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Plastids are pivotal subcellular organelles that have evolved to perform specialized
functions in plant cells, including photosynthesis and the production and storage of
metabolites. They come in a variety of forms with different characteristics, enabling
them to function in a diverse array of organ/tissue/cell-specific developmental processes
and with a variety of environmental signals. Here, we have comprehensively reviewed
the distinctive roles of plastids and their transition statuses, according to their
features. Furthermore, the most recent understanding of their regulatory mechanisms
is highlighted at both transcriptional and post-translational levels, with a focus on the
greening and non-greening phenotypes.
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INTRODUCTION

Plastids first developed during an endosymbiotic event between photosynthetic prokaryotes and
the eukaryotic ancestors of algae. During the subsequent co-evolution of the engulfed plastid
and eukaryote cells there were extreme changes in the functions of the plastids, including the
development of regulatory networks (Keeling, 2013; Ševćíková et al., 2015). Although plastids
are common subcellular organelles in plants, previous research has been a bias toward the
photosynthetic plastids called chloroplasts or carotenoid enriched plastids called chromoplasts
(Cruz et al., 2018; Pinard and Mizrachi, 2018). Moreover, recent studies on the regulatory pathways
of plastids have mainly focused on light switching and hormonal treatments (López-Juez, 2007;
Larkin and Ruckle, 2008; Larkin, 2014; Al-Babili and Bouwmeester, 2015; Liu et al., 2017).

In this review, the distinctive features for each plastid type are briefly described to help
understand the general properties of plastids. A point of interest is that new plastids cannot
be generated or born, and are duplicated or transited from other plastids. This indicates that
the interconversion of plastids is important, and this is consequently addressed in this review.
However, as plastid interconversions are tissue- and species-specific events, representative research
was carefully selected and summarized.

Although there are many cases of plastid interconversions, the molecular mechanisms in
the signaling networks of chloroplasts and chromoplasts were the focus of this review. During
chloroplast development, different wavelengths of light synergistically trigger transcriptional
regulators by releasing the post-translational inhibition of E3 ligase complexes. This leads to an
increase in transcriptional regulators which induce photomorphogenic enzymes and chloroplast
development. Chromoplasts are differentiated by the induction of carotenoid biosynthesis genes
through the induction of transcriptional regulators. In this review, the chloroplast and chromoplast
molecular networks are described with newly discovered regulators at both transcriptional and
post-translational levels. Together with general examples of plastid interconversion, the overview of
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gene-specific molecular networks and their participating genes
will strongly support work toward genetic improvement of
multiple traits which related to plastid interconversion.

PLASTID TYPES AND ROLES

Plastids can be divided into several types based on their
color, morphology, and ultrastructure (Whatley, 1978; Møller,
2006; Wise, 2007). The characteristics of each plastid type are
tightly related to their specific roles (Figure 1). Undifferentiated
plastids are called “proplastids” and are mainly found in
meristematic and reproductive tissues, and they are identified
as being small and having clear ultrastructures. They can be
differentiated into “leucoplasts” in white, “chloroplasts” in green,
and “chromoplasts” in either yellow, orange or red. Intermediate
forms of chloroplasts are called “etioplasts” and senescent
forms of chloroplasts are called “gerontoplasts”. Leucoplasts are
categorized by their lack of color, but can be further separated
according to their biochemical characteristics based on their
contents, such as starch enriched “amyloplasts”, protein enriched
“proteinoplasts”, and lipid enriched “elaioplasts” (Lopez-Juez and
Pyke, 2004; Jarvis and López-Juez, 2013).

Proplastids
Proplastids are undifferentiated plastids that maintain a minimal
plastid structure. So that, their organelle transmission can
take place between generations. They are colorless and tiny
in size when compared to the other types of plastid with no
significant morphological characteristics (Jarvis and López-Juez,
2013; Liebers et al., 2017). They are mostly found in meristematic
and egg cells of plants and sometimes during pollen formation in
specific species such as Pelagonium and barley (Hordeum vulgare)
(Hagemann, 2004; Sakamoto et al., 2008; Gajecka et al., 2020).
Also, the nodule proplastids in root tissues have been reported
to play a vital role in the biochemistry of nitrogen fixation in
the legume family (Boland and Schubert, 1983; Ferguson, 1998;
Greco et al., 2012).

Chloroplasts
Chloroplasts are one of the most well-studied types of
plastid and are found in all photosynthetic organisms (Waters
and Langdale, 2009; Rottet et al., 2015). They can turn
light energy into chemical energy via photosynthetic protein
complexes. In chloroplasts, multiple stacks of disk-like single
lipid layers called thylakoids form grana and these create large
lipid surface layers which anchor the photosynthetic protein
complexes. The edges of the disk-like thylakoids also form
unique hydrophobic pocket structures called plastoglobules,
which help to enlarge the internal area of the lipid bilayer
(Rottet et al., 2015). Plastoglobules are identified as sites of
carotenoid breakdown for apocarotenoid production (Rottet
et al., 2016) and for non-endogenous carotenoid accumulation
(Mortimer et al., 2017).

The green color of chloroplasts is due to chlorophyll which
is core component for photosynthesis, but the chloroplasts
also have an abundance of multiple hydrophobic terpenes,

such as lutein, β-carotene, violaxanthin, and neoxanthin, which
also help to support photosynthesis (Ruiz-Sola and Rodríguez-
Concepción, 2012). Not only converting the UV-blue range
of light to the electro energy for photosynthesis (Dall’Osto
et al., 2014), the carotenoid in chloroplast also play a major
role in photoprotection by modulating the non-radiative
dissipation of excess excitation energy (Niyogi, 2000; Dall’Osto
et al., 2005). Specially, hydroxylated carotenoids referred
to as xanthophylls support photoprotection by mediating
direct quenching of chlorophyll (Chl) triplets (3Chl∗) or by
scavenging the reactive oxygen species (ROS) generated during
photosynthesis (Niyogi et al., 1997; Havaux and Niyogi, 1999;
Dall’Osto et al., 2007). Consequently, the balance between
photosynthesis, photoprotection, and ROS scavenging is an
important function in chloroplasts. Starch granules, protein
bodies, and lipid bodies are often formed in chloroplasts for
temporal storage and to help meet the demands of developmental
and environmental cues.

