking these considerations 
into account, TBRS predicts that cognitive load and thus 
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performance will depend on the proportion of time during 
which attention is captured in such a way that the storage of 
information is disturbed.

As Barrouillet et  al. (2004) emphasizes, it is unfortunately 
not trivial to determine the exact time during which attention 
is captured by processing demands. Moreover, as the model 
was developed and evaluated mainly for working-memory 
span tasks (Daneman and Carpenter, 1980; Case et  al., 1982), 
it’s further evaluation and extension to other executive functions 
required the design of specific experimental paradigms, allowing 
for defining certain retention and storage intervals at a 
predefined pace (Lépine et  al., 2005; Barrouillet et  al., 2007; 
Camos et  al., 2007; Liefooghe et  al., 2008; Portrat, 2008).

As such fine-tuned and hard-paced settings are hardly present 
in everyday life, two questions arise: Can the model also 
be  applied to more realistic setups, and if so, how should 
such setups look like. A real-life situation that comes closest 
to a hard-paced working-memory span task may be a computer-
based test with restricted execution time for particular subtasks. 
Another situation with inherited pacing could be a time-critical 
management situation in which the pace is determined indirectly 
due to the reaction and execution time of available resources. 
However, as in both described situations, separation into subtasks 
would be  more difficult than in a working memory span task, 
it remains unclear how the model and its prediction of the 
resulting cognitive load can be used in more general situations, 
such as serious games, where the pace is only indirectly 
determined while time pressure is still relevant. In this study, 
we  aimed to address this question by proposing an in-game 
metric for measuring cognitive load based on the theoretical 
framework of TBRS.

The Present Study
Determining cognitive load during a serious game might 
be  crucial for performance predictions as well as for providing 
adaptations to improve learning outcomes. In this study, we aimed 
at evaluating a practicable and parsimonious solution for 
cognitive load detection in serious games based on TBRS with 
regard to its reliability and potential suitability for online 
assessments and evaluations. To validate our approach we used 
commonly applied subjective reports of cognitive load as assessed 
by the NASA-TLX (Hart and Staveland, 1988). We  focused 
on the use of in-game metrics based on users’ behavior and 
performance as sources of information because these measures 
can be easily collected during gaming without extra equipment 
and provide relevant empirical evidence in terms of the TBRS 
model Barrouillet et  al. (2004). The validity of the proposed 
metrics for predicting cognitive load was evaluated in terms 
of their relation to the cognitive load as reported in the 
NASA-TLX and to the overall gaming performance. To implement 
sufficient variance in cognitive load we  used an adaptation of 
a complex serious game simulating an emergency situation 
with different scenarios and levels of difficulty.

In particular, we  pursued the following hypotheses. First, 
proposed measures of cognitive load based on in-game metrics 
as well as subjective self-report should validly reflect differences 
between various scenarios and levels of difficulty as a 

manipulation check. We  expected that cognitive load should 
be  higher in more difficult scenarios and levels as indicated 
by both in-game metrics as well as subjective ratings. Second, 
on an individual level, we  expected that cognitive load as 
indicated by the in-game metrics used should be  associated 
significantly with participants’ subjective rating of their cognitive 
load as measured by the NASA-TLX, as well as with their 
overall gaming performance. Third, we  hypothesized that the 
in-game metrics developed should allow for the prediction of 
overall gaming performance comparably well as subjective 
ratings provided by the NASA-TLX.

METHODS

This study focused on measuring cognitive load with behavioral 
in-game metrics. It was carried out as part of a larger project 
that included several other physiological measures such as 
functional NIRS (fNIRS), cardiac measurements, galvanic skin 
response, and eye-tracking (cf. Appel et  al., 2019). As the aim 
of the current study was the evaluation of a simple and 
practicable parsimonious solution for cognitive load detection 
in serious games, the current analyses solely focused on behavioral 
and performance measures.

Participants
Forty-seven volunteers (33 females, 14 males) aged between 
15 and 49  years (M  =  24.6; SD  =  6.4) participated in the 
study with most of them being students (95.7%). Informed 
consent was obtained from all participants or their parents 
when under the age of 18 (one participant). All participants 
were right-handed, fluent in German, recruited via an online 
database, and compensated with 8  EUR for completing the 
study. The study was approved by the local ethic committee 
and a written informed consent was obtained. Participants 
reported no neurological, psychiatric, cardiovascular disorders, 
and did not take any psychotropic medications.

Task
Participants played a customized version of the serious game 
Emergency (Promotion Software GmbH, 1999), which provides 
simulations of different emergency situations. The game 
comprised different scenarios with three levels of difficulty 
each. During gaming, participants’ task was to coordinate six 
types of emergency personnel, such as paramedics, emergency 
doctors, firefighters, ambulances, as well as fire- and ladder 
trucks, to rescue victims and extinguish fires.

The game was played from an isometric view where the 
viewing angle is shifted, creating a three-dimensional effect 
and showing some details of the environment that are not 
visible when viewed directly from above or from the side (see 
Figure 1). Participants had to choose an appropriate command 
from an action menu by clicking on an available emergency 
force, and then select a target of the requested action by 
clicking on the desired object. For instance, participants clicked 
on an emergency doctor who would then be  ordered to serve 
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a respective victim, or on a firefighter who would be  ordered 
to put out a fire or to free a person trapped in a car. Interaction 
with the game was realized using a conventional computer 
mouse only.

