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Roots are important plant organs. Lateral root (LR) initiation (LRI) and development
play a central role in environmental adaptation. The mechanism of LR development
has been well investigated in Arabidopsis. When we evaluated the distribution of
auxin and abscisic acid (ABA) in maize, we found that the mechanism differed from
that in Arabidopsis. The distribution of ABA and auxin within the primary roots (PRs)
and LRs was independent of each other. Auxin localization was observed below the
quiescent center of the root tips, while ABA localized at the top of the quiescent center.
Furthermore, NaCl inhibited LRI by increasing ABA accumulation, which mainly regulates
auxin distribution, while auxin biosynthesis was inhibited by ABA in Arabidopsis. The
polar localization of ZmPIN1 in maize was disrupted by NaCl and exogenous ABA. An
inhibitor of ABA biosynthesis, fluridone (FLU), and the ABA biosynthesis mutant vp14
rescued the phenotype under NaCl treatment. Together, all the evidence suggested that
NaCl promoted ABA accumulation in LRs and that ABA altered the polar localization of
ZmPIN1, disrupted the distribution of auxin and inhibited LRI and development.

Keywords: hormone regulation, root initiation, seedling, salt stress, Zea mays

INTRODUCTION

Roots constitute the first organ to respond to environmental changes and are essential for sessile
organisms in terms of anchoring to the soil and taking up nutrients and water (Aiken and Smucker,
1996; Benkova and Bielach, 2010; Xing et al., 2016). Root formation can be separated into primary,
lateral and adventitious roots (Atkinson et al., 2014). Lateral roots (LRs) are devoted to water-
use efficiency and the absorption of macronutrients from the surrounding environment, and LR
development is tightly regulated by the environment and hormones (Casimiro et al., 2003; Cuesta
et al., 2013; Duan et al., 2013). LRs originate from a differentiated layer of cells called founder cells
in the pericycle of primary roots (PRs) in Arabidopsis and in xylem cells and cells near protophloem
vessels in maize (Hochholdinger et al., 2004; Benkova and Bielach, 2010; Lavenus et al., 2013;
Orman-Ligeza et al., 2013; Yu et al., 2016). In Arabidopsis, there are eight developmental stages
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from lateral root primordia (LRP) to LRs and three
important phases of the LR life cycle: initiation, formation
of LRP, and post-emergence growth (Casimiro et al., 2003;
Orman-Ligeza et al., 2013).

Previous research has indicated that LR development is
controlled by many extrinsic (environment and nutrition)
and intrinsic signals (hormones and signaling molecules) in
Arabidopsis and cereals (Peret et al., 2009; Lavenus et al., 2013;
Orman-Ligeza et al., 2013; Atkinson et al., 2014). Salt treatment
inhibits PR elongation, LR growth, root hair formation, and root
tropism (He et al., 2005; Sun et al., 2008; Wang et al., 2009;
Galvan-Ampudia et al., 2013). Plant hormones, including auxin,
cytokinins, jasmonic acid, ethylene, and abscisic acid (ABA),
play central roles in these processes (De Smet et al., 2006;
Peret et al., 2009; Orman-Ligeza et al., 2013; Atkinson et al.,
2014). The function of auxin in LR development is especially
well investigated (Ditengou et al., 2008; Lavenus et al., 2013).
Previous studies have suggested that auxin transport, biosynthesis
and signaling regulate lateral root initiation (LRI) and LRP
development in Arabidopsis (Benkova et al., 2003; Peret et al.,
2009; Lavenus et al., 2013). Auxin response mutants have been
used to show that some genes, such as IAA28, ARF5, ARF7, and
ARF19, are involved in priming auxin-regulated LR founder cells
and controlling the cell cycle and properties of overlying cells
(Goh et al., 2012). Auxin carriers such as AUX1 and PINs have
also been reported to optimize auxin supplies and support LRI.
PINs mainly play essential functions in transporting intercellular
auxin, and their localization regulates the gravitropism of roots
(Xi et al., 2016). ZmPIN1a especially plays a key regulatory role
in auxin transport and promotes auxin transport from the stem
to the roots (Li et al., 2018). If the distribution of endogenous
auxin in LR founder cells is altered by the inhibition of polar
auxin transport, LRI is sufficiently blocked (Casimiro et al., 2001;
Lavenus et al., 2013; Marhavy et al., 2013). In maize, auxin also
plays a pivotal role in LR development. Previous results indicate
that rum1 mutants, whose mutation affects auxin transport, fail
at initiating LRs (Gallavotti et al., 2008; Atkinson et al., 2014;
Zhang et al., 2014). As a transcriptional activator, LATERAL
ROOT PRIMORDIA 1 (LRP1) also participates in this process
and has been reported to act downstream of auxin/indole-3-
acetic acid (IAA) genes (Zhang et al., 2015). The results of recent
studies also indicate that the auxin efflux carrier P-glycoprotein
(ZmPGP1) plays an important role in the aluminum (Al)-based
regulation of auxin distribution in maize (Zhang et al., 2018). Al
stress is associated with reduced auxin accumulation in maize
root tips. In contrast, Al stress induces the accumulation of auxin
in Arabidopsis root tips, a process that is regulated by ZmPGP1,
and thus inhibits root growth (Yang Z.B. et al., 2017; Zhang
et al., 2018). However, the effects of auxin distribution on LR
development and the mechanism by which auxin distribution is
regulated under salt stress are still unknown in maize.