Etioplasts
Etioplasts are specialized intermediate plastid types that are
mostly found in dark grown seedlings. In natural conditions,
they are easily found in seedlings that grow under the soil.
They are the transient state of development for chloroplasts
and are also considered as a status of austerity because they
stop the development of photosynthetic chemicals and structures
which are unnecessary in the dark. Within etioplasts, in general,
single well-arranged paracrystalline prolamellar body and tubular
prothylakoids are formed, and these are interspersed with
numerous small plastoglobule with high amounts of carotenoids;
mainly lutein and violaxanthin which help to increase the
transition to chloroplasts (Park et al., 2002; Rodríguez-Villalón
et al., 2009; Solymosi and Schoefs, 2010; Pipitone et al., 2021).

Leucoplasts and Derivatives
Leucoplast are characterized by their white structures (Carde,
1984). They are often found in non-photosynthetic tissues
that have storage functions. However, advances in microscopy
technology and an increase in detection strategies have
made it possible to classify leucoplast in more detail. Except
for undeveloped proplastids, three types of white plastids,
amyloplasts, proteinoplasts, and elaioplasts, are further
characterized as sub-types of leucoplasts (Howitt and Pogson,
2006; Sadali et al., 2019).

Amyloplasts
Amyloplasts are characterized by starch granules that store high
density starch. During the formation of amyloplast membranes,
various lipids such as free fatty acids, lysophospholipids,
lysophosphatidylcholine, and lysophosphatidylethanolamine are
also included in the starch granules (Gayral et al., 2019).
Amyloplasts are commonly found in sink tissues including seeds,
fruits, tubers, and roots for carbon storage, but they are also
often found at low frequencies, in various tissues including leaves,
stems, and roots for temporal storage (Jarvis and López-Juez,
2013). It is interesting that the amyloplasts is not stable in some
cases, for example in Arabidopsis leaves, the accumulation and
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FIGURE 1 | Transition pathways among various plastids. The characteristics and plastid interconversion pathways of the plastids were classified according the color
and number of the arrow. The transition to a chloroplast is called “Greening” and identified with the number “1”. This is mainly triggered by light signals from
proplastids, etioplasts, leucoplasts, and chromoplasts. Etioplasts can develop from proplastids in dark conditions and this identified by the number “2”. The number
“3” indicates leucoplast development that is triggered by diverse development processes to generate starch, lipid, and protein enriched sub-types called amyloplasts,
elaioplasts, and proteinoplasts, respectively. Mainly during the ripening stage, diverse types of the carotenoid crystals were generated within the plastids called
chromoplasts from the proplastids, leucoplasts, and chloroplasts and this is identified with the number “4”. Together with etioplast and leucoplast development (2,3),
chromoplast development (4) was identified as a “Non-greening” plastid transition. The loss of green color from the chloroplasts is called “De-greening” and identified
with the number “5”, and these chloroplasts are then transited into leucoplast or gerontoplast by developmental regulation or during senescence, respectively.

the loss of starch are highly dynamic, following a daily cycle due
to photosynthetic activity or its absence (Fernandez et al., 2017).
Unlike other types of plastid, amyloplasts often coexist with
different types of plastid in the same cell. However, in the tissues
of species, such as the winter squash, peach palm fruit, and sweet
potato tuber (Jeffery et al., 2012; Hempel et al., 2014; Zhang et al.,
2014), combinatory types of plastid called amylochromoplasts
were observed which stored starch granules with carotenoid
crystals in the same plastid. Starch granules are also found inside
different types of plastids such as chloroplasts. As well as their
storage functions, the amyloplast from Arabidopsis roots were
reported to contribute to gravitropism signaling (Chen et al.,
1999; Nakamura et al., 2019).

Elaioplast
Elaioplasts are characterized by ultrastructures filled with
hydrophobic contents such as lipids and terpenoids. They are
specialized for biosynthesis and the storage of lipids, but also have
diverse functions in specific tissues. In citrus fruits, elaioplasts
are exported into secretory pockets and they can have large
impacts on aroma and taste (Zhu et al., 2018). In pollen, exine
formation was found to be highly dependent on elaioplasts
(Quilichini et al., 2014).

Proteinoplasts
In specific cases, protein bodies can be found in plastid structures,
generally in the cytosolic area, and these are called proteinoplasts
(or proteoplast, aleuroplast, aleuronaplast; Dashek and Miglani,
2017). Proteinoplasts are generally found in many different
types of cell at several different stages of plastid development
(Thomson and Whatley, 1980). Due to the location and contents
of proteinoplasts, they are thought to have a role in protein
storage. Furthermore, the proteinoplasts of tobacco root showed
strong oxidase activity which may convey a specific function
(Vigil and Ruddat, 1985).

Chromoplasts
Chromoplasts have colorful characteristics as they accumulate
large amounts of carotenoids and their specific colors are
determined by specific types of carotenoids. During chromoplast
development, the concentrated carotenoids which form globular,
round, coiled shaped carotenoid crystals at the mature stage
are produced and stored in hydrophobic structures called
plastoglobules (Schweiggert et al., 2011). The plastoglobules are
lipoprotein particles attached to thylakoids through a half-lipid
bilayer and function in both lipid biosynthesis, storage and
cleavage (Austin et al., 2006; Rottet et al., 2016). These colored
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plastids with highly developed plastoglobules are used to attract
pollinators and seed disseminators in reproductive tissues or
for the storage of carotenoids and hydrophobic metabolites
(Rottet et al., 2015).

Gerontoplasts
Gerontoplasts are chloroplast-derived plastids adjusted for
recycling of plastid which are mainly found during senescence
processes or under stress condition (Biswal et al., 2012). As
the chloroplast possess up to 80% of the leaf nitrogen pool,
degradation of chloroplasts and the recycling of their nutrients
is important for plant survival (Makino and Osmond, 1991).
And the degradation of chloroplast proteins has been reported
for three different pathways, autophagy, Senescence Associated
Vacuoles (SAV) and Chloroplast Vesiculation (CV) (Ishida
et al., 2008; Xie et al., 2015). When the senescence process
starts, plastids undergo serial changes in their ultrastructures.
It is difficult to define the characteristics of gerontoplasts
at the beginning of senescence, but there are a few specific
characteristics that have been identified (Biswal et al., 2012). First,
gerontoplasts do not contain starch granules, probably because
they are unable to continue photosynthesis which replenish the
starch daily. Second, their thylakoid structures and chlorophyll
have also been degraded. Third, the size of their plastoglobules
is enlarged and their numbers increased, probably due to
the accumulation of lipophilic substances from degraded lipid
structures and hydrophobic contents.