After getting familiar with the game by playing an introductory 
tutorial and a training scenario, participants completed two 
target scenarios: Fire and Train Crash. Each scenario had to 
be  played with three levels of difficulty: easy, medium, and 
hard. The difficulty levels and the scenarios differed with regard 
to the number of tasks to be  accomplished and the number 
of personnel to be  coordinated within a given period of time. 
At the beginning of each level, the number of tasks was equal 
for all players. Whereas, the number of victims was held 
constant, which means that no new victims were added during 
a game, the number of fires depended very much on the 
performance of players and therefore could grow rapidly (i.e., 
by fires spreading to adjacent buildings or objects if not 
extinguished). As the increasing task-density across levels and 
scenarios required not only more actions but also better 
coordination and prioritization, we expected that cognitive load 
of participants would increase with increasing difficulty of levels 
and scenarios. Additionally, there was a time limit for each 
level and scenario to impose time pressure onto participants. 
A summary of all parameters describing the task difficulty of 
each scenario and each level can be  found in Table  1.

Training Scenario
The learning sequence involved a car accident at an intersection. 
The players’ task was to free all persons trapped in the crashed 

vehicles, treat them for health issues and transport them to 
the hospital. The time limit for this scenario was set to 5  min.

Fire
In this scenario, participants had to fight a burning building 
block. In addition, some residents had to be  freed from the 
burning house, treated for health issues, and transported to 
the hospital. The number of fires varied depending on the 
players’ performance in extinguishing fires and could eventually 
increase rapidly. The time limit was set to 7.5  min.

Train Crash
This scenario depicted a train crashing into a building, causing 
a quick-spreading fire. The task was to free trapped passengers 
from the train, treat them for health issues, and then transport 
them to the hospital. At the same time, numerous fires had 
to be  extinguished. In this scenario, the number of fires also 
varied depending on the players’ extinguishing performance. 
An additional difficulty was to protect emergency doctors 
working near a fire. The time limit for this scenario was set 
to 10  min.

Measures
In the current study, cognitive load was measured by means 
of two methods. The objective estimation of cognitive load 
was performed using behavioral in-game metrics, which were 
defined in line with the TBRS model by Barrouillet et al. (2004). 
For the validation of these metrics, we  acquired a subset of 

FIGURE 1 | An example scene from scenario Fire.
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the NASA-TLX questionnaire as a widely accepted and 
thoroughly evaluated subjective instrument (i.e., mental demand, 
time demand, and effort). The details for both assessment 
strategies are provided below. Gaming performance was reflected 
by a binary indicator of whether the game was completed 
successfully within a given time limit or not. Additional 
personal information on participants such as age, gaming 
experience, and sex were collected prior to the experiment 
using a self-report questionnaire. To measure gaming experience, 
we asked participants to indicate how often they play (online) 
digital games on a 5-point Likert scale (“never,” “several times 
a year,” “several times a month,” “several times a week,” 
“every day”).

Behavioral In-Game Metrics
According to the TBRS Model (Barrouillet et al., 2004), working 
memory represents the core system of cognition dedicated to 
the processing and storage of information, whereby both storage 
and processing components are normally required for the 
execution of a cognitive task. In situations with pre-defined 
pace, cognitive load can be  estimated as a relation between 
the time during which participants’ attention is captured by 
the processing of information and the total time available. 
This model was well evaluated on modified span tasks with 
a pre-defined pace (Barrouillet and Camos, 2015). In the current 
study, we applied this metric to a more general situation where 
the pace is only indirectly determined by the nature of the 
task and inherent time pressure.

The same task can capture attention to varying degrees in 
different persons, depending on their cognitive resources, which 
may differ, e.g., through experience or training (Case et  al., 
1982; Babiloni, 2019). This means that under time pressure, 
a person experiencing lower demands on her/his attentional 
resources for the task-processing component may deliberately 
increase her/his processing speed (task density) without affecting 
his/her memory component, whereas a person experiencing 
higher attentional demands would not be  able to do so. 
Accordingly, when these two hypothetical persons were presented 
with a block comprising a certain number of tasks under time 
pressure (action block), one would observe two activity phases. 
In a first phase (burst) one would see both persons performing 
the presented tasks at a maximum speed. In a second phase 
(idle), they would have to wait until the end of the current 
action block until the subsequent action block begins. During 
the idle phase, both persons can only observe how their actions 
during the burst played out.

Assuming that both persons have operated at their limits, 
their cognitive load in the burst phase would be  equivalent, 
that is, at maximum. In contrast, the duration of the burst 
phase would be  different. Therefore, the cognitive load of the 
entire action block could be  estimated by the relation of the 
duration of the burst phase to the total duration of the action 
block (see Equation 1). In terms of the TBRS model, this 
implies that the person experiencing lower demands has more 
temporal processing resources left and might therefore also 
be  able to solve more difficult tasks whereas the other person 
has lesser resources left for time-based sharing.

 
temporal action density decay TADD burst

burst idle
Equatio   ( )=

+
nn1( )

We transferred these assumptions to the situation of the 
game or gameplay, respectively. As a result, the following three 
in-game metrics were derived.

Normalized Gaming Time
The most obvious, but also the most basic option is to work 
with time-limited levels and to consider the entire level as an 
action block, while the burst phase would correspond to the 
factual gaming time and the idle phase to the time remaining 
until the end of the level. Based on this consideration, the 
total cognitive load for the entire level could be  estimated. 
As this metric equals one for persons who failed at a game 
level and has a potential range between 0 and 1 for those 
who complete the respective level, it directly represents success 
in the game or level, respectively. Therefore, it can be  seen 
as a performance in-game metric, which however can only 
be calculated retrospectively once the level has been completed.

TADD
A more fine-grained option would be  to take a closer look 
at the course of the game action and to try identifying smaller 
action blocks within each level. This can be  done by means 
of the following rationale: In the game, participants have to 
coordinate a set of tasks to be  accomplished by a set of 

TABLE 1 | Overview over the initial game parameters.