ABA is considered a plant stress hormone (Zhu, 2002;
Nambara and Marion-Poll, 2005; Nakashima et al., 2006).
ABA was recently reported to take part in the regulation of
LR development (De Smet et al., 2006; Ding and De Smet,
2013; Duan et al., 2013; Xing et al., 2016). Relatively high
concentrations of ABA inhibit both PR and LR growth, while

PRs are inhibited less severely than LRs under low concentrations
of ABA (Ding et al., 2015; Xing et al., 2016). Arabidopsis ABA
receptor mutants (pyl8 and pyl9) under ABA treatment have
significantly increased numbers of LRs (Xing et al., 2016). In
addition, ABA biosynthesis and signaling promote LR quiescence
under salt stress (De Smet et al., 2006; Duan et al., 2013). ABA also
plays a central role in environment-regulated LR development
(Ding and De Smet, 2013; Duan et al., 2013; Ding et al., 2015).
Previous studies in Arabidopsis have indicated that ABA and salt
stress affect LR emergence and growth but not initiation (De Smet
et al., 2003; Duan et al., 2013; Julkowska et al., 2014). Although
the regulation of LR development by ABA is well investigated
in Arabidopsis, the mechanism by which ABA regulates LR
development in maize has seldom been investigated.

The hormones auxin and ABA are involved in LR regulation,
and some crosstalk occurs between them (Atkinson et al.,
2014). Previous studies have shown that ABA combined with
PYL8 functions as a promoter of post-emergence LR growth
via an auxin-dependent pathway (Xing et al., 2016). PYL8
directly interacts with MYB77, which can interact with ARF7
to regulate the expression of auxin-induced genes, such as
LBD16 and LBD29, to promote LR formation and elongation
in Arabidopsis (Okushima et al., 2005; Wilmoth et al., 2005;
Atkinson et al., 2014). Compared with PYL8, PYL9 also
interacts with MYB77 but via a different pathway to regulate
LR; relatively high concentrations of auxin can overcome the
pyl8/pyl9-induced quiescence in Arabidopsis (Xing et al., 2016).
By affecting the expression of the auxin efflux carrier protein
PIN1, ABI4, an ABA-regulated AP2 domain transcription factor
(TF), reportedly regulates auxin transport (Shkolnik-Inbar and
Bar-Zvi, 2010). Although some research has suggested that
the crosstalk of ABA and auxin plays a pivotal role in the
regulation of LR development, the relationship between these
two hormones is still unclear. For example, auxin can rescue
the inhibitory effects of ABA on LR elongation but not on
LRI; The interactions between ABA and auxin occur via
different regulatory pathways in PRs and LRs. The relationship
between these two hormones and LR regulation still needs to
be investigated.

