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Fusarium head blight (FHB) is a devastating disease in cereals around the world. Because
it is quantitatively inherited and technically difficult to reproduce, breeding to increase
resistance in wheat germplasm is difficult and slow. Genomic selection (GS) is a form of
marker-assisted selection (MAS) that simultaneously estimates all locus, haplotype, or
marker effects across the entire genome to calculate genomic estimated breeding values
(GEBVs). Since its inception, there have been many studies that demonstrate the utility of
GS approaches to breeding for disease resistance in crops. In this study, the Uniform
Northern (NUS) and Uniform Southern (SUS) soft red winter wheat scab nurseries (a total
452 lines) were evaluated as possible training populations (TP) to predict FHB traits in
breeding lines of the UK (University of Kentucky) wheat breeding program. DON was best
predicted by the SUS; Fusarium damaged kernels (FDK), FHB rating, and two indices,
DSK index and DK index were best predicted by NUS. The highest prediction accuracies
were obtained when the NUS and SUS were combined, reaching up to 0.5 for almost all
traits except FHB rating. Highest prediction accuracies were obtained with bigger TP sizes
(300–400) and there were not significant effects of TP optimization method for all traits,
although at small TP size, the PEVmean algorithm worked better than other methods. To
select for lines with tolerance to DON accumulation, a primary breeding target for many
breeders, we compared selection based on DON BLUES with selection based on DON
GEBVs, DSK GEBVs, and DK GEBVs. At selection intensities (SI) of 30–40%, DSK index
showed the best performance with a 4–6% increase over direct selection for DON. Our
results confirm the usefulness of regional nurseries as a source of lines to predict GEBVs
for local breeding programs, and shows that an index that includes DON, together with
FDK and FHB rating could be an excellent choice to identify lines with low DON content
and an overall improved FHB resistance.

Keywords: genomic selection, Fusarium head blight, training population, DON content, disease resistance,
prediction accuracy
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INTRODUCTION

Fusarium head blight (FHB) is one of the most devastating
diseases of bread wheat (Triticum aestivum L.) worldwide, which
leads to significant losses in grain yield and quality. FHB is
particularly aggressive in regions with cropping systems in
rotation with maize and high humidity and moisture through
heading and maturity. It is primarily caused by Fusarium
graminearum Schwabe, which infects spikes of wheat leading
to the discoloration and deterioration of grain, and the
contamination with mycotoxins, mainly deoxynivalenol (DON;
Parry et al., 1995; Dexter, 1996; Argyris et al., 2003).

Control of FHB is difficult because of the complexity of the
disease and the need for use of different management strategies
has been proven (Bai and Shaner, 2004). Breeding for resistant
cultivars should be a major part of an integrated approach to
reduce the damage from FHB. In this sense, FHB adds
complexity to the objective, because resistance is quantitatively
inherited with many Quantitative Trait Loci (QTLs) involved
(Liu et al., 2005). Breeding for resistance to a quantitative disease
is a difficult task that requires multiple cycles of breeding, leading
to a gradual improvement of resistance over time (Poland and
Rutkoski, 2016). The use of molecular markers to track QTLs of
interest in conjunction with phenotypic selection opened a new
area, marker-assisted selection (MAS), that has been widely used
since the early 2000s (Waldron et al., 1999; Van Sanford et al.,
2001; Buerstmayr et al., 2003; Buerstmayr et al., 2009). The value
of MAS for improving FHB resistance has been confirmed by
many research studies (Miedaner et al., 2006; Anderson et al.,
2007; Buerstmayr et al., 2009; Agostinelli et al., 2012; Miedaner
and Korzun, 2012; Balut et al., 2013; Liu et al., 2013). However,
attempts to improve complex quantitative traits by using QTL-
associated markers is not completely successful because of the
difficulty of finding the same QTL across multiple environments
(due to QTL x environment interactions) or in different genetic
backgrounds (Heffner et al., 2009; Bernardo, 2016; Crossa
et al., 2017).

Genomic selection (GS) is a form of MAS that simultaneously
estimates all locus, haplotype or marker effects across the entire
genome to calculate genomic estimated breeding values (GEBVs)
(Meuwissen et al., 2001). Since its inception, there have been
many studies that demonstrate the utility of GS approaches in
breeding for disease resistance in crops (Heffner et al., 2009;
Lorenz et al., 2012; Rutkoski et al., 2012; Rutkoski et al., 2014;
Poland and Rutkoski, 2016). In wheat, FHB resistance is a
challenging breeding target due to the combination of
quantitatively inherited resistance and a challenging phenotype
that is not easy to reproduce artificially. Thus, GS provides a
great opportunity to breed FHB-resistant wheat cultivars.
Research evaluating the performance of GS on the prediction
of FHB traits in wheat and barley (Hordeum vulgare L.) has
produced some interesting results. Some studies have predicted
GEBVs under a cross validation scheme (Rutkoski et al., 2012;
Arruda et al., 2015; Jiang et al., 2015; Mirdita et al., 2015;
Hoffstetter et al., 2016; Dong et al., 2018), while others have
investigated the application of GS models under a forward
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selection scheme (Sallam and Smith, 2016; Jiang et al., 2017;
Schulthess et al., 2018; Tiede and Smith, 2018; Herter
et al., 2019).

While these studies have contributed information on the
implementation of GS in a wheat breeding program, little
information is found about building the training population
with lines coming from regional scab nurseries. These
nurseries provide multiyear data sets comprising breeding lines
nominated yearly to be included in the Uniform Northern and
Uniform Southern soft wheat scab nurseries (https://scabusa.org/
publications#pubs_uniform-reports). These nurseries are
evaluated in multiple locations every year, and several FHB
traits are recorded at every location. Training the GS model
with lines belonging to these data sets would enable breeders to
rely on multilocation and multiyear data and allow them to
predict GEBVs for lines of local programs based on a wider range
of germplasm evaluated in many locations. Sarinelli et al. (2019)
evaluated the use of a historical USA winter wheat panel to
predict yield and agronomic traits under a cross validation
scheme, and Dawson et al. (2013) evaluated the overall
accuracy of genomic predictions for untested genotypes using
an unbalanced dataset to train a genomic prediction model, but
none of them included FHB traits as an objective of the research.