Scenario/Game 
parameters

Difficulty

Easy Medium Hard

  Scenario: Fire

 Time limit (s) 450 450 450
 Tasks – total 8+ 13+ 18+
  Victims 2 3 4
  Fires 4+ 7+ 10+
  Ladder rescues 2 3 4
 Resources – total 9 12 15
  Doctors 1 2 2
  Paramedics 1 2 2
  Fire fighters 4 4 6
  Fire trucks 2 3 4
  Ladder trucks 1 1 1

  Scenario: Train crash

 Time limit (s) 600 600 600
 Tasks – total 20+ 30+ 40+
  Victims 10 15 20
  Cars to cut 7 10 13
  Fires 3+ 5+ 7+
 Resources – total 10 14 18
  Doctors 2 3 4
  Paramedics 3 5 6
  Fire fighters 4 4 6
  Fire trucks 1 2 2

The number of fires depended on players’ performance and might grow. These cases 
are marked by the “+” sign.
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emergency personnel by prioritizing tasks and resources as 
quickly as possible (burst phase). When no more resources 
are available (i.e., when all emergency personnel are distributed 
to existing tasks and busy), an inevitable break occurs (idle 
phase). This idle phase lasts until the first emergency personnel 
are ready to take up a new task (beginning of the burst phase 
of the new action block). This theoretical approach can be applied 
to a range of different learning scenarios that can be  found 
in (game-based) simulations where tasks have to be prioritized 
and teams/resources to be  managed, e.g., utilizing elements of 
(real-time) strategy games for training managerial skills (Simons 
et  al., 2020), computer programming (Muratet et  al., 2009), 
or mathematics problem solving (Hernández-Sabaté et al., 2016).

Initial TADD. For predictive (and adaptive) purposes, it 
would be ideal to base cognitive-load estimations on very early 
action blocks within each level of a game. Therefore, we defined 
the TADD calculated for the very first action block of each 
game level as the initial TADD. The initial TADD comprises 
the time from the first user action until the first assigned 
emergency personnel becomes free again. The advantage of 
this measure is that it can be calculated during the first minutes 
of the gameplay and thus be used for near-real-time predictions 
and adaptations.

Mean TADD. In addition to the initial TADD, we  also 
calculated a mean TADD, reflecting the average of TADD for 
all identified action blocks per level. This metric can, of course, 
also be  calculated only retrospectively and was used mainly 
for an additional validation of initial TADD.

NASA-TLX
The NASA-TLX (Hart and Staveland, 1988) is a multidimensional 
instrument for the assessment of subjective workload, with 
good psychometric properties and a very high degree of 
acceptance in the research community (Hart, 2006). It consists 
of six items, estimating different aspects of subjective workload 
from 0 to 100 points with steps of five points, resulting in a 
21-level scale. The dimensions of the NASA-TLX correspond 
to various theories that distinguish between physical, mental, 
and emotional demands imposed on an operator (Hart, 2006). 
For the current study, we  relied on a subset of these items 
to specifically assess the mental facet of workload, i.e., mental 
demand, temporal demand, and effort. Using various subsets 
of items is quite common when investigating specific facets 
of workload (Temple et al., 1997; Haerle et al., 2013). Moreover, 
focusing on specific items allows for a time-efficient assessment 
of participants’ workload, which was particularly important 
for the current study as subjective workload was assessed after 
each level of difficulty for each scenario to be  able to associate 
behavioral and subjective indices of cognitive load for the 
different scenarios and difficulty levels.

Experiment Procedure
The study took place in a quiet laboratory under constant 
light conditions. The serious game was presented on a notebook 
with 16″ screen providing a 1,920 × 1,080 resolution  
(see Figure  2). All instructions were presented in German.  

The study was implemented in a within-subject design, which 
means that each participant completed all scenarios and levels. 
The game started with an introductory tutorial and a training 
scenario directly after welcoming participants and collecting 
demographic data. Each game level was followed by a brief 
assessment of subjective cognitive state through an adapted 
NASA-TLX survey.

RESULTS

Statistical Analyses
For statistical analyses, we  used R (R Core Team, 2020) with 
the lme4 package (Bates et  al., 2014) to perform generalized 
linear mixed-effects analyses as well as the multcomp, emmeans 
packages (Hothorn et al., 2008; Lenth et al., 2019) to conduct 
the post hoc comparisons described below. The p-values were 
obtained by likelihood ratio tests of the full model with the 
effect in question tested against a reduced model without 
the effect in question and were specified in further model 
analyses. Tukeys’ adjustment method was used for multiple 
comparisons. We  used the report package (Makowski and 
Lüdecke, 2019) to support the description of the results. 
Standardized parameters were obtained by fitting a model 
on a standardized version of the dataset. Effect sizes were 
labeled following the recommendations by Funder and Ozer 
(2019) and (Chen et  al., 2010) for linear and generalized 
linear models, respectively. No obvious deviations from 
homoscedasticity or normality were revealed using visual 
inspection of residual plots.

The final composition of tested models was determined by 
pairwise likelihood ratio tests. Thereby, the null model, which 
only contained test subjects as a random factor, was stepwise 
extended by fixed effects for scenario, difficulty, gaming 
experience, age, and gender. According to this procedure 
consideration of gaming experience, age and gender did not 
improve model fit significantly beyond the model only 
incorporating fixed effects of scenario and difficulty. For this 
reason gaming experience, age and gender were not considered 
in further analyses. In all models, we  considered the effect of 
the two scenarios as random.1 because we  were primarily 
interested in relations between in-game metrics, subjective 
ratings, and difficulty levels within scenarios, regardless of the 
gaming scenario (for an overview of the composition and main 
outcomes of mixed-effect analyses see Table  2).

For an overview of correlations among variables assessed 
in the current study, please see Table  3. Prediction of game 
performance was conducted using the Python (Van Rossum 
and Drake, 2009) module scikit-learn (Pedregosa et  al., 2011). 
In particular, we  used linear discriminant analysis with Leave-
One-Subject-Out-Cross-Validation to train and test the models 
and permutation tests for model comparisons.

