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High crop yields are generally associated with high nitrogen (N) fertilizer rates. A growing 
tendency that is urgently demanding the adoption of precision technologies that manage 
N more efficiently, combined with the advances of crop genetics to meet the needs of 
sustainable farm systems. Among the plant traits, stem architecture has been of paramount 
importance to enhance harvest index in the cereal crops. Nonetheless, the reduced stature 
also brought undesirable effect, such as poor N-uptake, which has led to the overuse of 
N fertilizer. Therefore, a better understanding of how N signals modulate the initial and 
late stages of stem development might uncover novel semi-dwarf alleles without pleiotropic 
effects. Our attempt here is to review the most recent advances on this topic.
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INTRODUCTION

To secure steadily growing global demand for food, agronomic practices have increasingly 
spurred more nitrogen (N) fertilizer inputs to agricultural lands, leading not only to economic 
competitiveness between smallholder farmers, but also causing detrimental and pervasive impacts 
on the environment and climate (Cui et  al., 2018; Kanter et  al., 2019). Yet according to FAO 
(2019), N fertilizer consumption may continue its uptrend on global demand in the foreseeable 
future, rising by 2.6% to reach 111.5 teragrams (Tg) N by 2020/2022. In a world of climate 
volatility and over-farming, global food security is reliant on crop yield forecasting, which 
entails various elements of uncertainty and necessity that might lead to the over application 
of N. At the farm level, for instance, lack of information about the bountiful supply of N 
available in the soil (Ladha et  al., 2016; Yan et  al., 2020) as well as precision agriculture 
(Omara et  al., 2019) have led to uncertainties about N application rates by farmers (Lobell, 
2007). Optimization of N dosage through site-specific best management practices (BMPs) has 
been proposed as the sustainable agriculture flagship to prevent run-off, which accounts for 
67% of applied N fertilizer for cereal production worldwide (Raun and Johnson, 1999). On 
the other hand, the necessity for high N input has been a determinant factor, whereas the 
main cereal crops present a low nitrogen use efficiency (NUE) that demands considerable 
amounts of N for food production needs (Hawkesford and Griffiths, 2019). In the past, 
particularly in rice and wheat, breeders altered the growth response to N through the introduction 
of semi-dwarf genes to shorten the plant stature, the so-called Green Revolution (GR) varieties 
(Peng et  al., 1999; Spielmeyer et  al., 2002). As a result, they were able to reduce the lodging 
risk (i.e., bend or break the stem base), and to maximize yield potential in these modern 
varieties (Ortiz-Monasterio et  al., 1997; Gooding et  al., 2012); but as cited above, it has caused 
an unprecedented “domino effect” of N inputs, owing to the negative pleiotropic effects such 
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as poorer N uptake (Li et  al., 2018; Hawkesford and Griffiths, 
2019; Wang et  al., 2020; Wu et  al., 2020).

Therefore, in parallel with BMPs and precision agriculture, 
the attenuation or elimination of the necessity of high N input 
must be  targeted in the modern cereal crops. Although these 
high-yielding semi-dwarf varieties present an improved N 
utilization efficiency (i.e., grain yield per unit of N uptake) 
due to the direct response to fertilizer inputs without the effect 
of lodging, on the other hand, their N uptake efficiency (i.e., 
the capacity of the roots to acquire N from the soil) is negatively 
compromised by the dual-faceted impacts of gibberellin (GA) 
on plant height and N uptake (Li et  al., 2018; Wu et  al., 
2020). Despite recent contributions on N uptake should 
be  pointed out (Feng et  al., 2020; Rahikainen and Kangasjärvi, 
2020), this mini-review attempts to summarize the current 
knowledge of how N regulates stem development, in order to 
encourage progress toward better semi-dwarfing alleles without 
undesirable effects in the future.