Several FHB traits have been under study and estimated with
a GS model. The visual evaluation of the disease through FHB
rating or FHB index, the product of incidence and severity, is the
trait most often evaluated in different studies (Rutkoski et al.,
2012; Arruda et al., 2015; Jiang et al., 2015; Mirdita et al., 2015;
Hoffstetter et al., 2016; Schulthess et al., 2018; Herter et al., 2019)
finding moderate to strong prediction accuracies. Another very
important trait, that significantly affects grain quality and
commercialization is DON content, a trait that has also
received some attention in wheat (Rutkoski et al., 2012; Arruda
et al., 2015) and barley (Lorenz et al., 2012; Sallam and Smith,
2016; Tiede and Smith, 2018). DON accumulation is a critical
target for wheat breeders, and even though there is a general
acceptance that breeding for low DON accumulation is
improved by selecting lines based on visually scored traits
(Buerstmayr and Lemmens, 2015), the contamination with
Fusarium and DON on healthy looking grain has been
observed and reported (Argyris et al., 2003). Some research has
been also done on indirect selection for low DON contamination
lines (Rutkoski et al., 2012; Sallam and Smith, 2016) but more
research should be done to extend the estimation of GEBVs for
indices including DON as part of the index.

The primary objective of this study was to evaluate the use of
two unbalanced data sets, the Uniform Northern and Uniform
Southern Scab Nurseries, in a forward GS scheme to predict
GEBVs for FHB traits in lines from the UK wheat breeding
program. As a second objective, we investigated the design of the
training population with the regional scab nurseries separated or
combined, using different TP sizes and different optimization
methods to predict several FHB traits and indices. As a third
objective, we evaluated the use of predicted GEBVs for indices to
select for low DON content lines in comparison with selecting
lines based on GEBVs for DON content.
July 2020 | Volume 11 | Article 1083
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MATERIALS AND METHODS

The plant material in this study comprised lines from the
University of Kentucky soft red winter wheat breeding
program, and the 2014–2018 Uniform Northern and Uniform
Southern soft red winter wheat scab nurseries (NUS and SUS
respectively; Supplementary Table 1).

We evaluated a population of 306 breeding lines from the
University of Kentucky soft red winter wheat breeding program.
Lines were derived from multiple F4:5 and F4:6 families and were
evaluated in yield trials as part of the testing program. Two
hundred twenty nine lines belonging to the NUS that represented
elite germplasm from public and private breeding programs were
evaluated in field environments from 2014 to 2018
(Supplementary Table 1). The data set was balanced for
individual years where the same set of genotypes was evaluated
across different locations and unbalanced between years.
Another set of 223 lines was evaluated in field environments
from 2014 to 2018; these experiments were part of the Uniform
Southern scab nursery (SUS) and represented elite germplasm
from public and private breeding programs. The data was
balanced for individual years where the same set of genotypes
was evaluated across different locations and unbalanced between
years. A list of locations/year combinations for each regional
nursery are shown in Supplementary Table 1).

The 306 breeding lines from the University of Kentucky were
grown in Lexington, KY during the 2016–2017 growing season.
Genotypes were planted in 1.2 m rows long, spaced 30 cm apart.
The soil type at the site is a Maury silt loam (fine, mixed,
semiactive, mesic typic Paleudalfs). The experiment was
planted in a randomized complete block design with two
blocks. Two checks, a resistant line (KY02C-3005-25) and a
susceptible cultivar (Pioneer Brand 2555) were planted across the
experiment. Sixty-six (66) of the total 306 lines that advanced in
the breeding program based on grain yield, agronomic and
disease profile, were also grown in Lexington, KY during the
2017–2018 growing season in the FHB nursery, under the same
protocol explained before.

In both seasons, the FHB Nursery had an overhead mist
irrigation system on an automatic timer that started three weeks
before heading. The irrigation schedule was as follows: 5 min
periods every 15 min from 2,000 to 2,045 h, 2,100 to 2,145 h,
0200 to 0245 h, 0500 to 0530 h, and 0830 h (Balut et al., 2013).
The experiment was inoculated with Fusarium graminearum –
infected corn (Zea mays L.) Inoculum comprised 27 isolates
taken from scabby wheat seeds collected over the years 2007–
2010 from multiple locations across Kentucky (Bec et al., 2015).
The inoculum was prepared by allowing corn to imbibe water for
approximately 16 h before autoclaving. After autoclaving, a
solution of 0.2 g streptomycin in 150 ml sterile water was
mixed in the corn to avoid the growth of other
microorganisms. The corn was inoculated with potato dextrose
agar (PDA) plugs containing Fusarium graminearum, covered
and incubated for 2 weeks until fully colonized by the fungus.
After that, the corn was spread on the floor until dry, and put in
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storage bags in a freezer until use. Approximately 3 weeks prior
to heading, the scabby corn was spread in the rows at a rate of
11.86 g m-2 (Balut et al., 2013).

Each nursery cooperator submits his or her breeding
materials for evaluation and conducts an inoculated FHB trial
at this or her location following the protocols developed by the
U.S. Wheat and Barley Scab Initiative (https://scabusa.org/)
whose aim is to develop control measures against FHB.

Phenotypic Evaluation
At 24 days after heading, FHB rating was recorded using a 0–9
scale. FHB rating is a visual estimate of the incidence and severity
of the disease ranging from 0 (absence of FHB symptoms) to 9 (≥
90% of FHB blighted spikelets). Heading date (HD) was recorded
when 50% of the spikes in a row had emerged from the flag leaf
sheath (in Julian dates; data not shown). Plant height (cm) was
measured from the soil surface to the top of the spike, excluding
awns (data not shown). Lines were manually harvested using a
sickle, mechanically threshed and cleaned. After cleaning, a grain
sample of approximately 15 g from each row was further cleaned
by hand and evaluated for Fusarium damaged kernels (FDK).
The percentage of FDK was estimated by visually comparing
samples with known levels of FDK ranging from 10 to 90%. The
same sample (15 g) was subsequently sent to the University of
Minnesota DON testing laboratory for DON analysis. DON
concentration was determined by gas chromatography with
mass spectrometry (Mirocha et al., 1998; Dong et al., 2006)
Two indices were created:

1. DSK index was created combining FHB rating, FDK
percentage and DON content with the formula: FHB*0.2 +
FDK* 0.3 + DON*0.5;

2. DK index was obtained combining FDK percentage and
DON content with the formula: FDK*0.4+DON*0.6.

Both indices were created to emphasize the importance of
kernels traits (FDK, DON) for breeding against FHB. The NUS
and SUS data were obtained for every genotype, location, year
combination. Lines were planted in a 1.2 m row spaced 30 cm
with two blocks. A common check cultivar (Ernie) was planted in
the NUS and SUS across years and locations. Historical data
consisted of entry mean data for FHB rating, FDK and DON
concentration for each combination of genotype/location/year.