Root architecture plays a crucial role in minimizing the
effects of stress on plants, with roots proliferating in soil patches
that have the highest concentration of nutrients and water and
avoiding dry or saline patches (Galvan-Ampudia et al., 2013;
Yang et al., 2014). As such, we were interested in analyzing the
mechanism of LR arrest in response to NaCl in maize. With
this knowledge, we can identify ways to improve the adaptation
of maize plants to high-salt environments. For this purpose,
we used two transgenic plants, pZmPIN1a::ZmPIN1a:YFP and
DR5rev::mRFPer, to evaluated the dynamic changes in auxin
in response to salt treatment in maize (Gallavotti et al., 2008).
Moreover, an excursive staining technique for ABA was used
to determine the concentration and distribution of ABA during
salt treatment (Schraut et al., 2004; Peng et al., 2006; De Diego
et al., 2013; Ondzighi-Assoume et al., 2016). These results were
analyzed to determine how ABA and auxin are involved in
regulating LR development in high-salt environments and the
relationship between them.
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Our results showed that both PRs and LRs are inhibited by
increased NaCl concentrations in maize. ABA accumulates in
response to NaCl treatment, especially in the LRI zone and in
LRs, and a relatively high concentration of ABA disrupts the
localization of PIN1, which regulates the distribution of auxin.
The change in the PIN1 distribution subsequently led to a lack
of auxin at the tips of the maize LR, which in turn inhibited
LR growth. Thus, we hypothesize that, under salt stress, ABA
regulates the distribution of PIN1 and subsequently affects the
distribution but not the concentration of auxin. The absence of
auxin in the root tips triggers its biosynthesis. Although the auxin
level increased in the salt-treated maize roots, it also accumulated
in the other parts of the LRs but did not promote root growth.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Treatment
The vp14 mutant (W22 background) was obtained from the Iowa
Stiff Stalk Synthetic heterotic group (Tan et al., 1997; Tai et al.,
2016), and pZmPIN1a::ZmPIN1a:YFP and DR5rev::mRFPer (B73
background) transgenic lines were donated by the Jackson lab
(Gallavotti et al., 2008). First, all seeds used in the experiment
were surface sterilized with 5% sodium hypochlorite. The seeds
were then placed in a round petri dish (diameter = 10 cm)
and covered with sterile, moist absorbent cotton gauze for
germination. After 3 days, the B73 seedlings with similar root
lengths were transferred to 1/2-strength Hoagland’s nutrient
solution (HNS) supplemented with either NaCl, ABA (Sigma),
fluridone (FLU; Sigma), or diniconazole (DZ; Sigma), after which
the seedlings were grown for an additional 4 days (bio-protocol)
(Yang L. et al., 2017). Eight hundred milliliters of HNS was
then added to a 1000 mL plastic beaker. The seedlings were
placed in 1.5 mL centrifuge tubes whose bottoms were removed,
which were then placed on a floating plate. With respect to the
FLU, ABA, IAA, and DZ treatments, the seedlings were grown
in cylindrical glass barrels that were covered with foil to keep
the nutrient solutions in the dark to avoid degradation of the
treatment solutions. All of the seedlings were placed under the
conditions in which the photoperiod was 16 h/8 h light/dark,
the temperature was 25◦C, and the relative humidity was 60–
70%. The concentration gradient of the salt treatments was as
follows: 50, 75, 100, 125, and 200 mM NaCl. Other treatment
concentrations were as follows: 5 µM FLU; 50 µM DZ; 0.1 µM, 1
and 10 µM IAA; and 1, 5, 20, and 100 µM ABA.

PR Length and LR Growth Analysis
The seedlings were transferred to 1/2-strength HNS
supplemented with different treatment components (NaCl,
ABA, FLU, DZ, IAA) and grown for an additional 4 days. With
respect to the NaCl gradient concentration treatments, the
seedlings were grown in petri dishes for 3 days, and their initial
roots were measured. The plants were then transferred to HNS
supplemented with 50, 75, 100, 125, or 200 mM NaCl and grown
for 4 days. Root length was measured from the top portion

of the proximal hypocotyl to the root tip. The number of LRs
was counted daily.

Immunofluorescence and Confocal
Microscopy
Immunofluorescence analysis was conducted according to the
method described by Ondzighi-Assoume, with modifications
(Ondzighi-Assoume et al., 2016). First, the maize roots were
cleaned with deionized water. Second, transverse sections of
the LRs 2–5 cm below the hypocotyl were acquired by hand
sectioning, after which the transverse sections were placed in a
stationary liquid of 10 mM sodium phosphate-buffered saline
(PBS, pH = 7.2) that contained 0.2% (v/v) glutaraldehyde (GLU,
Sigma), 4% (w/v) paraformaldehyde (PFA, Sigma), and 2% (w/v)
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC, Sigma). The samples were vacuum infiltrated for 2 h and
then shaken at 4◦C overnight. The root sections were washed
three times with 10 mM PBS (pH 7.2) and then hyalinized in
10 mM PBS, which included 0.2% (w/v) cellulase, 0.2% (w/v)
pectinase, 3% (w/v) non-fat dried milk and 0.1% Triton X-100
(pH 7.2), for at least 1 h. The root sections were washed again and
incubated with 1/2000 anti-ABA polyclonal antibodies (rabbit
anti-ABA antibody, Cat#: ABIN3346251) on a shaker at 4◦C
overnight. The samples were washed until they became clear and
were transferred to a one drop/mL incubation buffer of goat anti-
rabbit IgG secondary antibody (Invitrogen) conjugated to Alexa
Fluor 488 (excitation at 488 nm, emission at 505–530 nm) for
at least 2 h at room temperature (RT). The transverse sections
of the LRs were washed with 0.01 mM PBS and blocked with
Citifluor AF1 (Ted Pella, Inc.). A Zeiss LSM880 (Zeiss) confocal
laser-scanning microscope was ultimately used for microscopic
imaging. Via an argon laser, green fluorescent protein (GFP) was
excited at a wavelength of 488 nm and measured at 505–530 nm
with a bandpass filter (green). The yellow fluorescent protein
(YFP) excitation wavelength was 488 nm, and the detection
wavelength was 505–530 nm with a bandpass filter (green).
The red fluorescent protein (RFP) excitation wavelength was
561 nm, and the detection wavelength was 600–650 nm with a
bandpass filter (red).