Specialized Types: Desiccoplasts,
Phenyloplasts, and Xyloplasts
Desiccoplasts are plastids that can be interconverted between
chloroplasts and proplastids in desiccation tolerant plants
(Solymosi et al., 2013). Phenyloplasts are phenol enriched
colorful plastids identified as a new plastid type when compared
to chromoplasts because of their different storage contents
and the homeostatic roles of phenols (Brillouet et al., 2014).
Xyloplasts are specialized plastids in secondary vascular tissues
that are dedicated to the synthesis of precursors for monolignol
production, derived from either proplastids, or more likely,
amyloplasts (Pinard and Mizrachi, 2018).

PLASTID TRANSITIONS

Development of Chloroplast: Greening
Phenotype
From Proplastids
Transitions of proplastids to chloroplasts mainly occur in the
shoot apical meristem and during embryogenesis (Table 1).
According to Arabidopsis research, the process of differentiation
starts with the shoot apical meristem of the young leaf and
continues into leaf development. The differentiation process
occurs in the upper layer and central subtending cell layers, and
is not affected by the intensity of light, but a light period of 5–
10 h is required (Yadav et al., 2019). By observing embryonic
development in Arabidopsis, chloroplast-containing cells were

identified at the globular stage of embryogenesis, indicating the
development of chloroplasts from undifferentiated proplastids
(Tejos et al., 2010). In in vitro experiments, dark grown calluses
only had proplastids while those grown in the light had short
thylakoids and chloroplasts containing an immature membrane
structure (Ladygin et al., 2008).

From Etioplasts
When etioplasts are exposed to light, protochlorophyllide, the
chlorophyll precursor of prolamellar bodies, is immediately
converted to chlorophyllide by light-dependent NADPH:Pchlide
oxidoreductase. Following this, chlorophyllide is converted
to chlorophyll through enzymatic processes (Fujii et al.,
2019). It occurs mainly in plant leaf tissues and can be
easily found in the plant world, for example, the inner
leaves of white cabbage (Brassica oleracea “Capitata”), lettuce
(Lactuca sativa) and cucumber cotyledons (Cucumis sativus)
(Solymosi et al., 2004; Kanamoto et al., 2006; Sobieszczuk-
Nowicka et al., 2007). De-etiolation studies using tobacco
leaves reported that the physical structures of the etioplast
prolamellar bodies changed almost immediately when
exposed to light, and regularity and size reductions occurred
(Armarego-Marriott et al., 2019). Recent work well described
in Arabidopsis revealed the chloroplast biogenesis from
etioplast into two distinct phases: the “Structure Establishment
Phase” for disassembly of the prolamellar body, gradual
formation of the thylakoid membrane and initial increase
of galactolipids and photosynthesis-related proteins and
the “Chloroplast Proliferation Phase” for cell expansion, a
linear increase of prokaryotic and eukaryotic galactolipids,
photosynthesis-related proteins and increased grana stacking
(Pipitone et al., 2021).

From Leucoplast
Non-photosynthetic leucoplasts can be converted to
photosynthetic chloroplasts. In the cortical parenchyma tissues
of potato tubers, directly beneath the periderm, amyloplasts
(starch enriched leucoplast) are converted to chloroplasts by
the accumulation of chlorophylls under light sources (Tanios
et al., 2018). In addition, the needle leaf of Norway spruce
(Picea abies) also showed the plastid transitions according to
growth and seasonal changes. In Norway spruce, amyloplasts
for nutrient accumulation and chloroplasts for photosynthesis
are generated at the seedling stage. Seasonally, amyloplasts
appear mainly due to the accumulation of large amounts of
starch in the autumn and winter and are converted back to
typical chloroplasts in the spring and summer (Senser et al.,
1975). For Italian arum (Arum italicum) fruits, greening
proceeds after the fruits are formed. As the green color emerges,
the amyloplasts are converted to chloroplasts with thylakoid
membrane development and the plastoglobules increase in
number and size (Bonora et al., 2000).

From Chromoplasts
Reversible changes from chromoplast to chloroplast are called
regreening and can be found in citrus fruits (Mayfield and
Huff, 1986), pumpkin (Devidé and Ljubešiæ, 1974), and
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TABLE 1 | Plastid transitions according to plant phenotypes in the view of greening status.

Plastid transition Scientific name (common name) Organ/tissue/cell References

Phenotype Pathway From To

Greening 1-1 Proplastid Chloroplast Arabidopsis thaliana (Arabidopsis) Shoot apical meristem Yadav et al., 2019

Arabidopsis thaliana (Arabidopsis) Embryo Tejos et al., 2010

Stevia rebaudiana (Stevia, in vitro) Callus Ladygin et al., 2008

1-2 Etioplast Chloroplast Arabidopsis thaliana (Arabidopsis) Leaf Pipitone et al., 2021

Brassica oleracea (Cabbage) Leaf Solymosi et al., 2004

Cucumis sativus (Cucumber) Cotyledon Sobieszczuk-Nowicka et al., 2007

Lactuca sativa (Lettuce) Leaf Kanamoto et al., 2006

Nicotiana tabacum (Tobacco) Leaf Armarego-Marriott et al., 2019

1-3 Leucoplast Chloroplast Arum italicum (Italian Arum) Fruit Bonora et al., 2000

Solanum tuverosum (Potato) Tuber Tanios et al., 2018

Picea abies (Norway Spruce) Needle leaf Senser et al., 1975

1-4 Chromoplast Chloroplast Citrus sinensis (Citrus fruit) Fruit Mayfield and Huff, 1986

Cucumis sativus (Cucumber) Fruit pericarp Prebeg et al., 2008

Cucumis maxima (Cucumber) Subepidermal cell of fruit Rodriguez-Concepcion and
Stange, 2013

Cucurbita pepo (Pumpkin) Subepidermal cell of fruit Devidé and Ljubešiæ, 1974

Daucus carota (Carrot) Root Rodriguez-Concepcion and
Stange, 2013

Non-greening 2 Proplastid Etioplast Arabidopsis thaliana (Arabidopsis) Leaf Bykowski et al., 2020

Phaseolus vulgaris (Bean) Hypocotyl Kakuszi et al., 2017

3-1 Proplastid Amyloplast Arabidopsis thaliana (Arabidopsis) Root Kiss et al., 1989