Data Analysis
The following linear mixed model was utilized for the analysis of
the FHB traits for which individual row-level was available:

Ylk = m+Bk + Gl + ϵkl
where m was the mean, Ylk was phenotypic observation of the lth
genotype at the kth block, Bk was effect of the block, Gl was the
effect of the genotype, and ϵkl represented the residual term. The
overall mean and the genotypic effects were considered fixed and
block term random. Best Linear Unbiased Estimators (BLUEs)
were derived from the model above. For the historical data of the
July 2020 | Volume 11 | Article 1083
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NUS and SUS nurseries, a single value of each line-environment
combination was available for the different traits (FHB, FDK,
DON). Therefore, the following linear mixed model was used for
this data:

Yijl = m + Yi + Lj + YLij + Gl + YGil + LGjl + ϵijl,

where m was the mean, Yijl was phenotypic observation of the lth
genotype at the ith year in the jth location, Yi was the effect of the
year, Lj was the effect of the location, Gl was the effect of the
genotype and YGil and LGjl were the interaction terms year by
genotype and location by genotype respectively. Eijl represented
the residual term. The overall mean and the genotypic effects
were considered fixed and all the remaining terms random. The
model above is the one from which BLUEs were derived.

Genotyping
For the 306 breeding lines from the University of Kentucky
wheat breeding program, DNA was extracted using the Sbeadex
plant kit from BioSearch Technologies; using leaf samples from
the F4:5 or F4:6 lines that were collected by sampling a minimum
of eight 7–10 day old seedlings. Genotyping by sequencing (GBS)
(Elshire et al., 2011) using the protocol described by (Poland
et al., 2012) was conducted for the 758 lines that were
phenotyped. Single nucleotide polymorphism (SNP) calling on
raw sequence data was done with Tassel-5GBSv2 pipeline
version 5.2.35. SNPs with ≤50% missing data, ≥5% minor allele
frequency and ≤10% of heterozygous calls per marker locus were
retained and imputation performed using Beagle v4.0. The final
number of SNPs utilized for analysis was 20,929. With the
genome wide marker information, a kinship matrix including
the 758 lines was built in Tassel-5GBSv2. Principal components
analysis was generated with Tassel-5 and the eigenvalues for PC1
and PC2 were plotted (Figure 1).
Frontiers in Plant Science | www.frontiersin.org 4
Genomic Prediction
GEBVs for FHB rating, FDK, DON, DSK, and DK were
estimated using ridge regression best linear unbiased
prediction (RR-BLUP) (Meuwissen et al., 2001) with the model

y = Xb + Zu + e

where y is a vector of BLUEs for one trait for each wheat
genotype, b is a vector of fixed effects which includes the overall
mean and fixed covariates (major QTL and association mapping
markers), u is a vector of random marker effects, X and Z are the
design matrices for fixed and random effects, respectively, and e is
a vector representing residual terms. The variance–covariance
structure associated with the random term was u~N (0, Isu2) and
for the residual term was e~N (0, Ise2). The estimates of u were
obtained from the mixed.solve function using the package RR-
BLUP in R (Endelman and Jannink, 2012). Prediction accuracy
was defined as the Pearson correlation between the phenotypic
values (BLUEs) and the GEBVs (predicted) values.

Design of the Training Populations and
Validating Populations
To evaluate the NUS and SUS as possible TPs to estimate GEBVs
for the UK breeding lines, we established two TP sizes of 100 and
200 lines, and three optimization methods to select the lines:
Random, Two tails and Prediction Error Variance (PEVmean)
(described below). Under these combinations, the NUS and SUS
were used separately as the source of lines for the TP. A second
strategy was to combine the lines of the NUS and SUS as training
population. Data from the two nurseries comes from the same
years in which they have environments in common (15) but no
common lines were used from the two nurseries (with the
exception of the moderately resistant check cultivar Ernie). For
this approach, we evaluated four TP sizes (100, 200, 300, 400),
FIGURE 1 | Scatter plot of the first two principal components from analysis of the 758 lines based on the full set of 20,929 SNPs. Different colors represent different
sets of germplasm. PC1 = 6.1%; PC2 = 3.2%.
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and three different optimization methods: Random, Two tails
and PEV. The validating populations (VP) were created by
selecting 50 genotypes randomly from the total 306 breeding
lines for each validating population, creating a total of 20
validation sets.

Training Population Optimization Methods
As was described above, the effect of the TP size on the predictive
ability of the genomic selection model was assessed using two
(100, 200) and four (100, 200, 300, 400) different population
sizes. For each population size, we implemented three
approaches for comparison of training population selection:

Random
For this method, a random sample of genotypes was selected as
training population for each TP size, varying the source of lines
from which the random sample came. The same random sample
was used for all validating populations.

Two Tails
To implement this method, fully described by Michel et al.
(2017), we selected for each trait individually, the two tails of
the phenotypic distribution for the NUS, SUS, or the
combination of the two. For all of the TP sizes, we selected
lines where 50% had the highest values for the trait, and 50% had
the lowest values for the trait.

PEVmean
This approach utilized a training population optimization
algorithm for each VP that minimized the mean prediction
error variance (Rincent et al., 2012; Akdemir et al., 2015). The
PEVmean algorithm used genomic information from all
genotypes to measure the reliability of the GEBVs for
individuals in the validation set. An optimal training
population from all genotypes available was selected to
minimize the mean prediction error variance in the validation
set. We used the approach suggested by (Akdemir et al., 2015) for
an efficient approximation to the prediction error variance using
the first 100 principal components of the genotypes to estimate
the genomic relationship matrix. The PEVmean strategy was
implemented using the function “GenAlgForSubsetSelection”
from the R package STPGA. Principal components were
estimated from genotypic data, and the first 100 principal
components were chosen for error variance estimation. The
best training population for each of the 20 validation sets for
each of the different population sizes and sources of lines to
become the training population was selected after 300 iterations
of the genetic algorithm parameter, while other parameters in the
function were set with default values.