1 Two models did not converge with participants and scenarios as random 
effects. Therefore, we  decided to run models with participants as the only 
random effect, considering the scenario as a fixed factor instead (see Table  2).
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Manipulation Check
Subjective Ratings
To test whether the experimentally induced levels of task 
difficulty of the game are reflected in subjective workload 
measurements we ran linear mixed-effect models with the fixed 
factor difficulty and random intercepts for participants and 
scenarios on the relationship between selected items of 
NASA-TLX (mental demand, time demand, effort) and levels 
of difficulty (easy, medium, hard).

Mental Demand – Difficulty
Linear mixed-effect analysis revealed a significant main effect 
of difficulty [χ2(2)  =  79.87, p  <  0.001] on the subjective rating 
of mental demand. The models’ total explanatory power was 
substantial (conditional R2  =  0.82, marginal R2  =  0.06). Within 
this model perceived mental demand was significantly higher 
for medium difficulty levels compared to low difficulty levels, 
this effect can be  considered as small (beta  =  7.23, SE  =  1.42, 
std. beta  =  0.32, p  <  0.001; see Figure  3); also, perceived 
mental demand was significantly higher for high difficulty levels 
compared to low difficulty levels. This effect can be  considered 
as medium (beta = 13.83, SE = 1.42, std. beta = 0.61, p < 0.001; 
see Figure 3). Post hoc comparisons showed significant differences 
for all combinations of difficulty levels. Participants rated their 
mental demand higher during levels with higher experimentally 
induced task difficulty.

Time Demand – Difficulty
Linear mixed-effect analysis identified a significant main effect 
of difficulty on the subjective rating of time demand 
[χ2(2)  =  140.48, p  <  0.001]. The models’ total explanatory 
power was substantial (conditional R2 = 0.66, marginal R2 = 0.23). 
Perceived time demand was significantly higher for levels with 
medium difficulty compared to levels with low difficulty, this 
effect can be  considered large (beta  =  19.84, SE  =  2.36, std. 
beta  =  0.71, p  <  0.001; see Figure  4); perceived time demand 
was significantly higher for hard difficulty levels compared to 
low difficulty levels, this effect can be  considered very large 
(beta = 32.45, SE = 2.36, std. beta = 1.17, p < 0.001; see Figure 4). 

FIGURE 2 | Experimental setup.

TABLE 2 | Overview of the mixed model analyses performed.

Outcome Effects p

Fixed Random 
intercepts

  Manipulation check

NASA-TLX Mental demand Difficulty Participant, 
scenario

<0.001

Time demand Difficulty Participant, 
scenario

<0.001

Effort Difficulty Participant, 
scenario

<0.001

Performance Failure/success Difficulty Participant, 
scenario

<0.001

  In-game metrics vs. subjective cognitive workload (NASA-TLX)

Normalized 
gaming time 
(NGT)

Mental demand NGT Participant, 
scenario

<0.001

Time demand NGT, scenario Participant <0.001
Effort Normed GT Participant, 

scenario
<0.001

Initial TADD Mental demand Initial TADD Participant, 
scenario

<0.001

Time demand Initial TADD Participant, 
scenario

<0.001

Effort Initial TADD Participant, 
scenario

<0.001

Mean TADD Mental demand Mean TADD Participant, 
scenario

0.001

Time demand Mean TADD Participant, 
scenario

0.003

Effort Mean TADD Participant, 
scenario

<0.001

  In-game metrics vs. gaming performance

Failure/success Initial TADD Participant, 
scenario

<0.001

Failure/success Mean TADD, 
scenario

Participant <0.001

Gaming performance was represented by the binary indicator of whether the game was 
completed successfully, i.e., all fires extinguish and all injured persons transported to 
the hospital (success) or not (failure). The p-values were obtained by likelihood ratio 
tests of the full model with the fixed effect in question against the reduced model 
without the fixed effect in question.
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Post hoc comparisons showed significant differences for all 
combinations of difficulty levels. Participants rated their time 
demand higher during levels with higher experimentally induced 
task difficulty.

Effort – Difficulty
Linear mixed-effect analysis showed a significant main effect 
of difficulty on the subjective rating of effort [χ2(2)  =  105.97, 
p < 0.001]. The models’ total explanatory power was substantial 
(conditional R2 = 0.73, marginal R2 = 0.13). Within this model 
perceived mental effort was higher for medium difficulty levels 
compared to low difficulty levels, this effect can be  considered 
as medium and significant (beta  =  13.24, SE  =  1.84, std. 
beta = 0.55, p < 0.001; see Figure 5), whereas perceived mental 
effort was higher for hard difficulty levels compared to low 
difficulty levels, this effect can be  considered as very large 
and significant (beta  =  21.01, SE  =  1.84, std. beta  =  0.87, 

p < 0.001; see Figure 5). Post hoc comparisons showed significant 
differences for all combinations of difficulty levels. Participants 
rated their effort higher during levels with higher experimentally 
induced task difficulty.

Performance – Difficulty
To evaluate, whether the levels of task difficulty are also reflected 
in gaming performance we  fitted a logistic mixed-effect model 
on the relationship between the binary indicator of whether 
the game was completed successfully or not and the three 
difficulty levels. As we  were primarily interested in the effect 
of difficulty levels, we  considered difficulty as a fixed effect 
and added random intercepts for participants and scenarios. 
The generalized linear mixed-effect analysis revealed a significant 
main effect of difficulty [χ2(2) = 115.39, p < 0.001]. The models’ 
total explanatory power was substantial (conditional R2 = 0.67, 
marginal R2  =  0.49). Within this model we  found that gaming 

TABLE 3 | Correlations matrix of variables considered in the present study.