Arum italicum (Italian Arum) Fruit Bonora et al., 2000

Linum usitatissimum (Flax) Root Kuznetsov and Hasenstein, 1996

Malus pumila (Apple, in vitro) Callus Sagisaka, 2008

Musa acuminata (Banana) Fruit Solis-Badillo et al., 2020

Oryza sativa (Rice) Endosperm Matsushima et al., 2014

Pisum sativum (Pea) Root Hodson and Mayer, 1987; Borchert
et al., 1989

Solanum tuverosum (Potato) Stolon Sagisaka, 2008

Solanum tuverosum (Potato) Tuber Naeem et al., 1997

Zea mays (Maize) Endosperm Wurtzel et al., 2012

3-2 Proplastid Elaioplast Althaea rosea Root, Hypocotyl Kwiatkowska et al., 2011

Arabidopsis thaliana (Arabidopsis) Pollen Kobayashi and Masuda, 2016

Brassica napus (Rapeseed) Seed Howitt and Pogson, 2006

Centaurea cyanus (Cornflower) Secretory duct of stem Pacek et al., 2012

Citrus sinensis (Citrus fruit) Outer peel of the fruit Zhu et al., 2018

Haemanthus albiflos Leaf epidermis Kwiatkowska et al., 2010

Helianthus annuus (Sunflower) Seed Howitt and Pogson, 2006

Persea americana (Avocado) Mesocarp of the fruit Scott et al., 1963

Vanilla planifolia Young leaf Kwiatkowska et al., 2011

3-3 Proplastid Proteinoplast Helleborus corsicus (Helleborus) Leaf Härtel and Thaler, 1953

Nicotiana tabacum (Tobacco) Root Vigil and Ruddat, 1985

Vigna radiata (Mung bean) Leaf Dashek and Miglani, 2017

Zea maize (Maize) Seed Denic et al., 1971

4-1 Proplastid Chromoplast Carica papaya (Papaya) Fruit Schweiggert et al., 2011

Citrullus lanatus (Watermelon) Fruit Fang et al., 2020

Daucus carota (Carrot, in vitro) Callus Oleszkiewicz et al., 2018

4-2 Leucoplast Chromoplast Brassica oleracea (Cauliflower) Flower curd in mutant Paolillo et al., 2004

Daucus carota (Carrot) Root Kim et al., 2010

Oryza sativa (Rice) Transgenic Bai et al., 2016

Zea mays (Maize) Endosperm Wurtzel et al., 2012

(Continued)
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TABLE 1 | Continued

Plastid transition Scientific name (common name) Organ/tissue/cell References

Phenotype Pathway From To

4-3 Chloroplast Chromoplast Arum italicum (Italian Arum) Fruit Bonora et al., 2000

Capsicum frutescens (Pepper) Fruit Jeong et al., 2020

Lilium longiflorum (Lily) Flower Juneau et al., 2002

Solanum lycopersicum (Tomato) Fruit Wang et al., 2020

De-greening 5-1 Chloroplast Leucoplast Arabidopsis thaliana (Arabidopsis) Flower petal Pyke and Page, 1998

5-2 Chloroplast Gerontoplast Arabidopsis thaliana (Arabidopsis) Leaf Evans et al., 2010

Jatropha curcas (Jatropha) Seed inner integument Shah et al., 2016

Pathway numbers correspond to those in the schematic diagram in Figure 1.

cucumber fruits (Prebeg et al., 2008; Rodriguez-Concepcion
and Stange, 2013). Cucumber thylakoids are decomposed
as the fruit matures, and then the thylakoid is reconstituted
due to regreening. The plastids of mature fruit and the
regreened chloroplasts show morphological similarities, which
means re-differentiation of the plastids. Reconstitution of
the thylakoids begins with membrane-bound bodies, and
surface expansion and fragmentation occur. Afterward, tubules
and double-membrane sheets are formed. The plastoglobuli
remain in the plastid even during reconstruction. This
transition implies that several types of membrane structures
are associated with the plastid envelope during chloroplast
re-differentiation (Prebeg et al., 2008). Light is regarded
as a key factor that greatly influences regreening. As a
result of irradiating the citrus fruit Valencia orange with a
blue LED light, the tissue was gradually greened, and after
4 weeks, the chlorophyll content was approximately twice
as high as that of the unirradiated tissue (Ma et al., 2020).
In addition, the roots of the carrots were also completely
altered by exposure to the light, and converted from
β-carotene-rich chromoplasts to lutein-containing chloroplasts
(Rodriguez-Concepcion and Stange, 2013).

Development of Proplastids Into
Etioplasts: Non-greening Phenotype
When seeds are buried underground without light, but
with sufficient environmental conditions for germination, the
proplastids can develop into etioplasts while the plants etiolate.
This transition is widely adopted by most plants and is an
efficient strategy for seedlings in light-seeking circumstances.
Until the photosynthetic tissues reach a light source, etioplasts
develop with stacking prolamellar bodies and numerous small
plastoglobuli (Rodríguez-Villalón et al., 2009). According to
studies on Arabidopsis and soybeans, etioplast formation is
influenced by etiolation time, and the efficient tubular-lamellar
arrangement affects subsequent vegetative growth (Kakuszi et al.,
2017; Bykowski et al., 2020). The key element to maintaining
etioplasts is the completely dark environment. The loss of
negative regulators of photomorphogenesis (DET1, COP1, and a
combination of PIFs) inhibited etioplast differentiation in dark
conditions, thereby suggesting that etioplasts develop in dark

conditions via the negative regulation of photomorphogenesis
(Wei et al., 1994; Sperling et al., 1998; Stephenson et al., 2009).

Development of Proplastids Into
Leucoplasts: Non-greening Phenotype
To Amyloplasts
The development of amyloplasts can be observed in most tissues
with high-starch contents. Starch is often stored in the root
tissues of plants, such as with Arabidopsis (Kiss et al., 1989), flax
(Kuznetsov and Hasenstein, 1996), and pea (Hodson and Mayer,
1987; Borchert et al., 1989). Furthermore, the tubers and stolons
of potatoes are representative organs that accumulate amyloplasts
(Naeem et al., 1997; Sagisaka, 2008). In the case of fruits, starch
mainly accumulates during the “maturation” period, such as with
banana (Solis-Badillo et al., 2020) and Italian arum (Bonora et al.,
2000). For apples, in vitro experiments showed that the formation
of amyloplasts occurs in the callus and endosperm (Sagisaka,
2008). For rice and wheat, the accumulation of amyloplasts
mainly found in the endosperm (Wurtzel et al., 2012). In
amyloplasts, starch is produced in the matrix space (stroma)
and forms starch grains, which exhibit different morphologies
depending on the plant species and have been intensively studied
in various staple crops. The diameter of starch grains in corn, rice
and sorghum are about 10, 10–20, and 15–25 µm, respectively,
while less than 10 µm in barley and wheat (Matsushima et al.,
2014; Matsushima and Hisano, 2019).