Liquid Chromatography-Mass
Spectrometry (LC-MS) for ABA
Determination
Fresh roots (200–500 mg) were harvested after NaCl treatment
for 2 days. Afterward, the roots were immersed directly in
liquid nitrogen and ground to a powder. The powder was then
pooled (100–200 mg) and placed into a 1.5 mL centrifuge tube,
and 750 µL of freeze solution A [methanol/water/acetic acid
(89/10/1 v/v/v)] containing 30 ng of 2H-ABA [(-)-5,8′,8′,8′-d4
ABA] was added (Van Gijsegem et al., 2017). After thorough
vortexing, each sample was centrifuged at 13000 rpm for 10 min.
The supernatant was placed into a new 1.5 mL centrifuge tube,
and 450 µL of solution B [methanol/water/acetic acid (89/10/1
v/v/v)] was added to the precipitate, after which each sample was

1https://www.antibodies-online.com/
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vortexed thoroughly for 4 h. The samples were then centrifuged at
13000 rpm for 10 min, after which the supernatant was combined
with the previous supernatant. The mixed supernatant was used
to quantify the ABA contents via an LC-MS system (Ultimate
TSQ Quantia, Thermo Fisher Scientific).

Co-localization of ABA and Auxin
All of the DR5rev::mRFPer (B73 background) transgenic line
seedlings were grown in 1/2-strength HNS for 3 days, after
which they were transferred to HNS supplemented with 200 mM
NaCl treatment for 12 h. The transverse root sections were then
used to observe the fluorescence of DR5-RFP. The root sections
were subsequently fixed into the stationary liquid for immediate
ABA immunofluorescence, and the two images were ultimately
superimposed with Adobe Photoshop.

RNA Extraction and Quantitative RT-PCR
(RT-qPCR)
RNA was extracted from 2- and 3-day-old roots and was used
for RT-qPCR. Whole RNA was extracted using an RNAprep Pure
Plant Kit (Tiangen). cDNA for RT-qPCR was reverse transcribed
from 1000 ng of whole RNA using a TransScript One-Step gDNA
Removal and cDNA Synthesis SuperMix and oligo(dT) primers
(TransGen). Real-time qPCR analysis was performed using a
SYBR Premix Ex TaqTM II (TaKaRa) on a CFX96 Real-Time
PCR detection system (Bio-Rad, Munich, Germany) for each of
the four biological replicates and three technical replicates. The
gene-specific primers used are listed in Supplementary Table S1.

Statistical Analysis
For every treatment, at least 10 roots were analyzed; all
experiments in this study were repeated at least three times.
SigmaPlot 12.5 (64 bit) was used to construct histograms. All the
results are provided as the means ± standard errors (SEs), and
Student’s t-tests (P < 0.05) were used for statistical analyses.

Cluster Analysis
Gene Cluster 3.0 and Java Tree View were used to generate
gene expression heat maps, which were based on log2-
transformed reads per kilobase per million mapped reads
(RPKM)/fragments per kilobase of transcript per million mapped
reads (FPKM) values (Tai et al., 2016), for genes related to auxin
biosynthesis, transport and response and ABA biosynthesis,
degradation and response.

Quantification of Fluorescence Intensity
Images of the roots were obtained by confocal microscopy (Wang
et al., 2012), and ImageJ software2 was used to analyze the relative
fluorescence intensity of the PRs and the transections of roots and
LRs. The experiments were repeated at least five times, and at least
ten roots were measured each time.

2http://rsb.info.nih.gov/ij/

Accession Numbers
The cDNA sequence data were obtained from the Maize Genetics
and Genomics Database (MaizeGDB3) and the GenBank
database4, and the accession numbers are as follows: ZmTAR1,
GRMZM2G127160_P01; ZmVT2, GRMZM2G127308_P01; Zm
YUC2, GRMZM2G159393_P01; ZmYUC3, GRMZM2G107761_
P01; ZmYUC1, GRMZM2G091819_P01; ZmYUC4, GRMZM2G
141383_P01; ZmYUC5, GRMZM2G132489_P01; ZmYUC6,
GRMZM2G019515_P01; ZmYUC7, GRMZM2G480386_P01;
ZmYUC8, GRMZM2G017193_P01; ZmPIN1a, GRMZM2G0
98643_P01; ZmPIN2, GRMZM2G074267_P01; ZmAUXIN1,
GRMZM2G129413_P01; ZmPIN10a, GRMZM2G126260_P01;
ZmPIN10b, GRMZM2G160496_P01; ZmIAA1, GRMZM2G137
367_P01; ZmARF25, GRMZM2G317900_P01; ZmARF34,
GRMZM2G160005_P01; ZmAO1, GRMZM2G141535_P01;
ZmVP14, GRMZM2G014392_P01; ZmZEP, GRMZM2G127
139_P01; ZmABI1, GRMZM2G300125_P01; ZmABI2, GRMZ
M2G018485_P01; ZmABI3, GRMZM2G133398_P01; ZmABI5,
GRMZM2G320754_P01; ZmABH1, GRMZM2G179147_P01;
and ZmABH4, GRMZM2G065928_P01.