2 3 4 5 6 7 8 9 10 11

1. Difficulty −0.636** 0.265** 0.529** 0.397** 0.000 0.000 0.000 0.804** 0.455** 0.479**
2. Gaming success – −0.322** −0.590** −0.465** −0.226** −0.147 0.142 −0.807** −0.342** −0.439**

  NASA-TLX

3. Mental demand – 0.747** 0.900** 0.190* 0.122 −0.004 0.343** 0.139 0.185*
4. Time demand – 0.835** 0.128 0.087 −0.026 0.650** 0.254** 0.402**
5. Effort – 0.214* 0.147 −0.035 0.482** 0.201* 0.269**

  Covariates

6. Age – −0.053 −0.233** 0.176* 0.210* 0.171*
7. Sex – −0.182* 0.141 −0.055 −0.050
8. Gaming expertize – −0.129 −0.097 −0.135

  In-game metrics

9. NGT – 0.460** 0.507**
10. Mean TADD – 0.606**
11. Initial TADD –

*Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level.
Pearson 2-tailed correlations. The purpose of this summary is to give a first very general impression of the relations between the parameters, as presented values neither has been 
corrected for multiple comparisons, nor have repeated measurements been taken into account.

FIGURE 3 | Mental demand. Mean perceived mental demand for all levels of difficulty (easy, medium, hard) for each scenario (Fire, Train Crash). Error bars depict 
±2 SE, which corresponds to 95% CI.
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performance was poorer for medium difficulty levels compared 
to low difficulty levels, this effect can be  considered as large 
and significant (beta  =  −3.77, SE  =  0.72, std. beta  =  −3.77, 
p  <  0.001; see Figure  6); gaming performance was poorer for 
hard difficulty levels compared to low difficulty levels, this 
effect can be  considered as large and significant (beta  = −5.22, 
SE  =  0.78, std. beta  =  −5.2, p  <  0.001; see Figure  6). Post 
hoc comparisons also showed significant differences for all 
combinations of difficulty levels. Participants performed more 
poorly during levels with higher experimentally induced 
task difficulty.

Subjective Ratings vs. In-Game Metrics
To verify whether the calculated in-game metrics is able to 
predict the subjectively experienced cognitive load of participants 
we  ran a linear mixed-effect model separately for each metric 

and the NASA-TLX item. As we  were primarily interested in 
the relation between the in-game metrics and the subjective 
ratings regardless of the gaming scenario, we  defined in-game 
metrics as fixed factors and added random intercepts for 
participants and scenarios.

Mental Demand – Normalized Gaming Time
Linear mixed-effect analysis indicated a significant effect of 
normalized gaming time [NGT; χ2(1)  =  104.33, p  <  0.001] 
on self-reported mental demand. The models’ total explanatory 
power was substantial (conditional R2  =  0.83, marginal 
R2  =  0.10). Within this model, higher NGTs, i.e., participants 
who took longer to finish the level or even failed, was associated 
significantly with higher perceived mental demand, this effect 
can be  considered as small (beta  =  38.73, SE  =  3.38, std. 
beta  =  0.31, p  <  0.001).

FIGURE 4 | Time demand. Mean perceived time demand for all levels of difficulty (easy, medium, hard) for each scenario (Fire, Train Crash). Error bars depict ±2 
SE, which corresponds to 95% CI.

FIGURE 5 | Effort. Mean perceived effort for all levels of difficulty (easy, medium, hard) for each scenario (Fire, Train Crash). Error bars depict ±2 SE, which 
corresponds to 95% CI.
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Time Demand – Normalized Gaming Time
Linear mixed-effect analysis revealed a significant effect of NGT 
[χ2(1)  =  141.08, p  <  0.001] on self-reported time demand. The 
models’ total explanatory power was substantial (conditional 
R2  =  0.72, marginal R2  =  0.38). Within this model, we  found 
that higher NGTs, i.e., participants who took longer to finish 
a level or even failed, was significantly associated with higher 
perceived time demand, this effect can be considered as medium 
(beta  =  0.91, SE  =  5.59, std. beta  =  0.60, p  <  0.001); the effect 
of scenario was not significant (beta  =  1.16, SE  =  1.80, std. 
beta  =  0.04, p  =  0.517).

Effort – Normalized Gaming Time
Linear mixed-effect analysis showed a significant effect of 
NGT [χ2(1)  =  125.65, p  <  0.001] on self-reported mental 
demand. The models’ total explanatory power was substantial 
(conditional R2  =  0.73, marginal R2  =  0.19). Within this 
model, we  found that higher NGT, i.e., participants who took 
longer to finish the level or even failed, was significantly 
associated with higher perceived effort, this effect can 
be  considered as medium (beta  =  56.86, SE  =  4.42, std. 
beta  =  0.43, p  <  0.001).

Mental Demand – Initial TADD
Linear mixed-effect analysis revealed a significant effect of 
initial TADD [χ2(1)  =  13.74, p  <  0.001] on self-reported 
mental demand. The models’ total explanatory power was 
substantial (conditional R2 = 0.76, marginal R2 = 0.01). Within 
this model we found that higher initial TADD, i.e., participants 
who took longer to allocate the available personnel to the 
tasks to be done to during the first action block, was significantly 
related to higher perceived mental demand, this effect can 
be  considered as very small (beta  =  13.71, SE  =  3.64, std. 
beta  =  0.12, p  <  0.001).

Time Demand – Initial TADD
Linear mixed-effect analysis identified a significant effect of 
initial TADD [χ2(1)  =  31.31, p  <  0.001] on self-reported time 
demand. The models’ total explanatory power was substantial 
(conditional R2 = 0.45, marginal R2 = 0.07). Within this model 
we  found that higher initial TADD, i.e., participants who 
took longer to allocate the available personnel to the tasks 
to be  done to during the first action block, was associated 
with higher perceived time demand, this effect can 
be considered as small and significant (beta = 38.10, SE = 6.60, 
std. beta  =  0.27, p  <  0.001).