NITRATE IS A DRIVING FORCE OF THE 
INITIAL STAGE OF STEM 
DEVELOPMENT

All aerial organs are initiated at the apical dome, also known 
as shoot apical meristem (SAM). This region comprises dynamic 
and spatially functional zones that provide robustness and 
plasticity during the entire shoot ontogeny. Broadly speaking, 
at the tip of the SAM, the central zone (CZ) moves continuous 
daughter cells into the rib meristem (RM), where the stem’s 
central core (pith) originates, and into the surrounding 
peripheral zone (PZ), which contributes to the stem epidermis 
and cortex (Gaillochet et  al., 2015). Besides, the peripheral 
and central rib regions tandemly locate together, forming the 
rib zone (RZ), where proliferation and expansion give rise 
to the axial elongation in seed plants (McKim, 2019; Figure 1A). 
Thus, a sophisticated interconnection network between the 
zones through metabolites, non-cell-autonomous proteins, and 
phytohormones controls the size of the meristem and the rate 
of shoot organogenesis, ensuring a robust, plastic developmental 
spectrum (Tian et  al., 2019).

This raises the question of whether there is a precise 
N-led signaling pathway, or it is the spreading of N to the 
zones of the SAM that modulates RZ activity and stem 
elongation. Currently, novel pieces of evidence in Arabidopsis 
thaliana (hereafter called Arabidopsis) suggest the coexistence 
of dual N sensing within the SAM: a systemic and local 
signal. The systemic signal relies on the activation of trans-
zeatin (tZ)-type cytokinin (CK) in roots, in response to N 
supply, and its translocation to the SAM via the xylem 
(Landrein et  al., 2018; Poitout et  al., 2018). Impairing CK 
allocation to the SAM through the cyp735a1 cyp735a2 double 
mutant, in which tZ-type CKs are severely reduced, exhibited 
a shortened inflorescence stem similar to that of abcg14, an 
important gene for CK transport (Kiba et  al., 2013; Poitout 
et al., 2018). Notably, tZ content may also positively influence 
glutamate/glutamine levels, which are known to promote stem 

elongation (Poitout et  al., 2018). In contrast, the local signal 
comprises the action of nitrate itself entering into the SAM, 
where it is assimilated in the RZ and the organ boundary 
domain (B) through the nitrate assimilatory enzymes nitrate 
reductases (NIA1 and NIA2; Olas et  al., 2019; Figure  1B).

The notion that these enzymes act as an N-sensitive checkpoint 
in the SAM may be corroborated by the fact that their expression 
and activity are highly regulated to fine-tune the sensing and 
integration of carbon (C)/N ratio (Klein et  al., 2000; Park 
et al., 2011; Kim et al., 2018). The balance that is also determined 
by the tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate 
(2-OG), which is the major carbon skeleton in N-assimilatory 
reactions for the synthesis of glutamate (Zheng, 2009; Huarancca 
Reyes et  al., 2018). Interestingly, boundary domains exert a 
critical function in preserving stem elongation, whereas an 
ectopic expression of boundary genes [BLADE-ON-PETIOLE1 
(BOP1/2)-Arabidopsis thaliana HOMEOBOX1 (ATH1)-
KNOTTED1-LIKE FROM A.THALIANA6 (KNAT6)] in the 
RZ causes growth defects (Khan et  al., 2012a,b; Hepworth 
and Pautot, 2015). Recent work has shown that TGACG-motif 
binding-1 and -4 (TGA1/4), two regulatory factors of the 
primary nitrate responses (Alvarez et  al., 2014), interact and 
recruit BOP1/2 coactivators to the promoter of ATH1 homeobox 
in Arabidopsis (Wang et  al., 2019; Figure  1B). ATH1 is known 
to repress RZ proliferation, whereas ath1-3 mutants displayed 
longer internodes than the wild-type control (Gómez-Mena 
and Sablowski, 2008). Scrutinizing the potential of this integration 
of TGA1/4  in N response and stem growth might open up 
new avenues for NUE.

Similar to other organs, stem development is regulated by 
the activity of two combined actions: cell division and expansion. 
In the most apical region of the RZ in both dicots and monocots 
[plus the intercalary meristem (IM) in grasses, the details are 
below] lies the active cell division which is regulated by GA 
(Sachs et  al., 1959; Sachs, 1965; Serrano-Mislata et  al., 2017). 
The notorious close interrelation between GA stimuli and N 
homeostasis at different regulatory levels in plants (David et al., 
2016; Gras et al., 2018; Wang et al., 2020) creates a compelling 
logic to consider other semi-dwarfing alleles influencing stem 
elongation due to the negative pleiotropic effects. Strikingly, 
almost 67% of GA-regulated genes in Arabidopsis require 
brassinosteroids (BRs; Bai et  al., 2012). This high dependence 
reflects the interaction network of BR and GA at multiple 
levels in model plants that could be  further explored for NUE. 
In rice, for instance, the brassinosteroid deficient mutant 
(osdwarf4-1) presented a slightly dwarfed stature and more 
erect leaves, which enhanced biomass production and grain 
yield, without extra fertilizer (Sakamoto et  al., 2006).