RESULTS

NaCl Treatment Inhibits Root
Development in Maize
Two fundamental parameters of root system architecture
(PR growth rate and LR number and density) were
measured or calculated to determine the effects of NaCl
on root development. Previous studies have shown that
the presence of high concentrations of NaCl in the media
inhibit PR growth and LR density in Arabidopsis (Duan
et al., 2013), and our results also showed that the effects
of NaCl on maize roots were associated with the dose
(Figure 1). Relatively low concentrations of NaCl (50 and
75 mM) inhibited PR growth and decreased LR density
slightly (Figures 1A,B), while the inhibitory effects of NaCl
on PR and LRs were more obvious with increasing NaCl
concentrations. Under 200 mM NaCl, PR growth was
inhibited dramatically, and no visible LRs were detected
after an additional 4 days post-transfer (Figures 1A,B
and Supplementary Figure S1). Therefore, 100 and
200 mM NaCl were selected for subsequent experiments
as appropriate doses to represent moderate and strong salt
stresses, respectively.

NaCl Enhances ABA Accumulations in
Maize Roots
Abscisic acid has been reported to promote LR quiescence
under salt stress in Arabidopsis (Duan et al., 2013). In
addition, ABA may also be induced by salt stress in maize
roots. Some genes that are reportedly involved in the ABA
pathway in maize were chosen for expression analysis. We

3https://www.maizegdb.org/
4https://www.ncbi.nlm.nih.gov/genbank/
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FIGURE 1 | Salt stress inhibited LR and PR development. (A) Comparison of the PR length of wild-type (B73) seedlings after imbibition with 0, 50, 75, 100, 125, or
200 mM NaCl. N, NaCl. (B) Comparison of the LR density of wild-type (B73) seedlings under 0, 50, 75, 100, 125, or 200 mM NaCl treatment. N, NaCl. (C)
Phenotypes of wild-type (B73) seedlings after imbibition with 0, 50, 75, 100, 125, or 200 mM NaCl. Bars = 1 cm. The data represent the means ± SEs of five
replicates, with 10 seedlings per treatment.

found that the transcription levels of genes involved in
ABA biosynthesis (ZmAO1, ZmVP14, and ZmZEP) (Tan
et al., 1997; Lu et al., 2013), ABA catabolism (ZmABH1
and ZmABH4) and ABA signaling (ZmABI3, 4, 5) (Fan
et al., 2016) significantly increased in response to NaCl
treatment (Supplementary Figure S2). We observed a 1/9-fold
increase in ABA content in the roots under 100/200 mM
NaCl treatment compared with the control treatment
(Supplementary Figure S3B). These results implied that
ABA might accumulate in roots during the NaCl treatments.
Thus, we used the latest immunofluorescence technique to
measure changes in ABA content and localization within
the roots (Ondzighi-Assoume et al., 2016). We found that,
under NaCl treatment, ABA accumulated in the PRs, and
more ABA accumulated in response to treatment with
200 mM NaCl than in response to that with 100 mM NaCl
(Figures 2A–D). However, the content of ABA increased,
and the distribution expanded to all tissues of the roots
in response to treatment with NaCl (Figure 2B). We also
measured ABA accumulation in LRs and root tips, and the
results showed that ABA localized primarily in the tips of
the roots and the LRs and that less accumulation occurred
in LRP (Figures 2A,E). The transverse root sections showed
that ABA is distributed mainly in the endodermis, pericycle
and phloem (Supplementary Figure S3). Additionally,
ABA accumulated in the LRs during all stages of LR

development, and the accumulation was increased by NaCl
treatment (Figure 2E).

ABA Is Involved in the NaCl-Induced
Inhibition of LR Emergence in Maize
Exogenous ABA, the ABA biosynthesis inhibitor FLU and the
ABA catabolism inhibitor DZ were used to measure the function
of ABA in NaCl-inhibited LR development. The results indicated
that PRs and LRs responded differently to ABA, with PR growth
being more sensitive to ABA than was LR emergence. In addition,
1 and 5 µM ABA inhibited PR growth and increased LR
emergence (Figures 3A–C), and relatively high concentrations
of exogenous ABA (>20 µM) inhibited both PR growth and LR
emergence (Figures 3B,C and Supplementary Figures S4A,B).