To Elaioplasts
The elaioplasts have been largely reported in flowers and they
can be found in their ovaries, ovary epidermis, and innermost
tapetum cell of the anther wall (Chen et al., 1988; Ciampolini
et al., 1993; Kwiatkowska et al., 2010, 2011). Elaioplasts were
also reported in secretory ducts of the stem and leaf epidermis
from Centaurea cyanus and Haemanthus albiflos (Kwiatkowska
et al., 2010; Pacek et al., 2012), young leaves of Vanilla planifolia,
roots, hypocotyls of Althaea rosea (Kwiatkowska et al., 2011),
seeds of canola and sunflower (Howitt and Pogson, 2006; Lersten
et al., 2006), mesocarp of the fruit in avocados (Scott et al.,
1963), and green pericarps of citrus fruits (Zhu et al., 2018).
The formation of elaioplasts has been reported to occur by a
diverse range of mechanisms that vary by species. Observations
of elaioplast differentiation in the tapetal cells of Arabidopsis
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thaliana, showed that the transition from proplastid to elaioplast
occurred at “stage 9” with spot like structures that shapes like
plastoglobuli (Suzuki et al., 2013).

To Proteinoplast
Proteinoplasts have been studies in detail from the roots of
tobacco (Vigil and Ruddat, 1985). They are mainly distributed
in the vacuolate and root cap cells of the root and accumulate
in the slender tubules of the plastids. As cells divide, protein
accumulation occurs, tubules expand, and protein bodies of dense
spheroidal structures appear. Proteinoplasts were also observed
in the leaves and seeds of Helleborus corsicus and Zea maize,
respectively (Härtel and Thaler, 1953; Denic et al., 1971). In
addition, a proteinoplast with a granular matrix containing a
large amount protein was reported in the leaves of mung bean
(Dashek and Miglani, 2017).

Development of Chloroplast Into
Chromoplasts: Non-greening Phenotype
From Proplastid
The transition from proplastid to chromoplast is often found
during fruit maturation. Representative examples of the
transition from proplastid to chromoplast can be found in
watermelon (Citrullus lanatus), papaya (Carica papaya), and
carrot calluses. In papaya during early white maturation,
undifferentiated proplastids and globular plastids were
dominant, but intermediate plastids such as the chloroplasts
and amyloplasts were not found until chromoplasts developed.
They were thus thought to have differentiated from the
proplastids (Schweiggert et al., 2011). In watermelon,
similar chromoplast development with an analysis of the
pattern of each color step has been reported. When looking
at the plastid differentiation patterns of watermelon, the
accumulation of carotenoids and chromoplasts appeared
according to the maturity of the fruit. In addition, many
plastoglobuli were accumulated in the chromoplasts of
yellow and orange watermelons when compared to white
watermelons. The red watermelon chromoplasts formed
an elongated or irregular structure, and the number of
plastoglobuli further increased (Fang et al., 2020). In the
carrot callus system, proplastids could be converted into
chromoplasts during callus differentiation. In the case of
pale-yellow carrot calluses, the carotenoid content was low
while most of the plastids were proplastids. Conversely,
for dark-orange carrot calluses, there were a large amount
of chromoplasts, with high carotenoid contents, while the
number of proplastids was significantly reduced (Oleszkiewicz
et al., 2018). Meanwhile, the Arabidopsis callus contains
proplastids, but the induced or stable overexpression of a
phytoene synthase gene (PSY) showed the increased carotenoid
contents with the chromoplast development (Maass et al., 2009;
Rodríguez-Villalón et al., 2009).

From Leucoplasts
This transition occurs during the maturation of fruits, flowers,
and roots (Sun et al., 2018). Relatively well-studied cases
for this transition are carrots (Daucus carota) and orange

cauliflower mutants (Brassica oleracea L. var. botrytis). In the
case of carrot roots, the types of plastids present differed
markedly depending on the color. The root of orange carrots
was rich in chromoplasts with crystal-shaped structure due to
carotene, whereas white carrots had fewer chromoplasts and
no crystal-shaped structure. Instead, the white carrot roots
showed amyloplasts filled with starch grains, and the total
number of the chromoplasts and amyloplasts did not show
any significant differences (Kim et al., 2010). In the case of
orange cauliflower, the plastid of white wild-type tissues was
characterized by leucoplasts, where orange-colored mutants have
chromoplasts with accumulated β-carotene (Paolillo et al., 2004).
Chromoplast transitions could also be found in the endosperms
of rice and corn, which are mostly formed by amyloplasts.
Although wild-type rice endosperms do not produce carotenoids,
a combination of multiple carotenogenic genes such as 1-
deoxy-D-xylulose 5-phosphate synthase (DXS), PSY, bacterial
phytoene desaturase (CRTI), and ORANGE (OR) could result in
chromoplast development (Ye et al., 2000; Wurtzel et al., 2012;
Bai et al., 2016; You et al., 2020).

From Chloroplasts
Chromoplasts synthesize and store carotenoids and are mainly
found in petals and fruits, which are organs related to
reproduction, but they can also occur in the leaves and roots.
The transition from chloroplast to chromoplast starts from
the breakdown of thylakoids and chlorophyll. This is followed
by the increases of plastoglobuli size and the biosynthesis
and accumulation of the carotenoids (Wrischer and Devide,
2002). Representative cases showing the irreversible process from
chloroplast to chromoplast were found in tomato (Solanum
lycopersicum) (Egea et al., 2011; Barsan et al., 2012; D’Andrea
et al., 2014), red pepper (Jeong et al., 2020), Italian arum
(Bonora et al., 2000), and lily (Lilium longiflorum) (Juneau
et al., 2002). Interestingly, with single gene overexpression,
such as the AtPSY overexpression line in Arabidopsis and the
Pantoea ananatis phytoene synthase (crtB) overexpression by viral
vector in tobacco were able to develop the chromoplast from
leaf tissues (Maass et al., 2009; Majer et al., 2017). According to
a recent report about the modifications of membrane structure
in tomato chloroplasts, it was observed that the inner envelope
membrane and thylakoid membranes disappeared during the
transition to chromoplasts, and new factors (plastoglobules and
crystal remnants, etc.) were generated through membrane fusion
and vesicles budding (Wang et al., 2020).