Besides, recent studies have demonstrated the involvement 
of the microRNA miR396/growth regulating-factors (GRFs)/
GRF-interacting factors (GIFs) regulatory module in the 
interaction network of BR and GA signaling (Tang et al., 2018; 
Zhang et  al., 2020). The overexpression of miR396 represses 
organ growth in Arabidopsis by repressing the activity of the 
targeted GRF and GIF genes (Rodriguez et al., 2010). Interestingly, 
the miR396 acts downstream of DELLA, the negative regulator 
of GA responses, and upstream of GA-induced cell-cycle genes 
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for the control of stem elongation in rice (Lu et  al., 2020). 
Conversely, more recently, the miR396e and miR396f (miR396ef) 
rice mutants showed an increased grain yield under nitrogen-
deficient conditions (Zhang et al., 2020). Future studies addressing 
the cross-talk between N and BR signaling and the miR396-
GRFs module in the RZ may disclose a new perspective on 
N-driven stem elongation.

At the early stages of stem development, the establishment 
of a vascular pattern is an important aspect. New vascular 
strands are initiated by the canalization of auxin flow from 
new primordia toward a pre-existing vascular network (Scarpella, 
2017). As auxin signaling is inhibited in the RM region in 
dicotyledons, these new vascular networks are initiated at the 
boundary between the peripheral and the central regions of 
the RZ (Banasiak et  al., 2019). Reflecting on the importance 
of auxin in controlling the formation of veins and their 
connections, recent work revealed the uniform expression of 
TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN-
SIGNALING F-BOX (AFB) proteins in the SAM (Prigge et  al., 
2020). AFB3 is directly regulated by nitrate (Vidal et  al., 2010) 
and potentially regulates the direction of auxin transport during 
stem vascularization (Wulf et  al., 2019). Besides, two master 
regulators of primary nitrate response, NIN-LIKE PROTEIN6/7 
(NPL6 and NPL7) are expressed in the SAM and adjacent PZ 
(Olas et al., 2019). Notably, recent findings connect NLP7 with 
the Ca2+-sensor protein kinases (CPKs) to orchestrate 

nutrient-growth regulatory networks (Liu et al., 2017). Although 
CPK28 is not part of the subgroup III, of which the genes 
are nitrate-responsive (e.g., CPK10, CPK30 and CPK32), it 
controls stem elongation and vascular development in Arabidopsis 
(Matschi et  al., 2013). Further studies will be  required to 
scrutinize in more detail their roles in stem development.

Moreover, once a stem starts growing (i.e., N-demanding 
tissue), vascularisation plays an essential role in the source-
to-sink N remobilization (Fernie et  al., 2020). As such, nitrate 
transporters on major and minor veins facilitate N allocation 
to fast-growing sinks, optimizing plant growth in N-sufficient 
and N-deficient conditions (Tegeder and Masclaux-Daubresse, 
2018; Chen et al., 2020). One example is the nitrate transporter1/
peptide transporter family (osnpf2.2) rice mutants, which showed 
growth retardation and abnormal vasculature (Li et  al., 2015). 
Apart from inorganic N, organic N might also be  critical for 
stem development. For instance, polyamines (putrescine, 
spermidine and spermine) are aliphatic amines that act as 
growth regulators in plant growth and development (Chen 
et  al., 2019). It is worthwhile to investigate the increase of 
polyamine content in nitrate and ammonium-grown plants 
(Garnica et  al., 2009; Paschalidis et  al., 2019), whereas the 
ACAULIS5/THICKVEIN (ACL5/TKV) protein, a 
thermospermine synthase, is also involved in stem elongation 
and vascularization in plants (Hanzawa, 2000; Clay and Nelson, 
2005; Vera-Sirera et  al., 2015).