FLU and DZ were used to inhibit ABA biosynthesis
and catabolism, respectively. The results indicated that
DZ treatment increased ABA accumulation and that FLU
treatment decreased ABA accumulation in the roots of both
the maize wild type and ABA biosynthesis mutant vp14
(Supplementary Figure S5). Moreover, under NaCl treatment,
high levels of ABA accumulated, and ABA accumulation
increased in response to DZ and decreased in response to
FLU (Supplementary Figure S6). Additionally, 200 mM NaCl
inhibited PR elongation and LR density, and the inhibition of LR
density but not PR growth was dramatically rescued by the ABA
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FIGURE 2 | Salt stress stimulated the accumulation of endogenous ABA in the root tips and LRs. (A) Observations of the distribution of ABA accumulation by
immunofluorescence in PRs subjected to 0, 100, and 200 mM NaCl via confocal microscopy. Bars = 100 µm. (B) Observations of ABA localization by
immunofluorescence in transverse root sections in the presence of 0, 100, and 200 mM NaCl under confocal microscopy. The curve on the right of the picture
shows the ABA/Alexa Fluor 555 fluorescence intensity. En, endodermis; Pc, pericycle; Ph, Phloem. Bars = 50 µm. (C) Fluorescence intensity (%) of fluorescence
portion in picture (A). The data represent the means ± SEs of five replicates, with 10 seedlings each. N, NaCl. (D) Fluorescence intensity (%) of the fluorescence part
in picture (B). The data represent the means ± SEs of five replicates, with 10 seedlings each. N, NaCl. (E) Observations via confocal microscopy of the ABA
distribution and concentration at different developmental stages of LRs subjected to 0 mM or 200 mM NaCl treatment for 8 h. Bars = 50 µm. The figures were
selected from five replicates, with 10 seedlings per replicate. The different letters represent significant differences (P < 0.05, based on Student’s t-test).

biosynthesis inhibitor FLU (Figures 3D–F), while DZ, an ABA
catabolism inhibitor, increased the inhibition of LR emergence by
NaCl (Figures 3D–F). These results indicated that ABA played
an important role in NaCl-regulated LR development. The results
also showed that, compared with LRs, PRs may be regulated by
NaCl via different signaling pathways. The ABA biosynthesis
mutant vp14 was used to observe the effects of ABA on LR
development in response to salt treatments (Tan et al., 1997;
Settles et al., 2004), and the results showed that ABA biosynthesis

decreased in the mutant in response to the control and NaCl
treatments. Two homozygous mutants were selected and used
for analyses (Supplementary Figure S5E). We found that the
length of the PRs was similar between the vp14 and wild-type
plants; however, the number of LRs of vp14 was significantly
greater than that of the wild type under natural conditions and
under the 100 mM NaCl treatment (Figures 4A–C). However,
200 mM NaCl still reduced the length of PRs and the number
of LRs to the same degree in both vp14 and wild-type seedlings
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FIGURE 3 | Effects of exogenous ABA and reagents on LR development in maize. (A) Phenotypes of wild-type (B73) seedlings under different concentrations of
ABA treatments. The white dotted line in the image is the enlarged part. Bars = 1 cm. (B) Determination of the PR length in (A). (C) Density of the LRs in (A).
(D) Phenotypes of 3-day-old wild-type (B73) seedlings under different treatments. Treatment concentrations: 200 mM NaCl, 50 µM DZ, and 5 µM FLU. The white
dotted line in the image shows the enlarged part. Bars = 1 cm. (E) Determination of the PR length in (D). (F) Determination of the LR density in (D). The data
represent the means ± SEs of five replicates, with 10 seedlings each in (A–F). The different letters represent significant differences between the treatment and the
control (P < 0.05, based on Student’s t-test).

(Figures 4A–C and Supplementary Figure S7). These results
were in agreement with those in Figure 3, which showed that
FLU dramatically rescued the inhibition of LR density, not
PR growth, under NaCl treatment. We also found that the
quiescence of LRs induced by ABA could be rescued when the
maize seedlings were transferred to a new nutrient solution that
lacked ABA (Supplementary Figure S8), which is similar to a
related situation involving Arabidopsis (Duan et al., 2013).

NaCl Treatment Increases the Auxin
Accumulation in Maize Roots
Auxin has been reported to be a key signaling hormone involved
in LR development, and auxin treatments have been shown to
increase LR formation in rice, maize and barley (Casimiro et al.,

2003; De Smet et al., 2007; Orman-Ligeza et al., 2013). Therefore,
the genes involved in auxin biosynthesis (ZmTAR1, ZmVT2, and
ZmYUC1 to ZmYUC8) (Phillips et al., 2011; Matthes et al., 2018),
response (ZmARF25 and ZmARF34) and transport (ZmPIN1a,
ZmPIN2, ZmPIN10a, ZmPIN10b, and ZmAUX1) were analyzed
(Paponov et al., 2005; von Behrens et al., 2011; Korasick et al.,
2013) with respect to their participation in the salt stress response.
The results indicated that the expression of all of these genes was
induced by NaCl treatment (Supplementary Figures S9, S10).
Because the effects of auxin on plant development are associated
with not only its concentration but also its distribution (Shkolnik-
Inbar and Bar-Zvi, 2010), DR5rev::mRFPer transgenic lines were
used to analyze the response maxima and distribution of auxin.
By scanning along the root, we found that DR5 accumulated
in the root tips and within the LRI zone (Figures 5A,E). NaCl