Development of Chloroplasts:
De-Greening Phenotype
To Leucoplasts
One of the well-known examples for de-greening to leucoplast
is Arabidopsis flower development. Young petals that have just
bloomed contain green chloroplasts throughout their structures,
but as the petals expand and develop, they lose chlorophyll and
these regenerate into white bodies. During this process, plastids
break down chlorophyll, and carotenoids are not synthesized
(Pyke and Page, 1998; Irish, 2008).
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To Gerontoplasts
Gerontoplasts are known to occur in both photosynthetic and
non-photosynthetic organs as they appear with aging. In general,
as chloroplasts age, although their outer shell remains intact,
plastoglobuli are formed along with lipophilic substances, and
extensive structural changes of the thylakoid membrane occur. In
Arabidopsis, observations of gerontoplasts found that they had a
degenerated outer shell and thylakoid membranes of chloroplast,
enlarged plastoglobuli and grana, and these are gradually
increased as they aged (Evans et al., 2010). Another study of
the structural characteristics of gerontoplasts during Jatropha
curcas seed development, found that the inner membrane system
(thylakoid membrane and plastid outer envelope membrane)
decomposed, and then there was gradual decomposition of the
substrate and plastoglobuli (Shah et al., 2016).

REGULATORS OF PLASTID
TRANSITIONS

Recently, research on the regulatory pathways for plastids has
largely expanded with many astonishing findings. So, due to
considering the diversity and complexity of the plastid, most of
the reviews for plastid related signals focused on specific aspects,
such as plastid differentiation (Liebers et al., 2017; Knudsen et al.,
2018; Sadali et al., 2019), light signals (López-Juez, 2007; Larkin
and Ruckle, 2008; Larkin, 2014), redox control (Toyoshima et al.,
2005), regulation and retrograde signals (Rodermel, 2001; Nott
et al., 2006; Pogson et al., 2008; Kleine et al., 2009; Chi et al.,
2013; Singh et al., 2015; Sun et al., 2018; Sun and Li, 2020),
evolution (Reyes-Prieto et al., 2007; Archibald, 2009; Wicke et al.,
2011; Keeling, 2013), and hormonal regulation (Al-Babili and
Bouwmeester, 2015; Liu et al., 2017). In this review, we focused on
the post-transcriptional regulation and newly found regulators
for plastid transitions (Figure 2).

Chloroplast Development
Light is the primary signal for chloroplast development. Different
ranges in wavelength are perceived by different photoreceptors,
for example, UV-B is identified by UV RESISTANCE LOCUS 8
(UVR8), UV-A and blue light are identified by cryptochromes
(CRYs) and phototropins, red light and far-red light are identified
by phytochrome-red (Pr) and phytochrome-far-red (Pfr),
respectively, as the interconvertible form of phytochromes (Paik
and Huq, 2019). To take advantage of rapid response, the plants
use post-transcriptional regulation by transferring the signal to
E3 ligase mediated protein degradation pathways. In CULLIN4
(CUL4) type E3 ligase complex, CUL4 and UV−DAMAGED
DNA BINDING PROTEIN1 (DDB1) consist of fundamental
structures while CONSTITUTIVE PHOTOMORPHOGENICs
(COPs), SUPRESSOR OF phyAs (SPAs), and DE-ETIOLATED
1 (DET1) have target-specificity functions (Lau and Deng,
2012). The COP1-SPA1 complex is a core regulator for light
perception by the UVR8, CRY1 receptors and phytochrome
responses (Wang et al., 2001; Saijo et al., 2003; Huang et al.,
2013; Martínez et al., 2018). When UVR8 and CRY1 are activated
by light, they inactivate COP1 and exported COP1 protein to

the cytosolic region from the nucleus and, consequently, block
the ubiquitination of ELONGATED HYPOCOTYL 5 (HY5)
protein (Lau and Deng, 2012). The COP10-DET1 complex
was also reported to be involved in the ubiquitination of
Long Hypocotyl in Far-Red 1 (HFR1) (Yang et al., 2005) and
GOLDEN2-LIKE 1 (GLK1) (Tang et al., 2016). HY5, HYH,
and HFR1 were reported as positive transcriptional regulators
used to assemble light signals for hypocotyl elongation and
early light responses. GLKs also binds to the 32–88 aa region
of DET1 and the protein stability of GLKs are increased by
blocking ubiquitination mediated protein degradation (Tang
et al., 2016). GLKs are core positive regulators for chloroplast
development based on their mutant phenotypes, while the
phenotype of glk1/glk2 double KO still had chloroplasts which
indicates the possibility of another regulator (Fitter et al.,
2002; Wang et al., 2013). Two genes were reported for similar
but minor phenotypes when compare to GLKs, called GATA,
NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED
(GNC), and GNC-LIKE (GNL) (Richter et al., 2010). When the
lights on, together with the release of the E3 ligase degradation
pathway, there was transcriptional inhibition of HY5, HYH,
and HRF1 by PHYTOCHROME INTERACTING FACTORS
(PIFs), and ethylene-insensitive 3 (EIN3) was released by the
degradation of the PIFs and EIN3 (Zhong et al., 2009). This
also triggered the transcriptional regulation of core positive
regulators to give synergetic effects. Pseudo-Etiolation in
Light/DEEP GREEN PANICLE1 (AtPEL1) was primarily reported
in the Arabidopsis Full-length cDNA Over-eXpressing gene
hunting system (FOX hunting system) for the chlorophyll
repression gene (Ichikawa et al., 2006; Llorente et al., 2017) and,
interestingly, with the same FOX hunting system, the ectopic
overexpression of OsGLK1 convert proplastid into chloroplast in
rice callus (Nakamura et al., 2009). The further analysis showed
a binding affinity of OsPEL1 with OsGLK1 and OsGLK2 in
rice. Although the regulatory model was not well-established
and the function of PEL in rice was restricted to the panicle,
AtPEL1 represses the activation activity of OsGLK1 (Zhang
et al., 2020). With the assembly of positive regulators, the core
enzymatic proteins for chloroplast biogenesis, the tetrapyrrole
biosynthesis pathway, Photosynthesis Associated Nuclear Genes
and PEP-associated proteins (PAPs), SIGMA factors (SIG),
PRIN2 were elevated (Kindgren et al., 2012; Kobayashi and
Masuda, 2016; Hernández-Verdeja et al., 2020).