A C

B

D

FIGURE 1 | How nitrogen (N) may modulate stem development. (A) Schematic illustration of Arabidopsis inflorescence stem showing the longitudinal section of the 
shoot apical meristem (SAM) and the meristematic zones. In detail, a representation of the oriented cell division in the rib zone (RZ). CZ, central zone; RM/OC, rib 
meristem/organizing centre; PZ, peripheral zone; B, organ boundary. (B) The dual nitrogen sensing within the shoot apex through a systemic root-to-shoot transport 
of the active cytokinin (CK) trans-zeatin (tZ), and the local sensing of nitrate through the nitrate reductase enzymes. In the dashed square, the two regulatory factors 
of the primary nitrate responses (TGA1/4) are highlighted, evidencing their involvement in the activation of the organ boundary genes. Blue arrows show the direction 
of root-to-shoot transportation. (C) Schematic illustration of wheat showing the growth stage 32 (GS32) based on Zadoks et al. (1974). In wheat, most N is taken up 
during the stem elongation phase (GS30–GS37) until the flowering stage. On the right, the longitudinal section of the nodes and internodes, and the floret initiation 
at this stage. (D) A simplified scheme of the central role of N in the regulation of the four different aspects of stem development.
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N SIGNALING IN THE LATER STAGES 
OF STEM DEVELOPMENT: INTERNODE 
ELONGATION AND LIGNIFICATION

In dicot plants with a rosette habit such as Arabidopsis, radish 
and cabbage, among other species, the compressed vegetative 
internodes shift to an acropetal expansion after the reproductive 
transition. In contrast, in monocots, particularly grasses, vegetative 
internodes are promoted by intercalary meristems (IMs), located 
at the base of each internode (Figure  1C). After an increased 
mitotic activity within the IMs, the cells are displaced upward, 
entering various zones of expansion and lengthening each 
succeeding internode until the heading stage, which later gives 
rise to the grain-laden inflorescence (McKim, 2020).

Thus, both RZ and internodal regions exhibit various sorts 
of cells differing in their states of proliferation, growth, and 
differentiation. Regarding cell growth, for instance, a high level 
of endopolyploidy (i.e., modified cell cycle without cytokinesis) 
occurs in pith cells following organ maturation in Arabidopsis 
and maize (Jacqmard et  al., 1999, 2003; Li et  al., 2019). This 
ties in with a recent study showing that nitrate signaling 
regulates shoot growth by controlling endoreduplication through 
the upregulation of a key cell cycle regulatory gene LGO, a 
known cyclin-dependent kinase (CDK) inhibitor (Moreno et al., 
2020). Given that nitrate regulates LGO-mediated 
endoreduplication and cell expansion in Arabidopsis, it is 
reasonable to speculate whether such modulation is also present 
within the RZ and internodal regions of cereal and bioenergy 
crops, which may also explain the N-responsive stem elongation 
of such crops (Euring et  al., 2014; Zeng et  al., 2020).

In addition, cell proliferation and expansion strictly depend 
on the mechanical properties of primary cell walls (CW). 
Differences in the expression of CW-related genes and CW 
composition have been observed during stem elongation (Hall 
et  al., 2013; Hall and Ellis, 2013). A detailed study of CW 
composition and the dynamic and mechanical properties of 
the Arabidopsis inflorescence stem suggested that changes in 
the pectin structure, dynamism and mobility lead to weak 
pectin-cellulose interaction, being likely the main factors leading 
to the wall extensibility in fast-growing regions (Phyo et  al., 
2017). Indeed, CW analysis of the upper region of the stem 
(high growth intensity) presented higher pectin and lower 
amounts of xyloglucan (XyG) and (lower) cellulose contents 
(Phyo et  al., 2017). Of interest, in type I-CW, in which XyG 
is the most abundant hemicellulose, a very recent study of 
Arabidopsis showed that the cell wall-related gene xyloglucan 
endotransglucosylases-9 (XTH9), which is highly expressed in 
the shoot apices and might contribute to cell elongation in 
the stem (Hyodo et  al., 2003), is regulated by the nitrate 
signaling pathway (Xu and Cai, 2019).