Cross Validation
We first investigated the predictive ability of the genomic
selection model for each of the three traits and two indices
calculating the Pearson correlation between the phenotypic
values (BLUES) and the GEBVs (predicted) across 100
iterations of cross validation. A random sampling cross
validation was conducted, training the model with the NUS,
Frontiers in Plant Science | www.frontiersin.org 5
SUS, the combination of both nurseries (NUS+SUS) and the set
of KY lines. The cross validation randomly assigned 80% of the
total lines to the TP and the other 20% lines to the VP.

Selection of Lowest DON Content
Lines Based on Ranking and
Different Selection Intensity
The assessment of the DON content provided by the U
Minnesota DON testing laboratory (phenotypic data) and the
correlation with GEBVs obtained with GS was performed in this
way: for each one of the twenty validating populations a ranking
of the lines from lowest to highest DON was made based on
BLUEs, and another ranking was made based on the GEBVs for
DON content, DSK index and DK index obtained with GS.
Different selection intensities were chosen: 20, 30, and 40%.
Afterwards we calculated at the different selection intensities the
percentage of lines with lowest DON levels that would have been
also selected using only the GEBVs for DON, DSK, and DK. This
approach was done for the 306 lines evaluated in 2017 and the 66
lines evaluated in both years (2017–2018).
RESULTS

Principal Components Analysis (PCA)
The scatter plot of the first two principal components (Figure 1)
shows that principal component 1 explained only 6.1% and PC2
only 3.2% of the genetic variance. PCA analysis revealed four
groups of lines clustered together. Two clusters contain KY
breeding lines and also NUS and SUS lines. The other two
clusters were more scattered and contained only KY breeding
lines. It is interesting that based on the 20,929 SNPs used, the
lines belonging to the northern regional nursery grouped
together with lines of the southern regional nursery.

Phenotypic Summary
The sets evaluated in this study consisted of two sets of lines
belonging to the NUS and to the SUS and a third set of lines that
were breeding lines from the University of Kentucky wheat
breeding program. The nurseries historical data comprised five
years that were evaluated and curated to be analyzed. The
phenotypic information (Table 1) for both nurseries, the total
set of lines evaluated in Lexington, KY in 2017, and the subset of
lines evaluated also in 2018 making two years of phenotype
information, showed that good levels of infection were achieved,
so that we were able to score genotypes and differentiate resistant
and susceptible reactions for the different traits. The means for
FHB rating, ranged from 3 in the SUS nursery to 4.5 in the
breeding lines (17–18), with a minimum rating of 1–1.5 and a
maximum rating scores of 7–8.5 in the four sets. The FDK
percentage had an average of 28.3% for the NUS, 31.6% for the
SUS, 37.2% for subset breeding lines, and 48.6% on the total KY
set, showing an average higher value in 2017 in Kentucky
compared with the mean of five years for the regional sets and
two years also in KY. The FDK ranged from 8.7 to 62.8% in the
NUS, 10.7 to 60.2% in the SUS, from 12 to 90% in the total KY set,
July 2020 | Volume 11 | Article 1083
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and from 8.5 to 72.5% in the subset KY lines. The KY set in 2017
reached a higher maximum value for FDK agreeing with the
higher FHB ratings reached. Regarding DON levels, the mean
DON content was 8.6 ppm for the NUS, 9.5 ppm for the SUS, 16.6
ppm for the KY subset evaluated in two years, and 24 ppm for the
KY set evaluated only in 2017. The DON values ranged from 1.1 to
25 ppm for NUS, 3.5 to 23.9 ppm in the SUS, 6.6 to 33.8 ppm for
the KY subset, and a range of 11.1 to 51 ppm in the KY set. The
DON levels in Lexington, KY in 2017 got our attention because
they were higher than generally occurs. Despite these high values,
we still could observe phenotypic variance among the evaluated
lines. There was a range of 40 ppm between the lowest and highest
values for the KY lines and the NUS and SUS showed a range of
20–24 ppm between the lowest and highest level of DON. DSK
index and DK index were calculated based on these traits.

Cross Validation
To evaluate the ability of the model to estimate the GEBVs for
the different traits, 100 cycles of cross validation were run and
prediction accuracy calculated (Table 2). Prediction accuracies
were moderate for the different traits, except a low prediction
accuracy for FHB rating in the SUS. Prediction accuracy for FHB
ranged from 0.27 in SUS to 0.49 in the KY set. For FDK
percentage, prediction accuracy ranged from 0.46 in the SUS
to 0.60 in the NUS. Prediction accuracy for DON ranged from
0.49 in the SUS to 0.63 in the KY lines. Prediction accuracy for
DSK index ranged from 0.49 in SUS to 0.64 in NUS and finally
DK index ranged from 0.51 in the SUS to 0.64 in the NUS. For all
traits, the SUS set obtained with cross validation produced lower
prediction accuracies compared to NUS or the KY lines set.

The Regional Nurseries as Training
Populations to Predict the Kentucky
Breeding Lines
The first question we wanted to investigate with this research was
the value of the regional nurseries as source of lines and
Frontiers in Plant Science | www.frontiersin.org 6
information to train a model for genomic prediction for local
breeding programs (Tables 3 and 4). The use of the NUS or the
SUS as a TP to calculate GEBVs for the Kentucky breeding lines
showed different responses depending on the trait. As a general
conclusion from Table 3, we obtained positive and moderate
prediction accuracies for all traits. The SUS was the best source of
lines to estimate GEBVs for DON content, obtaining prediction
accuracies of 0.4 with TP size 200 for the three optimization
methods. FDK, FHB rating, DSK index, and DK index were
better predicted by the NUS; the highest prediction accuracies
were reached with a TP size=200 regardless of the optimization
method. For FDK, average prediction accuracy was 0.4 and
TABLE 2 | Mean prediction accuracy and standard deviation for the different traits and indexes with Cross Validation.

N FHB rating FDK DON DSK DK

NUS 229 0.47 ± 0.09 0.6 ± 0.09 0.59 ± 0.09 0.64 ± 0.08 0.64 ± 0.08
SUS 223 0.27 ± 0.12 0.46 ± 0.11 0.49 ± 0.1 0.49 ± 0.09 0.51 ± 0.09
NUS+SUS 452 0.41 ± 0.08 0.57 ± 0.07 0.58 ± 0.06 0.62 ± 0.06 0.63 ± 0.06
KY Lines 306 0.49 ± 0.10 0.51 ± 0.09 0.63 ± 0.06 0.58 ± 0.07 0.55 ± 0.09
July 2020 | Volume 11 |
N is the set size. FHB rating (0–9), FDK (%), DON (ppm), DSK index, DK index.
TABLE 1 | Summary of the phenotypic information for FHB rating, FDK, and DON for the two regional nurseries (NUS and SUS) and the Kentucky breeding lines. In
2017 breeding lines are a total of 306, the average of 2017 and 2018 field season is for a subset of 66 lines.