Chromoplast Development
Several regulators play essential roles in chromoplast transition,
but they are not as well-established as in chloroplasts. During
fruit ripening in tomato (Solanum lycopersicum), the MADS-
box transcription factor RIPENING INHIBITOR (RIN) has been
reported as core positive regulator that activates rate-limiting
enzymes in carotenoid pathways (Martel et al., 2011). TOMATO
AGAMOUS LIKE1 (TAGL1) forms a complex with RIN and
lycopene in tomato fruits was fortified by TAGL1 overexpression
(Itkin et al., 2009; Lü et al., 2018). A non-functional mutant
of the NAC transcription factor called NON-RIPENING (NOR)
was reported for a similar phenotype of the rin mutant by
retardation of the plastid transition (Giovannoni, 2004, 2007).
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FIGURE 2 | Schematic diagram of the plastid transition regulations. The regulatory mechanisms of greening and non-greening plastid interconversions are briefly
summarized with core transcriptional and post-translational regulators. The light signals from different wavelengths are indicated with thick arrows with representative
colors. The photoreceptors are shown with circles, while regulatory genes are shown within rectangular boxes. E3 ligase complexes, chloroplast biogenesis related
enzymes, and chromoplast biogenesis related enzymes were categorized with white brown, green, and orange-colored boxes, respectively. DNA helix symbols
represent the transcriptional regulation of genes. Green lines indicate the direct effects of “Greening” while red lines indicate the direct effects of “Non-greening”.

A light-induced bZIP transcription factor HY5 directly binds to a
promoter for carotenoid biosynthesis rate-limiting enzymes, PSY
and phytoene desaturase (PDS), and activates their transcription
(Toledo-Ortiz et al., 2014). Another positive regulator, OR,
was responsible for the generation of chromoplasts in floral
organs of cauliflower (Brassica oleracea var. botrytis) (Li et al.,
2003; Lu et al., 2006). OR was also reported to have holdase
chaperone activity for PSY, as it enhanced the PSY protein
stability and increased its enzymatic activity (Welsch et al.,
2018). In Arabidopsis, further analysis found that the OR binds
with a bHLH transcription factor TEOSINTE BRANCHED,
CYCLOIDEA AND PCF (TCP14) to increase the stability and
transcription level of EARLY LIGHT-INDUCIBLE PROTEINS
(ELIP1 and ELIP2), which are chlorophyll binding proteins
for chloroplast development (Sun et al., 2019). And diverse
mutant analysis with different species indicates the essential
roles of OR gene in chromoplast development (Kim et al.,
2018; Welsch et al., 2020). Meanwhile, as repressive regulators,

STAY-GREEN 1 (SlSGR1) in tomato directly interacted with
SlPSY1 and could inhibit its protein levels. Furthermore, the
repression of SlSGR1 in transgenic tomato fruits resulted
in the elevation of SlPSY1 mRNA accumulations and the
acceleration of chromoplast interconversion times (Luo et al.,
2013). One of the MADS-box proteins called SlCMB1, which
belongs to the same SEP sub-clade with RIN, was also reported
to have an essential role in chromoplast development in
tomato. The SlCMB1-RNAi fruits have decreased PSY1 and
PDS expression, and decreased ethylene production and related
signal pathway genes (Zhang et al., 2018). Furthermore, the
exogenous induction of rate-limiting carotenoid biosynthesizing
enzymes able to trigger the interconversion of plastids to
chromoplasts (Ha et al., 2019; Llorente et al., 2020). Diverse
environmental stresses and developmental signals including
ripening could also trigger chromoplast development through
the induction of carotenoid biosynthesis (Bouvier et al., 1998;
Sadali et al., 2019).
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CONCLUSION AND PERSPECTIVE

From the overview of diverse representative, sophisticate
adjustment of plastid interconversion revealed as essential
element for multiple agronomic traits. Not only the
photosynthesis related yield potential, many plant-derived
biproducts including starch, lipid, protein and secondary
metabolites have been determined by development and
interconversion of plastid. Although, under the demands
from the plants are continuously increased with limited
environmental condition, this review suggest the study of
plastid can be the breakthrough solution and supports
the plastid research by representative scientific reports
of plastid interconversion types and core regulators for
molecular modification candidates. Finally, the candidates
from the well summarized molecular pathway for plastid
interconversion can be applied as target gene for

improving multiple agronomic traits which are related to
plastid interconversion.
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Kwiatkowska, M., Stępiński, D., Popłońska, K., Wojtczak, A., and Polit, J.
(2010). “Elaioplasts” of Haemanthus albiflos are true lipotubuloids: cytoplasmic
domains rich in lipid bodies entwined by microtubules. Acta Physiol. Plant. 32,
1189–1196. doi: 10.1007/s11738-010-0514-x

Kwiatkowska, M., Stepinski, D., Poplonska, K., Wojtczak, A., and Polit, J. (2011).
‘Elaioplasts’ identified as lipotubuloids in Althaea rosea, Funkia sieboldiana and
Vanilla planifolia contain lipid bodies connected with microtubules. Acta Soc.
Bot. Pol. 80, 211–219. doi: 10.5586/asbp.2011.036

Ladygin, V., Bondarev, N., Semenova, G., Smolov, A., Reshetnyak, O., and Nosov,
A. M. (2008). Chloroplast ultrastructure, photosynthetic apparatus activities
and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro.
Biol. Plant 52, 9–16. doi: 10.1007/s10535-008-0002-y

Larkin, R. M. (2014). Influence of plastids on light signalling and development.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130232.

Larkin, R. M., and Ruckle, M. E. (2008). Integration of light and plastid signals.
Curr. Opin. Plant Biol. 11, 593–599. doi: 10.1016/j.pbi.2008.10.004

Lau, O. S., and Deng, X. W. (2012). The photomorphogenic repressors COP1 and
DET1: 20 years later. Trends Plant Sci. 17, 584–593. doi: 10.1016/j.tplants.2012.
05.004

Lersten, N. R., Czlapinski, A. R., Curtis, J. D., Freckmann, R., and Horner, H. T.
(2006). Oil bodies in leaf mesophyll cells of angiosperms: overview and a
selected survey. Am. J. Bot. 93, 1731–1739. doi: 10.3732/ajb.93.12.1731

Li, L., Lu, S., O’halloran, D. M., Garvin, D. F., and Vrebalov, J. (2003). High-
resolution genetic and physical mapping of the cauliflower high-β-carotene
gene Or (Orange). Mol. Genet. Genom. 270, 132–138. doi: 10.1007/s00438-003-
0904-5

Liebers, M., Grübler, B., Chevalier, F., Lerbs-Mache, S., Merendino, L., Blanvillain,
R., et al. (2017). Regulatory shifts in plastid transcription play a key role in
morphological conversions of plastids during plant development. Front. Plant
Sci. 8:23. doi: 10.3389/fpls.2017.00023