Effort – Initial TADD
Linear mixed-effect analysis revealed a significant effect of 
initial TADD [χ2(1)  =  22.88, p  <  0.001] on self-reported 
mental demand. The models’ total explanatory power was 
substantial (conditional R2 = 0.61, marginal R2 = 0.04). Within 
this model we found that higher initial TADD, i.e., participants 
who took longer to allocate the available personnel to the 
tasks to be done to during the first action block, was significantly 
associated with higher perceived effort, this effect can 
be  considered as very small (beta  =  23.89, SE  =  4.88, std. 
beta  =  0.30, p  <  0.001).

Mental Demand – Mean TADD
Linear mixed-effect analysis showed a significant effect of mean 
TADD [χ2(1)  =  11.93, p  <  0.001] on self-reported mental 
demand. The models’ total explanatory power was substantial 
(conditional R2 = 0.76, marginal R2 = 0.01). Within this model 
higher mean TADD, i.e., participants who in average took 
longer to allocate the available personnel to the tasks to 
be  done to during all defined action blocks, was significantly 
associated with higher perceived effort, was significantly linked 
to higher perceived mental demand, this effect can be considered 

FIGURE 6 | Performance in relation to the level of difficulty. Stacked histogram showing the percentage of successes/failures (i.e., whether the participants were 
able to rescue all victims and extinguish all fires within a defined time limit) for all levels of difficulty (easy, medium, hard) over both scenarios (Fire and Train Crash).
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as very small (beta  =  30.62, SE  =  8.73, std. beta  =  0.11, 
p  <  0.001).

Time Demand – Mean TADD
Linear mixed-effect analysis revealed a significant effect of 
mean TADD [χ2(1)  =  8.83, p  =  0.003] on self-reported time 
demand. The models’ total explanatory power was substantial 
(conditional R2  =  0.40, marginal R2  =  0.02). Within this 
model higher mean TADD, i.e., participants who in average 
took longer to allocate the available personnel to the tasks 
to be done to during all defined action blocks, was associated 
with higher perceived time demand, this effect can 
be  considered as very small and significant (beta  =  49.37, 
SE  =  16.38, std. beta  =  0.15, p  <  0.01).

Effort – Mean TADD
Linear mixed-effect analysis identified a significant effect of 
mean TADD [χ2(1) = 13.31, p < 0.001] on self-reported mental 
demand. The models’ total explanatory power was substantial 
(conditional R2 = 0.59, marginal R2 = 0.02). Within this model 
higher mean TADD, i.e., participants who in average took 
longer to allocate the available personnel to the tasks to 
be  done to during all defined action blocks, was significantly 
related with higher perceived effort, this effect can be considered 
as very small (beta  =  43.97, SE  =  11.85, std. beta  =  0.15, 
p  <  0.001).

Performance vs. In-Game Metrics
To verify whether the calculated in-game metrics would be able 
to predict the final performance of a given difficulty level, 
we  ran a generalized linear mixed-effect model separately for 
the in-game metric initial TADD as well as for mean TADD 
and the binary indicator identifying whether the participants 
were able to extinguish all fires and transport all injured 
persons to the hospital (success) or not (failure). Since NGT 

basically was a performance measure, it predicts gaming 
success perfectly and cannot be  used as a predictor variable 
in the mixed model. As we  were primarily interested in the 
relation between in-game metrics and performance regardless 
of gaming scenario, we  defined in-game metrics as fixed 
factors and added random intercepts for participants 
and scenarios.

Performance – Initial TADD
Generalized linear mixed-effect analysis revealed a significant 
effect of initial TADD [χ2(1) = 28.96, p < 0.001] on performance. 
The models’ total explanatory power was moderate (conditional 
R2 = 0.22, marginal R2 = of 0.14). Within this model we  found 
that higher initial TADD was significantly linked to lower 
performance, this effect can be considered as small (beta = −3.86, 
SE  =  0.79, std. beta  =  −0.76, p  <  0.001; see Figure  7).

Performance – Mean TADD
Generalized linear mixed-effect analysis indicated a significant 
effect of mean TADD on performance [χ2(1) = 10.21, p < 0.001]. 
The models’ total explanatory power was weak (conditional 
R2  =  0.13, marginal R2  =  0.07). Within this model the higher 
initial TADD was significantly associated with lower performance, 
this effect can be  considered as very small (beta  =  −5.54, 
SE  =  1.85, std. beta  =  −0.47, p  <  0.01), whereas the effect of 
scenario was not significant (beta  =  −0.34, SE  =  0.26, std. 
beta  =  −0.34, p  <  0.190).

Performance Prediction
To verify whether the initial TADD may be  suitable  
for real-time or near-real-time prediction of performance  
(i.e., finished level successfully vs. failed) of the given level 
we  used linear discriminant analyses with Leave-One-
Subject-Out Cross-Validation. These demonstrated a 67.38% 
accuracy in scenario Fire and a 64.53% in the Train Crash 

FIGURE 7 | Performance in relation to initial TADD. Error bars depict +/- 2 SE, which corresponds to 95% CI.
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scenario. However, permutation tests comparing the models’ 
performance with the performance of models predicting 
randomly permuted outcomes showed that only for the Train 
Crash scenario this was significantly above the score of 
random models (Fire: random models mean accuracy: 67.28%, 
p  =  0.886; Train Crash: random models mean accuracy: 
55.37%, p  <  0.001).

A linear discrimination analysis using the three NASA-TLX 
subscales in the performance scenario showed an average 
accuracy of 73.04%. A permutation test showed that this 
accuracy was significantly higher than models with randomly 
permuted outcomes (random models mean accuracy: 53.81%, 
p  <  0.001). However, a permutation test showed that the 
accuracy of this model was not significantly different from 
the model using only our in-game metric (p  =  0.09).