Frontiers in Plant Science | www.frontiersin.org 7 June 2019 | Volume 10 | Article 716

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00716 June 3, 2019 Time: 19:0 # 8

Lu et al. Hormone Control of Lateral Roots

FIGURE 4 | Phenotypes of vp14 seedlings under salt stress. (A) Phenotypes
of vp14 and W22 under salt stress. Bars = 1 cm. (B) The length of the PRs in
(A). N, NaCl. (C) Number of LRs in (A). N, NaCl. The data represent the
means ± SEs of five replicates, with 10 seedlings each in (A–C). The different
letters represent significant differences (P < 0.05, based on Student’s t-test).

treatment increased the response maxima of auxin in both the
root tips and the phloem (Figures 5A–D). The results also
showed that DR5 accumulated within the LRP and in the tips of
LRs during development (Figure 5E). Moreover, NaCl treatment
increased DR5 accumulation and altered the distribution of auxin
in the LRI zone at the early stages of LR development (Figure 5E).
Under control conditions, DR5 accumulated in the tips of LRs,
while NaCl treatment increased the accumulation of DR5 at the
base of the LRs but decreased the accumulation in the tips of LRs,
especially at the early stages (stage I to stage IV) (Figure 5E) but
less so at the late stages (stage VII and stage VIII). Our results also
showed that the distribution of auxin did not change in the PRs,
although the auxin response maxima were increased by NaCl
treatment (Figure 5A).

IAA Is Involved in NaCl-Regulated LR
Development in Maize
Exogenous IAA was used to mimic the effects of auxin on PR and
LR development. The results indicated that 0.1 µM IAA slightly

increased PR elongation but did not significantly affect LR density
(Figures 6A–C and Supplementary Figure S11A). Moreover,
10 µM IAA inhibited PR elongation and slightly decreased
LR density (Figures 6A–C and Supplementary Figure S11A).
NaCl treatment inhibited PR elongation and LR density,
and IAA partially rescued the NaCl-induced inhibition
of PR elongation and LR density (Figures 6D–F and
Supplementary Figure S11B). These results indicated that
auxin probably participates in NaCl-regulated LR development.

ABA Is Involved in NaCl-Regulated Auxin
Distribution in Maize
In Arabidopsis, NaCl treatment inhibits PR and LR elongation
by decreasing auxin accumulations (Liu et al., 2016). In maize,
NaCl treatment inhibited PR and LR elongation but increased
auxin response maxima (Figures 5, 6). Therefore, the effects of
NaCl on root development differ between Arabidopsis and maize.
Our results showed that both ABA and auxin participated in
NaCl-regulated LR development in maize. To elucidate the effects
of NaCl on LR development, we measured the fluorescence in
pZmPIN1a::ZmPIN1a:YFP and DR5rev::mRFPer transgenic lines
to elucidate how ABA and the auxin response maxima and
distributions change in maize roots.

Previous results showed that NaCl treatment increased
the accumulation of DR5 (Figure 5). The fluorescence of
DR5 was located in the tips of LRs under natural conditions
(Figure 7B), but it diminished under the 200 mM NaCl
treatment (Figures 7E,H,K and Supplementary Figure S12B).
The exogenous ABA and DZ treatments also reduced the
accumulation of DR5 in the tips of the LRs (Figures 7H,K
and Supplementary Figure S12B). The density of the
LRs was also inhibited by the ABA and DZ treatments
(Supplementary Figure S12). Similarly, FLU treatment altered
the distribution of DR5 under the 200 mM NaCl treatment
(Figure 7M and Supplementary Figure S12B). The inhibition
of the LR density was also partially rescued by the FLU
treatment (Figures 7B,C and Supplementary Figure S12A).
The IAA treatment slightly rescued the inhibition of
LR density caused by NaCl and ABA, but it did not
alter the distribution of DR5 under either treatment
(Supplementary Figure S13).