FHB rating (0-9) FDK (%) DON (ppm) FHB rating (0-9) FDK (%) DON (ppm)

NUS (2014-2018) Breeding lines (2017)
Mean 3.4 28.29 8.56 Mean 4.1 48.62 24.92
Min 1.5 8.70 1.04 Min 1 12.00 11.10
Max 6.8 62.8 25.02 Max 8.5 90.00 51.40

SUS (2014-2018) Breeding lines (2017-18)
Mean 3.2 31.59 9.47 Mean 4.5 37.18 16.60
Min 1 10.70 3.50 Min 1.8 8.50 6.65
Max 7.5 60.15 23.90 Max 7.8 72.50 33.88
TABLE 3 | Mean prediction accuracy and standard deviation for the different
traits and index with two different Training Populations = NUS and SUS; two TP
sizes = 100, 200 and three different TP optimization methods = Random, Two
Tails and Prediction Error Variance. FHB rating (0–9), FDK (%), DON (ppm), DSK
index, DK index.

NUS SUS

100 200 100 200

Random 0.25 ± 0.12 0.33 ± 0.13 0.35 ± 0.09 0.4 ± 0.09
DON TT 0.24 ± 0.12 0.29 ± 0.11 0.37 ± 0.10 0.41 ± 0.12

PEV 0.38 ± 0.07 0.34 ± 0.11 0.33 ± 0.12 0.44 ± 0.10

Random 0.37 ± 0.1 0.38 ± 0.13 0.28 ± 0.11 0.29 ± 0.09
FDK TT 0.33 ± 011 0.4 ± 0.09 0.31 ± 0.10 0.3 ± 0.10

PEV 0.37 ± 0.10 0.4 ± 0.08 0.25 ± 0.10 0.31 ± 0.10

FHB Random 0.3 ± 0.13 0.32 ± 0.13 0.26 ± 0.13 0.23 ± 0.12
rating TT 0.3 ± 0.13 0.33 ± 0.12 0.19 ± 0.12 0.27 ± 0.12

PEV 0.31 ± 0.12 0.33 ± 0.12 0.19 ± 0.12 0.26 ± 0.12

Random 0.43 ± 0.11 0.45 ± 0.11 0.46 ± 0.11 0.43 ± 0.09
DSK TT 0.38 0.13 0.47 ± 0.10 0.45 ± 0.10 0.45 ± 0.10

PEV 0.46 ± 0.08 0.46 ± 0.09 0.35 ± 0.12 0.43 ± 010

Random 0.41 ± 0.09 0.42 ± 0.09 0.45 ± 0.10 0.44 ± 0.06
DK TT 0.36 ± 0.14 0.41 ± 0.11 0.46 ± 0.08 0.43 ± 0.08

PEV 0.43 ± 0.09 0.44 ± 0.08 0.36 ± 0.11 0.43 ± 0.08
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prediction accuracies of 0.33 and 0.46 for FHB rating and DSK
index were found respectively.

When lines of the NUS were the TP source, TP size showed an
effect when increased from 100 to 200 for all traits and optimization
methods. Only for DON when the optimization method was
PEVmean did we find a decrease in the prediction accuracy as
TP size was increased from 100 to 200 TP. All other traits under
different optimization methods showed increases in prediction
accuracy ranging from 1% (DSK, PEV) to 32% (DON, Random).
As an average among traits, the two tails optimization method
showed the highest increase: 18% when the TP size increased from
100 to 200 individuals. The randommethod showed a 10% increase
and the PEV optimization method showed a 1% increase. But it is
important to mention that at TP=100, PEVmean showed the
highest prediction accuracy for all traits. When the SUS lines
were the TP source, the TP size had a positive effect only for
DON when increased from 100 to 200 for the three optimization
methods. We found a positive effect with Random and PEV
optimization methods when predicting FDK and a positive effect
with Two Tails and PEV optimization methods when predicting
FHB rating. On average, by optimization method, PEVmean
showed an increase of 26% in prediction accuracy when TP size
increased from 100 to 200. Two tails showed an 8% increase and
Random did not change when TP size went from 100 to 200.

Table 4 shows the prediction accuracies for the same traits
and index when we combined NUS and SUS as a source of lines
for the TP. As an overall conclusion there was a significant effect
of the TP size, showing a good response when the TP was
increased up to 400 lines. Overall, DSK index had the highest
prediction accuracies with 0.49 for two optimization methods,
Random and Two Tails, and 0.48 for PEVmean. On the other
hand, FHB rating showed the lowest prediction accuracy with TP
size =100, for the three optimization methods, with an average of
Frontiers in Plant Science | www.frontiersin.org 7
0.24. For all traits, the increase in TP size showed positive effects
in prediction accuracies. FDK, FHB rating, DSK, and DK showed
increases in prediction accuracy under the three optimization
methods. For FDK the increase was between a 9–11%, for FHB
rating ranged from 32 to 53%, for DSK ranged from 6 to 35% and
for DK ranged from a 3 to 31%. To predict DON, with the
random method there was a big jump from TP 100 to TP 400
(82% increase) but with two tails and PEVmean there is a slight
decrease of prediction accuracy: 2% with PEV and 7% with the
two tails optimization method.

No significant differences in prediction accuracy were found
among TP optimization methods by trait. Despite this result,
choosing lines at random showed the highest increase from 100
to 400 TP size; this was especially due to the high increment for
DON and FHB rating with prediction accuracies of 0.23–0.24
with a TP size 100 vs. 0.35–0.43 with a size of 400 individuals in
the TP. When we looked at averages by TP size, both indices,
DSK and DK showed the highest prediction accuracies at the
four TP sizes, ranging from 0.41 to 0.49 for DSK and ranging
from 0.41 to 0.47 for DK. FHB rating showed the lowest
prediction accuracies at the four TP sizes ranging from 0.24 to
0.34. Finally, at the smallest TP size, TP=100, PEVmean showed
the highest prediction accuracies for the two traits (FHB rating
and DON) and two indices.