DISCUSSION

The current study aimed at evaluating a practicable, 
parsimonious, and reliable approach for the online assessment 
of cognitive load in serious games, which is suitable for 
cognitive load prediction during realistic gaming setups with 
a similar structure to the game used in the study, i.e., a 
(real-time) strategy like serious game. Based on the TBRS 
model of Barrouillet et  al. (2004) we  defined several in-game 
metrics (initial TADD, mean TADD, NGT) for describing the 
behavior and performance in an emergency simulation game. 
The results indicated that it seems indeed possible to use 
these simple in-game metrics to reliably assess and predict 
cognitive load based on a theory-driven approach. In the 
following, we  critically discuss these results in greater detail.

First of all, we aimed at verifying whether the experimentally 
induced difficulty levels of the serious game were actually able 
to induce substantial differences in cognitive load for the 
participants. This manipulation check was an important 
prerequisite for examining our main scientific hypotheses. 
Results clearly indicated that increased difficulty (e.g., in terms 
of more personnel to coordinate and more tasks to execute 
under a constant time limit) indeed resulted in significantly 
higher subjective ratings of cognitive load accompanied by 
significantly poorer performance. This substantiated our 
expectations and indicated that the intended manipulation of 
cognitive load by means of game-difficulty levels worked 
as intended.

Further analyses showed that all three proposed in-game 
metrics can be  considered valid to significantly predict self-
reported workload as well as actual gaming success. In particular, 
NGT (i.e., ratio of actual playing time to total time available 
per game level) showed a more pronounced effect on subjective 
workload ratings as compared to initial and mean TADD 
(temporal action density decay; i.e., ratio of active playing time 
burst to total time available in the first action block and averaged 
over all action blocks defined per level). This may be  due to 
the fact that the former measure was directly related to 
performance and thus most sensitive to subjectively experienced 
cognitive load. For instance, participants were able to develop 

a feeling for how well they have performed the game at the 
time of the survey and thus experienced failure may have 
resulted in higher perceived cognitive load as compared to 
known success (Hancock, 1989).

More interestingly, initial TADD showed a better predictive 
power as compared to mean TADD not only regarding subjective 
ratings of cognitive load but also in terms of the resulting 
performance. This suggests that early stages of gameplay may 
be more informative and thus more predictive for later gameplay 
outcomes than an aggregated score accumulated over a longer 
period of time. In this context, averaging TADD across the 
entire duration of the level seems to lead to a substantial loss 
of information for this metric.

A closer look at the construction of the game may help 
to better understand this difference. At the beginning of each 
level, a new emergency scenario was presented, and participants 
had to start assigning tasks to the available emergency personnel 
soon. That is, right at the beginning of the level participants 
had to orientate themselves in a completely new situation, to 
plan their rescue strategy, and to implement this strategy as 
quickly as possible. In addition, almost the entire rescue team 
had to be  assigned to their tasks at this point, meaning that 
the first action block may have been significantly longer than 
all subsequent blocks, which were not as clearly defined due 
to more constant interactions with the game.

One possible explanation for the superiority of the initial 
over the mean TADD might be  that as the game progressed, 
successful players realized that they were well in time and 
therefore experienced less time pressure. This might have resulted 
in longer burst and shorter idle phases, as they were not longer 
operating at their maximal speed, resulting in increased TADD 
ratios in the later stages of the level. Otherwise, it also seems 
conceivable that the initial orientation itself plays a crucial 
role in the outcome of the level. As better planning in early 
stages of a particular task was observed to be  associated with 
better performance in various tasks (Capon et al., 1994; Saddler 
et  al., 2004; Wang and Gibson, 2010), initial TADD might 
also reflect more efficient planning to underlie decreased 
cognitive load during the initial action block. However, these 
assumptions need to be  investigated in future studies.

The final aim of this study was to evaluate whether it would 
be  possible to use in-game metrics for a real-time or near-
real-time assessment of cognitive load and – based on this 
– a substantial performance prediction. The in-game metrics 
NGT, as well as mean TADD, represent summary measures, 
which can only be  calculated retrospectively once a level has 
been completed. Thus, they cannot be  used for predictive 
purposes. In contrast, initial TADD, which was calculated during 
the first minutes of gameplay, significantly predicted gaming 
success – at least in the Train Crash scenario. Moreover, it 
could be  shown that the prediction accuracy of a model using 
only this metric did not significantly differ from the model 
using selected NASA-TLX subscales as predictors for gaming 
performance. Interestingly, no significant prediction could 
be  obtained for the less difficult scenario Fire. Importantly, 
however, this may have been influenced by a crucial data issue 
as far more participants succeeded in the scenario Fire than 
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failed, whereas in the scenario Train Crash this relation was 
more balanced. Accordingly, the difference between the two 
scenarios may indicate an existing floor effect for the easy 
scenario, indicating that the use of this metric may be  suitable 
only for situations eliciting phases of maximum cognitive load. 
Whether this assumption is correct must be  investigated in 
future studies.

In summary, the results of the current study indicated that 
gaming performance can be significantly predicted using initial 
TADD calculated from a short time interval at the very beginning 
of a new game level. This means that we  were able to predict 
well above chance level whether the respective level would 
be  completed successfully based on data acquired through the 
first tenth of the total gaming time. It is noteworthy that the 
quality of this prediction did not significantly differ from the 
prediction based on participants’ retrospective and subjective 
ratings using the NASA-TLX that are informed by their 
experienced success of failure during game play. Hence, initial 
TADD seems to qualify well for a near-real-time adaptation 
of game flow, not requiring considerable computing power as 
it is the case for more data-driven approaches (e.g., neuronal 
networks or deep learning based on physiological data).

Methodological Strengths and Constraints
There are different analytical approaches to serious games (for 
review see: Zohaib, 2018), which are often based on data-
driven probabilistic performance evaluations (Magerko et  al., 
2006; Spronck et  al., 2006; Zook and Riedl, 2012). Simple 
performance data, however, often seemed insufficient for 
estimating cognitive and emotional states of users, such as 
attention, cognitive load, or emotional responses. Therefore, 
these cognitive states are often assessed using (neuro-)
physiological data (for reviews see: Kivikangas et  al., 2011), 
which are, however, relatively complex and laborious to acquire 
and computationally intensive to evaluate and are thus not 
always suitable for real-world applications outside the laboratory. 
Importantly, though, the current study demonstrated that 
assessment/prediction of cognitive load using simple in-game 
metrics is feasible. We think that there are two crucial constraints 
for this approach to be successful: First, a theoretically informed 
top-down development and second the application within an 
appropriate test environment.