Liu, X., Li, Y., and Zhong, S. (2017). Interplay between light and plant hormones
in the control of Arabidopsis seedling chlorophyll biosynthesis. Front. Plant Sci.
8:1433. doi: 10.3389/fpls.2017.01433

Llorente, B., Martinez-Garcia, J. F., Stange, C., and Rodriguez-Concepcion,
M. (2017). Illuminating colors: regulation of carotenoid biosynthesis and
accumulation by light. Curr. Opin. Plant Biol. 37, 49–55. doi: 10.1016/j.pbi.2017.
03.011

Llorente, B., Torres-Montilla, S., Morelli, L., Florez-Sarasa, I., Matus, J. T.,
Ezquerro, M., et al. (2020). Synthetic conversion of leaf chloroplasts into
carotenoid-rich plastids reveals mechanistic basis of natural chromoplast
development. Proc. Natl. Acad. Sci. U.S.A. 117, 21796–21803. doi: 10.1073/pnas.
2004405117

López-Juez, E. (2007). Plastid biogenesis, between light and shadows. J. Exp. Bot.
58, 11–26. doi: 10.1093/jxb/erl196

Lopez-Juez, E., and Pyke, K. A. (2004). Plastids unleashed: their development
and their integration in plant development. Int. J. Dev. Biol. 49, 557–577.
doi: 10.1387/ijdb.051997el

Lü, P., Yu, S., Zhu, N., Chen, Y. R., Zhou, B., Pan, Y., et al. (2018). Genome encode
analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat.
Plants 4, 784–791. doi: 10.1038/s41477-018-0249-z

Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M.,
et al. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-
containing protein that mediates high levels of β-carotene accumulation. Plant
Cell 18, 3594–3605. doi: 10.1105/tpc.106.046417

Luo, Z., Zhang, J., Li, J., Yang, C., Wang, T., Ouyang, B., et al. (2013).
A STAY−GREEN protein S l SGR 1 regulates lycopene and β−carotene
accumulation by interacting directly with S l PSY 1 during ripening processes
in tomato. New Phytol. 198, 442–452. doi: 10.1111/nph.12175

Ma, G., Zhang, L., Kitaya, Y., Seoka, M., Kudaka, R., Yahata, M., et al. (2020). Blue
LED light induces regreening in the flavedo of Valencia orange in vitro. Food
Chem. 335, 127621. doi: 10.1016/j.foodchem.2020.127621

Maass, D., Arango, J., Wüst, F., Beyer, P., and Welsch, R. (2009). Carotenoid
crystal formation in Arabidopsis and carrot roots caused by increased phytoene
synthase protein levels. PloS one 4:e6373. doi: 10.1371/journal.pone.0006373

Majer, E., Llorente, B., Rodríguez-Concepción, M., and Daròs, J. A. (2017).
Rewiring carotenoid biosynthesis in plants using a viral vector. Sci. Rep. 7, 1–10.
doi: 10.1038/srep41645

Makino, A., and Osmond, B. (1991). Effects of nitrogen nutrition on nitrogen
partitioning between chloroplasts and mitochondria in pea and wheat. Plant
Physiol. 96, 355–362. doi: 10.1104/pp.96.2.355

Martel, C., Vrebalov, J., Tafelmeyer, P., and Giovannoni, J. J. (2011). The
tomato MADS-box transcription factor RIPENING INHIBITOR interacts
with promoters involved in numerous ripening processes in a COLORLESS
NONRIPENING-dependent manner. Plant Physiol. 157, 1568–1579. doi: 10.
1104/pp.111.181107

Martínez, C., Nieto, C., and Prat, S. (2018). Convergent regulation of PIFs and the
E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant
phytochromes. Curr. Opin. Plant Biol. 45, 188–203. doi: 10.1016/j.pbi.2018.09.
006

Matsushima, R., and Hisano, H. (2019). Imaging amyloplasts in the developing
endosperm of barley and rice. Sci. Rep. 9, 1–10. doi: 10.1038/s41598-019-40
424-w

Matsushima, R., Maekawa, M., Kusano, M., Kondo, H., Fujita, N., Kawagoe, Y.,
et al. (2014). Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein
influences the size of starch grains in rice endosperm. Plant Physiol. 164,
623–636. doi: 10.1104/pp.113.229591

Mayfield, S. P., and Huff, A. (1986). Accumulation of chlorophyll, chloroplastic
proteins, and thylakoid membranes during reversion of chromoplasts to
chloroplasts in Citrus sinensis epicarp. Plant Physiol. 81, 30–35. doi: 10.1104/
pp.81.1.30

Møller, S. G. (2006). Plastids. Annual plant review. Vol 13. Ann. Bot. 97, 676–677.
doi: 10.1093/aob/mcl018

Mortimer, C. L., Misawa, N., Perez-Fons, L., Robertson, F. P., Harada, H., Bramley,
P. M., et al. (2017). The formation and sequestration of nonendogenous
ketocarotenoids in transgenic Nicotiana glauca. Plant Physiol. 173, 1617–1635.
doi: 10.1104/pp.16.01297

Naeem, M., Tetlow, I., and Emes, M. J. (1997). Starch synthesis in amyloplasts
purified from developing potato tubers. Plant J. 11, 1095–1103. doi: 10.1046/
j.1365-313X.1997.11051095.x

Nakamura, H., Muramatsu, M., Hakata, M., Ueno, O., Nagamura, Y., Hirochika,
H., et al. (2009). Ectopic overexpression of the transcription factor OsGLK1
induces chloroplast development in non-green rice cells. Plant cell physiol. 50,
1933–1949. doi: 10.1093/pcp/pcp138

Nakamura, M., Nishimura, T., and Morita, M. T. (2019). Gravity sensing and signal
conversion in plant gravitropism. J. Exp. Bot. 70, 3495–3506. doi: 10.1093/jxb/
erz158

Niyogi, K. K. (2000). Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3,
455–460. doi: 10.1016/S1369-5266(00)00113-8

Niyogi, K. K., Björkman, O., and Grossman, A. R. (1997). The roles of specific
xanthophylls in photoprotection. Proc. Natl. Acad. Sci. U.S.A. 94, 14162–14167.
doi: 10.1073/pnas.94.25.14162

Nott, A., Jung, H.-S., Koussevitzky, S., and Chory, J. (2006). Plastid-to-nucleus
retrograde signaling. Annu Rev. Plant Biol. 57, 739–759. doi: 10.1146/annurev.
arplant.57.032905.105310

Oleszkiewicz, T., Klimek-Chodacka, M., Milewska-Hendel, A., Zubko, M., Stróż,
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