Impact of Different Selection Intensities
and Different Predicted Traits on the
Identification of Lines With Low DON
Accumulation
We analyzed the impact of selection based on predicted breeding
values for a critical trait, DON content on the 306 breeding lines
evaluated in 2017 (Figure 2). It has been mentioned before that
reducing DON content in wheat is a central objective of the
breeding program; genomic estimate breeding values (GEBVs)
for tested and untested lines would only add information the
breeder could use to make selections and advance lines in the
breeding program. We evaluated GEBVs obtained for DON,
DSK, and DK with a TP=400 and with the three optimization
methods, which yielded the highest prediction accuracies for the
three traits (0.40–0.49). The results showed that a selection
intensity (SI) of 20% resulted in an average of 44% lines that
were correctly selected based on the GEBVs for DON compared
with the ones selected based on BLUES; 41% were correctly
selected based on the DSK index and a 39% were correctly
selected based on DK. With an SI of 30%, being conservative to
keep lines for further evaluation, 56% were correctly selected
based on GEBVs for DON and DK and a 60% of the lines were
correctly selected based on DSK. Finally, with an SI of 40%, 68%
of lines were correctly selected based on DSK index, 66% based
on DK and 62% based on DON GEBVs.

Our results show that to select for low DON in wheat lines,
the breeder should focus on not only GEBVs for DON, but DSK
index. In the current study, DSK index was an excellent source of
additional information: at selection intensities of 0.3 and 0.4 this
index picked up lines with low BLUES for DON at a 60 and 68%
average respectively, 4–6% more than selection based on DON
TABLE 4 | Mean prediction accuracy and standard deviation for the different traits
and index with a combined Training Population = NUS + SUS; four TP sizes =
100, 200, 300, 400 and three different TP optimization methods = Random, Two
Tails and Prediction Error Variance. FHB rating (0–9), FDK (%), DON (ppm), DSK
index, DK index.

NUS + SUS

100 200 300 400

Random 0.24 ± 0.13 0.43 ± 0.1 0.43 ± 0.1 0.43 ± 0.09
DON TT 0.38 ± 0.10 0.4 ± 0.09 0.42 ± 0.09 0.4 ± 0.10

PEV 0.42 ± 0.12 0.42 ± 0.10 0.42 ± 0.09 0.41 ± 0.10

Random 0.37 ± 0.10 0.34 ± 0.08 0.39 ± 0.09 0.41 ± 0.09
FDK TT 0.35 ± 0.10 0.35 ± 0.09 0.37 ± 0.09 0.38 ± 0.09

PEV 0.35 ± 0.09 0.37 ± 0.09 0.38 ± 0.08 0.38 ± 0.08

FHB Random 0.23 ± 0.11 0.35 ± 0.11 0.3 ± 0.11 0.35 ± 0.10
rating TT 0.24 ± 0.10 0.28 ± 0.12 0.35 ± 0.11 0.33 ± 0.10

PEV 0.27 ± 0.12 0.32 ± 0.11 0.34 ± 0.11 0.35 ± 0.11

Random 0.42 ± 0.10 0.46 ± 0.08 0.48 ± 0.07 0.49 ± 0.07
DSK TT 0.36 ± 0.12 0.44 ± 0.1 0.49 ± 0.08 0.49 ± 0.07

PEV 0.46 ± 0.08 0.46 ± 0.09 0.48 ± 0.07 0.48 ± 0.07

Random 0.43 ± 0.08 0.46 ± 0.07 0.47 ± 0.06 0.48 ± 0.06
DK TT 0.36 ± 0.09 0.38 ± 0.1 0.44 ± 0.1 0.47 ± 0.06

PEV 0.45 ± 0.07 0.44 ± 0.07 0.46 ± 0.06 0.46 ± 0.06
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GEBVs. In contrast, at 20% SI, 44% of the selected lines based on
DON GEBVs were correctly selected, 3% more than selection
based on DSK.

We also analyzed all predicted traits and correlated them with
DON BLUES for the lines evaluated in two years, 17–18 (Figure
3). With a SI of 20%, an average of 41% lines were correctly
selected based on GEBVs for DON and DSK compared with the
ones selected based on BLUES while 36% were correctly selected
based on DK. With a SI of 30%, an average of 43% of lines were
Frontiers in Plant Science | www.frontiersin.org 8
correctly selected based on GEBVs for DON, 60% of lines were
correctly selected based on DSK and 57% of lines based on DK
index. With a SI of 40%, an average of 52% lines were correctly
selected based on GEBVs for DON, 67% based on DK index and
68% based on DSK index. Shown in Figure 3, the three
optimization methods performed similarly in terms of accuracy
to identify the best performing lines, except for GEBVs obtained
for DON, where at SI of 40%, PEV method performed
significantly better predicting correctly 73% of lines, compared
to 42% with two tails or random. When selecting with highest SI,
10%, the percentage of correctly selected lines is low—only 14%
of low DON lines were correctly identified. As an overall
conclusion, at higher SI, 10-20%, the three traits DON, DSK,
DK performed similarly in identifying the lowest content DON
lines based on GEBVs with the proportion of selected lines not
exceeding the value expected by the prediction accuracy. At
lower SI, 30–40%, DSK and DK indices were promising with up
to a 70% of the lines correctly selected.
DISCUSSION

Genomic selection has become a primary technology for plant
breeders looking to accelerate the breeding process. Some of the
benefits of GS pursued by breeders include increasing genetic
gain per unit time, reduced phenotyping costs, reducing field
testing and more accurate selection of parents for crosses.
Another big impact of this strategy based on genome wide
markers (GWM) is the possibility of breeding for quantitative
traits with better outcomes than with marker assisted selection
(MAS), because in contrast to MAS, the use of whole-genome
prediction models generally has greater power to capture small-
effect loci that would be missed by MAS because of limited power
for declaring significant marker effects (Heffner et al., 2009).

The ability to improve FHB resistance through genomic
selection has been studied and reviewed in recent years
(Poland and Rutkoski, 2016; Steiner et al., 2017). A big
question that needs more attention is the success of GS when
the training population is a sample independent of the validating
population. In our study, we tried to shed light on this question,
investigating the use of the regional scab nurseries in which
breeding lines are submitted every year by breeders from public
or private programs. These nurseries are evaluated in multiple
environments in the eastern soft red winter wheat region of the
United States.

Overall, results from our study show that it is possible to use
historical scab nurseries as TP to predict FHB traits. The study
also showed encouraging results regarding the use of GEBVs for
indices as indirect selection criteria for low DON genotypes. FHB
traits are complex, highly polygenic and their expression is under
a great environmental influence, which makes the phenotyping
more difficult and costly.