As regards the former, we  are confident that a theoretical 
top-down approach may be  key to find parsimonious, but still 
reliable and generalizable solutions. Therefore, a suitable 
theoretical framework should be  chosen in the first place. In 
our case, the TBRS model (Barrouillet et  al., 2004) specifically 
emphasizes the role of time pressure as the origin of cognitive 
load, therefore seeming to be  particularly useful for predicting 
workload in time-critical situations such as serious game 
scenarios similar to the current one, i.e., (real-time) strategy 
games and simulations.

With respect to the latter, the development of an appropriate 
testing environment is essential. As, for instance, the TBRS 
model was originally evaluated on very specific tasks with 
strong time pressure induced through pre-defined pace, 
we  evaluated whether its predictions may generalize to more 

realistic applied situations. In this way, we  derived two critical 
aspects of a test situation to make these predictions work: 
time pressure and time-limited blocks of tasks. By considering 
these aspects, we  designed a gaming environment that allowed 
for testing the proposed metrics.

Limitations and Open Questions
The methodological strengths and constraints of our study, 
however, can also be  considered as limitations because it may 
not be possible to generalize the proposed metrics to all possible 
gaming situations. Presumably, they may well be used in settings 
with inherent time-limits and time pressure, where participants 
are exposed to new situations and have to manage various 
tasks and resources as it is the case in real-time strategy games. 
Other examples with similar task structures may comprise 
complex surgery tasks, assembly lines or time-critical emergency 
situations in the context of control tasks. Further testing will 
be  required in the future to substantiate the predictive power 
of proposed in-game metrics in this type of situation and, 
possibly, to adapt the computation of these metrics appropriately.

Therefore, the current study suggests a promising perspective, 
but at the same time raises several questions to be  explored 
in the future. For instance, it is not clear whether and how 
the predictive power of the proposed metrics is related to the 
given time pressure and whether they can, therefore, be  used 
in scenarios that are less time-critical. On the other hand, it 
is possible that collected in-game metrics might be  affected 
by factors other than cognitive load, such as motor processes 
related to the experience of the player with provided game 
controls, for instance. Since we  used a conventional computer 
mouse as the only game control, we  are confident that all 
participants were used to it and therefore the results obtained 
are valid in this respect. However, such general physiological 
processes should be  taken into account and evaluated before 
proposed in-game metrics are generalized to different contexts. 
Furthermore, it should be  evaluated more thoroughly why the 
initial TADD showed better performance as compared to the 
mean TADD. It might be possible, for instance, that the predictive 
value of the mean TADD (or the mean of the first few TADDs) 
can be  improved by using other gaming situations or by 
sharpening the definition of action blocks.

Implications and Future Perspectives
The use of simple in-game metrics for measuring cognitive 
load and thus deriving performance prediction yields several 
advantages. First, our results suggest that psychological constructs, 
which have traditionally been assessed explicitly using either 
paper-pencil or computerized questionnaires, may well 
be  estimated more implicitly using in-game metrics, that is 
without causing interruption to the task at hand (cf. stealth 
assessment: Shute and Kim, 2014). Second, whereas the use 
of more complex psychophysiological measures would come 
with additional computational and procurement costs, systems 
that operate on simple in-game metrics may be  made more 
easily accessible to the general public. More complex systems 
relying on resources such as neural networks are computationally 
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rather expensive and might require substantial computing power. 
In contrast, simpler models for cognitive load estimation such 
as the one used in the current study may be  easily run in 
parallel to the actual game on any PC without significant 
consumption of computing resources. Third, also complex 
multimodal measurement systems, which operate with 
sophisticated algorithms and integrate data from physiological 
and behavioral sources in research laboratories, may benefit 
from the development of simpler in-game metrics as these 
may be  added to these more complex algorithms quite easily, 
thereby leading to improved classification accuracy in the future. 
Finally, the substitution of more complex probabilistic algorithms 
through simpler but reliable metrics (whenever possible) might 
lead to simplifications of complex models, while at the same 
time expanding their availability and usage. However, we  feel 
that this may only be  achieved when substantial evidence for 
relevant in-game metrics is based on theory rather than 
data alone.

Conclusion
The present study indicated that parsimonious, but theoretically 
well-founded in-game metrics can be  used to estimate users’ 
current cognitive load and, based on this, predict future gaming 
performance within the first tenth of the total gaming time. 
We applied our approach to a serious game simulating a time-
critical emergency situation and requiring the management of 
emergency personnel. The game included different scenarios 
with three levels of difficulty each inducing corresponding 
levels of cognitive load. Based on proposed in-game metrics 
we  were able to predict whether the respective level would 
be  completed successfully or not well above chance level. 
Interestingly, the quality of this prediction did not differ 
significantly from a prediction based on participants’ retrospective 
and subjective ratings using the NASA-TLX questionnaire. To 
achieve this we  used a rather simple model that interprets 
behavioral data in the light of the TBRS theoretical approach 
(Barrouillet et  al., 2004). Based on its parsimony and the 
corresponding low computational power required, this model 

can be  easily incorporated into games to create an adaptive 
system. Further, the measure and models introduced in this 
study could be used in conjunction with other adaptive features 
to design even more comprehensive adaptive systems that can 
predict performance more effectively and accurately. Taken 
together, our results provide promising first evidence that needs 
to be  substantiated in future research to determine whether 
it is suitable for more general reliable assessments of players’ 
cognitive load and for respective real-time adaptations of games 
or game-based learning environments.
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