Moreover, although the specific mechanisms are still to 
be  understood, novel evidence suggests that cellulose content 
is modulated in response to N status in Arabidopsis and rice 
(Landi and Esposito, 2017; Zhang et  al., 2017). Yet, in grass-
specific type-II CW, different inorganic N forms, such as nitrate 
and ammonium, may modify the chemical structure of pectins 

and hemicelluloses (Podgórska et al., 2017). The CW properties 
are thereby dynamically regulated to allow sufficient nutrients 
to reach demanding organs, as well as to allow cell expansion 
prior to growth cessation, a tightly regulated process that is 
accompanied by N status (Głazowska et  al., 2019).

Stem maturation is followed by secondary cell wall production 
and lignification (Barros et  al., 2015), which confer stem 
properties such as length, flexibility and strength, and are tightly 
regulated to prevent bending and breaking which lead to crop 
lodging. Interestingly, recent work showed that high N availability 
substantially reduces the H, G and S monolignol precursors 
(p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, 
respectively) of lignin, and hence, the total lignin content in 
the shoot of maize seedlings (Sun et  al., 2018). The authors 
elegantly demonstrated that the miR528, a monocot-specific 
miRNA expressed in vascular tissues, is upregulated by N 
supply, leading to the repression of ZmLACCASE3 (ZmLAC3) 
and ZmLACCASE5 (ZmLAC5), oxidative enzymes involved in 
lignin polymerization (Schuetz et al., 2014), that will ultimately 
make such plants more prone to lodging under high N supply 
(Sun et  al., 2018). Likewise, a high N supply increases the 
lodging index in two varieties of japonica rice, owing to the 
significant reduction of cellulose and lignin contents (Zhang 
et  al., 2017). Yet, CW profiles of Brachypodium supplied with 
different types of N source (ammonium and nitrate) showed 
that nitrate-fed plants were prone to less lignification rates 
than those from ammonium-fed plants, suggesting that the 
CW architecture is modulated according to the uptake and 
assimilation of different N form through the cross-talk between 
N metabolism and CW synthesis (Głazowska et  al., 2019).

These recent results demonstrated that cell expansion (plastic 
growth) and CW lignification are strictly influenced by N 
availability. A key mechanism that might be  coordinating 
these adaptive changes is the cell wall integrity (CWI) 
maintenance mechanism that is conserved in both monocot 
and dicot plants (Bacete and Hamann, 2020). Intriguingly, 
recent results from genetic analyses suggest that NIA1 and 
NIA2 act downstream of THESEUS1 (THE1), a surface CW 
sensor, in initiating CW damage responses (Gigli-Bisceglia 
et  al., 2018). THE1 is expressed in elongating cells and in 
vascular tissues in Arabidopsis. Among its target genes, various 
CW-related proteins involved in loosening and stiffening are 
regulated, such as extensins, peroxidase 59 and expansin 1 
(Hématy et  al., 2007). Thus, the CWI mechanism might be  a 
regulator of plant growth according to N status from the 
environment. Future investigations may unveil this intricate 
action of N into CWI signaling, which might be  a potential 
target for heightening NUE in crops.

CONCLUSION AND PERSPECTIVES

Although a shorter stature and stem sturdiness have 
revolutionized world cereal production in the last 50  years, 
the adoption of the original semi-dwarfing alleles has also 
brought the necessity for an increasing amount of N fertilizer 
due to the negative pleiotropic effects. Although several studies 
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have been carried out to understand the genetic basis of 
N  assimilation, curiously, very little attention has been paid 
so far to how environmental N signals modulate RZ activity 
and stem development, mainly in monocot plants (Figure 1D). 
With the advent of recent technical advances in quantitative 
imaging (Serrano-Mislata et  al., 2017), bio-imaging (de Reuille 
et  al., 2015), and biophysical techniques (Phyo et  al., 2017; 
Shah et  al., 2017), along with developmental genetics, a clear 
picture of molecular, cellular and mechanical mechanisms of 
stem growth is increasingly emerging. Understanding these 
developmental mechanisms will allow more genetic tools to 
alter stem architecture and eliminate the root cause of high 
N need in modern semi-dwarfing varieties in order to increase 
productivity and decrease environmental pollution.
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