The model’s predictive ability, with cross validation, showed
moderate prediction accuracies for the different traits, varying
from 0.27 to 0.49 for FHB rating, 0.46 to 0.6 for FDK, 0.49 to 0.63
for DON. These results are in agreement with studies that used
A

B

C

FIGURE 2 | Proportion of correctly selected lines for low DON based on
GEBVs for DON, DSK, and DK at different selection intensities (A = 20%; B =
30%; C = 40%) DON BLUES based on 2017 phenotypic data GEBVs
calculated with TP = 400 and three different TP optimization methods.
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cross validation in wheat; for FHB rating, (Arruda et al., 2015;
Mirdita et al., 2015; Dong et al., 2018) found a 0.5 prediction
accuracy, similar to our best estimation of this trait (KY lines). A
lower value of 0.37 was found by Hoffstetter et al. (2016) for the
same trait. For FDK, our moderate prediction accuracies differed
from Arruda et al. (2015) who found a 0.8 prediction accuracy
and Rutkoski et al. (2012) who found prediction accuracies
ranging from 0.35 to 0.46 for the same trait. Investigators have
found low and moderate values for DON, ranging from 0.24 to
0.64 (Rutkoski et al., 2012; Arruda et al., 2015; Dong et al., 2018).
Our results fall within this range with prediction accuracies
ranging from 0.49 to 0.63.

The two indices created to predict levels of scab resistance
yielded moderate prediction accuracies: 0.49 to 0.64 for DSK
and 0.51 to 0.64 for DK. Arruda et al. (2015) evaluated two
different indexes (FHB index and ISK) finding prediction
accuracies of around 0.5 for FHB index and 0.7 for ISK. In
another study, Rutkoski et al. (2012) found for ISK prediction
accuracies from 0.44 to 0.54. Our indices included DON as part
of the index, a critical trait that is important to breeders,
farmers, and the entire industry. Many studies have tried to
select lines for low DON based on indices with incidence,
severity and FDK (Rutkoski et al., 2012), traits that correlate
very well with DON accumulation (Buerstmayr and Lemmens,
2015). In our study we calculated GEBVs for DON and two
indices that included DON and found very good prediction
accuracies for both indices as well as good agreement with
DON BLUES (Figures 2 and 3).
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Training population size can have a critical effect on prediction
accuracies and it is a major issue for breeders as it relates to the
genotyping and phenotyping efforts and the costs associated with
them. In this study, we obtained the numerically highest prediction
accuracies with a TP size of 400 although there was not a statistically
significant difference between the TP of size 400 and the TP size of
300 for any trait (Table 4). The prediction accuracies with this TP
size ranged from an average of 0.35 for FHB rating, to 0.49
prediction accuracy for DSK (Table 4). Our results agree with
other studies regarding TP size, even those studies running cross
validation schemes, as opposed to our forward prediction scheme.
Our study presents a novel approach, investigating the effect of the
TP size with a population of lines (NUS + SUS) independent of the
VP, in our case the set of KY breeding lines. Applying forward GS,
Lorenz et al. (2012) found the highest prediction accuracies up to 0.7
for DON and FHB rating in barley with a TP size of 300 individuals
and Arruda et al. (2015) in a cross validation study found also an
increasing prediction accuracy reaching a TP size 224. Herter et al.
(2019) obtained for FHB a prediction accuracy of 0.8 with a TP size
of 160 running a fivefold cross-validation and for Septoria tritici
blotch the same study found a prediction accuracy of 0.5 at the same
TP size. Sarinelli et al. (2019) found for powdery mildew infection a
prediction accuracy of around 0.55 with a cross validation scheme
when the TP size was increased from 50 to 350. Other studies also
showed achieving highest prediction accuracies with TP sizes of
300–350 (Asoro et al., 2011; Lorenz et al., 2012; Lehermeier et al.,
2014; Isidro et al., 2015; Rutkoski et al., 2015; Michel et al., 2017;
Sarinelli et al., 2019).
FIGURE 3 | Correlations of line ranks based on DON BLUEs and GEBVs for DON, DK and DSK at different selection intensities (SI= 0.1, 0.2, 0.3, 0.4). DON BLUES
based on two years (17–18) phenotypic data for a subset of KY lines. GEBVs obtained with a TP size= 400 and three optimization methods: Random, Two-tails and
PEVmean. The three black dots correspond to each optimization method that trained the model.
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Optimization methods to select the training population have
also received attention from breeders and scientists because the
lines selected to train the model are critical in obtaining GEBVs
accurate enough to be used in the breeding program. We did not
find significant differences among any of the three optimization
methods; rather we found the highest prediction accuracies at TP
size 400 for the three optimization methods. We did observe that
at TP100, higher prediction accuracies were obtained with PEV
compared to Random and Two-Tails for all traits, showing that
at the lowest TP size, combining lines from the two nurseries and
using the PEV method allows one to achieve prediction
accuracies similar to the ones at TP400. Sarinelli et al. (2019)
found similar results at low TP sizes. Selecting at random,
prediction accuracies with TP 100 were lower compared with
PEV but the most significant increase in prediction accuracies
was achieved for all traits and all methods by increasing the TP
size to 400 lines. The phenotypic selection of the two tails of the
distribution for each trait of interest to define the TP was
evaluated by Michel et al. (2017) for grain yield and protein
content. They found a slight (5%) increase in prediction accuracy
compared to random optimization method for both traits
(r=0.39 for grain yield, and r= 0.55 for protein content). This
was observed especially at small TP sizes. In our study, two-tails
optimization TP method did not show a significant effect on
prediction accuracy. On the other hand, a method to design the
training population based on reduction of PEV mean of the
validation set was more accurate compared with methods that
selected individuals at random or by two tails. This is especially
true with small training population sizes, because they better
accounted for the relationship between the individuals in the
training population and the validation set (Habier et al., 2010).

The importance of relatedness between TP and VP has been
extensively discussed in the literature, and higher prediction
accuracies are always associated with closer relationships
between individuals in the TP and VP. In studies where cross
validation is performed within populations of sibs or half sib,
positive and moderate to high prediction accuracies have been
found (Zhao et al., 2012; Hickey et al., 2014; Lehermeier et al.,
2014; Herter et al., 2019). When the distance between individuals
in the TP and VP is larger, e.g. using panels of lines with some
kind of relatedness but not parent-offspring or sibs, using cross
validation, only moderate or moderate to low prediction
accuracies have been found in different crops especially for
complex traits like yield. There are studies applying a forward
GS scheme, where TP and VP are independent samples but with
related material. In barley, for example, prediction accuracies for
DON ranged from 0.14 to 0.67 and for FHB rating ranged from
0.58 to 0.77 (Lorenz et al., 2012; Tiede and Smith, 2018). In
wheat, using an independent sample for TP and VP, (Jiang et al.,
2017) found prediction accuracy of 0.58 for FHB rating, using a
TP and VP evaluated in different years, for a sets of European
wheat populations. They found a small difference, only 8%
compared with prediction accuracies obtained with cross
validation. In another study in wheat, (Hoffstetter et al., 2016)
evaluated both cross validation and forward GS for FHB rating,
and found that when the TP was predicting the parent lines of
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that TP, prediction accuracy ranged from 0.14 (unweighted) to
0.47 (weighted). When the VP consisted lines that shared some
pedigree relationship to the TP, the prediction accuracy was 0.22
for the same trait. Similarly, (Schulthess et al., 2018) found
prediction accuracies ranging from 0.4 (lower relatedness
between TP and VP) to 0.8 (higher relatedness between TP
and VP) when predicting FHB severity in hybrid wheat. Another
study investigating the application of GS in a forward scheme,
was performed by Herter et al. (2019) where they evaluated FHB
rating and other traits both in a cross validation and across
populations for all populations included in the study. When they
predicted across populations, where many populations where
half sibs, they found prediction accuracies ranging from -0.2 to
0.5 for FHB rating, showing substantial variation among 30
possible combinations. Our results agree with those of Herter
et al. (2019) who suggested that for breeding for disease resistant
traits the relatedness between TP and VP is critical to achieve
good prediction accuracy. Because of the complexity of the traits
evaluated in the present study, we surmise that the relatedness
among the regional nurseries and the KY material, though being
related germplasm due to the exchange between breeders, is not
enough to overcome the threshold of 0.5 prediction accuracy we
observed. The PCA (Figure 1) showed the association between
lines that are clustered in four groups, and while we could see
good association between lines in the two regional nurseries, all
clustered in two groups, we observe for the KY lines more
variability and association of lines in four clusters. This point
is critical in our study and it is a real situation breeders face. Even
though cross validation shows exciting prediction accuracies
(Lorenz et al., 2012; Rutkoski et al., 2012; Arruda et al., 2015;
Mirdita et al., 2015; Sallam and Smith, 2016; Schulthess et al.,
2018); the use of historical data from regional nurseries, as our
results confirm, offers breeders an excellent tool to estimate
GEBVs for lines that have not been evaluated in the field for a
specific trait. This reduces phenotyping costs tremendously
because the TP phenotypic data set is generated by a
collaborative effort among different breeding programs
(Rutkoski et al., 2015; Sarinelli et al., 2019) or international
breeding efforts (Dawson et al., 2013). Therefore, material in
early generations may be selected or discarded based on GEBVs
for DON without a DON content analysis, which allows breeders
to reallocate the budget for DON analysis of more advanced
material in the breeding program.

When breeding for FHB resistance, all traits are of critical
importance and increasing FHB resistance in the germplasm
implies improving all of them. Some authors have shown that
measuring incidence, severity and FDK in the field, because of the
high correlation with DON content, allows selection for these traits
with easier evaluation and data recording compared with DON
(Rutkoski et al., 2012; Buerstmayr and Lemmens, 2015; Sallam and
Smith, 2016). Our study tried to move one step beyond this in
understanding the weight DON has in an index, and the results we
get after the DON content analysis could be used together with
other field recorded traits to obtain the most accurate GEBVs. Both
indices were created with the idea that DON is a trait of critical
importance with food safety concerns and big economic losses to
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farmers (Bai and Shaner, 2004) and that evidence showed that DON
contamination has been found even in healthy looking grain and
that the DON accumulation has been found occurring during grain
filling specially during wet grain filling periods (Argyris et al., 2003;
Del Ponte et al., 2007; Bianchini et al., 2015). Our results showed
that the highest prediction accuracies were obtained for DSK (0.49)
and DK (0.47) and for DON (0.42) in third place. In Figure 2, we
analyzed the impact of these prediction accuracies when selecting
lines based on DON BLUEs, and we observed an increase in
proportion of lines correctly selected (up to 70%) when reducing
the selection intensity, and with an advantage of 4–8% when
selecting lines based on DSK index compare to DON index.
These results confirm the usefulness of multiple trait indices as a
source of information to distinguish the best genotypes for a trait,
and also shows again that a prediction accuracy of 0.49 for example
should be considered in terms of the percentage of lines “correctly”
selected by the GS model, as discussed by Bassi et al. (2015) and
Verges and Van Sanford (2020). In our study again with a
prediction accuracy of 0.49, a 50 to 70% of the lines are correctly
selected at 30–40% SI. In early stages of field testing, when the
breeder has many hundreds or even thousands of lines for yield
evaluation, the ability to select based on GEBVs for a trait like DON
would become an exceptional tool when scab resistance is a critical
objective in the breeding program. This early cycle of selection based
on GEBVs will allow one to include in the scab nursery in the
following year only lines with an acceptable level of resistance to
DON accumulation and overall FHB resistance.

Our study validates the use of DON related indices in
applying GS for low DON (Figure 3). We observed that up to
a 70% of lines were correctly selected based on DSK when a 40%
selection intensity was used, in comparison to a 52% success rate
for lines based on DON GEBVs, using two years of phenotypic
data. Further, our results strongly support the use of the regional
scab nurseries as a source of lines for training the GS model to
predict FHB traits. This strategy can be implemented by breeding
programs that belong to the regions where these scab nurseries
are planted over years and multi locations data of hundreds of
lines together with the possibility to predict GEBVs for expensive
traits like DON content.

This study involved a complex scheme for GS, that included
forward GS, historical data sets building the TP, three
optimization methods, multiple TP sizes and the evaluation of
three traits and two indices to improve and hasten breeding for
FHB resistance. While these results are encouraging, we conclude
that the relatedness between TP and VP becomes a critical issue
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if one wants to exceed a prediction accuracy of 0.5. In spite of this
concern we are optimistic that the use of regional nurseries to
predict scab traits will be useful from a breeder’s standpoint and
allow one to predict scab resistance prior to actual phenotypic
evaluation. For a resource intensive breeding target like scab
resistance, this is a huge consideration.
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