NaCl Treatment Regulates Auxin
Distribution by Affecting the Polar
Localization of PIN1
The auxin influx carriers AUX1/LAX and auxin efflux carrier
PIN coordinate auxin polar transport together (Adamowski and
Friml, 2015; Fabregas et al., 2015). Previous studies have shown
that salt stress affects the distribution of PIN1 in Arabidopsis
roots (Jiang et al., 2016). Therefore, we used a ZmPIN1a-
YFP transgenic line to elucidate how NaCl affects the polar
localization of ZmPin1, and our results showed that NaCl
treatment affected the polar localization of auxin (Figures 7A,D
and Supplementary Figure S13). The exogenous ABA and
DZ treatments altered the accumulation and polar localization
of ZmPIN1 (Figures 7G,J and Supplementary Figure S13),

Frontiers in Plant Science | www.frontiersin.org 8 June 2019 | Volume 10 | Article 716

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00716 June 3, 2019 Time: 19:0 # 9

Lu et al. Hormone Control of Lateral Roots

FIGURE 5 | Salt stress stimulated the endogenous auxin response in the root tips and LRs. (A) Fluorescence of DR5-GFP in the tips of PRs under 0, 100, or
200 mM NaCl treatment was observed via fluorescence microscopy. Bars = 100 µm. (B) Observations of the fluorescence of DR5-GFP in transverse root sections
under 0, 100, or 200 mM NaCl treatment via confocal microscopy. The right curve shows the fluorescence intensity of DR5-RFP. Co, cortex; En, endodermis; Pc,
pericycle; Ph, Phloem. Bars = 50 µm. N, NaCl. (C) Total fluorescence intensity of the fluorescence part in (A). N, NaCl. (D) Total fluorescence intensity of the
fluorescence part in (B) (Student’s t-test). N, NaCl. (E) Observations via confocal microscopy of the fluorescence of DR5-GFP at different developmental stages of
LRs under 0 or 200 mM NaCl treatment for 8 h. Bars = 50 µm. The data represent the means ± SEs of five replicates, with 10 seedlings each. The images were
selected from five replicates, with 10 seedlings per replicate. The different letters represent significant differences between the treatment and the control (P < 0.05,
based on Student’s t-test).

respectively. When ABA biosynthesis was inhibited by
exogenous FLU, the localization of ZmPIN1 that occurred
under NaCl treatment was restored (Figure 7M and
Supplementary Figure S13). Exogenous IAA treatment
increased ZmPIN1 expression but did not affect its distribution;
exogenous IAA plus ABA also increased ZmPIN1 expression
and disrupted its distribution (Supplementary Figure S13).
The NaCl, ABA and DZ treatments increased the accumulation
of ABA in the LRs, while the FLU treatment reduced the ABA
accumulation (Figures 7C,F,I,L,O).

Our results showed that ABA plays a pivotal role in NaCl-
regulated ZmPin1 distribution. Therefore, we also measured the
ABA distribution under the same treatments. The results showed
that ABA accumulated specifically in LRs, excluding the tips of

LRs. The NaCl, exogenous ABA and DZ treatments increased
the accumulation of ABA, while FLU treatment decreased its
accumulation. The exogenous ABA and DZ treatments increased
the auxin response maxima, while exogenous IAA treatment did
not affect the accumulation of ABA under the control treatment
conditions or in response to NaCl treatment (Figures 7A–O
and Supplementary Figures S12, S13). On the basis of these
results, we hypothesized that the accumulation and distribution
of ABA affected the polar localization of ZmPIN1 and auxin.
Therefore, we measured the distribution of ABA and auxin
together. The results showed that the distribution of ABA and
auxin complemented each other in terms of spatial positioning
in the PRs and LRs; however, auxin was localized in the root tips
(below the quiescent center), while ABA was localized in the PRs
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FIGURE 6 | Effects of exogenous IAA on LR development. (A) Phenotypes of wild-type (B73) seedlings under different concentrations of IAA. The white dotted line in
the image shows the enlarged part. Bars = 1 cm. (B) Length of the PRs of the wild-type (B73) seedlings under different concentrations of IAA. (C) The LR density of
the wild-type (B73) seedlings under different IAA treatments. (D) Phenotypes of wild-type (B73) seedlings under different NaCl treatments with or without 1 µM IAA.
Bars = 1 cm. (E) Determination of the PR length of wild-type (B73) seedlings under the different NaCl treatments in (D). The white dotted line in the image shows the
enlarged part. Bars = 1 cm. (F) Determination of the LR density of wild-type (B73) seedlings under the different NaCl treatments in (D). N, NaCl. The data represent
the means ± SEs of five replicates, with 10 seedlings each in (B–D). The different letters represent significant differences between the treatment and the control
(P < 0.05, based on Student’s t-test).

and LRs, excluding the root tips (above the quiescent center).
NaCl treatment expanded the distribution of ABA to the tips of
the LRs, which are regions of auxin distribution, but did not alter
the distribution of ABA in the PRs. Therefore, the localization of
auxin in the root tips was disrupted in the LRs (Figure 8).

DISCUSSION

Although the mechanism by which NaCl and other
environmental stressors regulate root development has

been well investigated in Arabidopsis (Deak and Malamy,
2005; Li et al., 2011; Ding et al., 2015), the functions of
some hormones, such as auxin, ABA and cytokinin, that are
reported to be involved in NaCl-regulated root development
(Shkolnik-Inbar and Bar-Zvi, 2010; Orman-Ligeza et al.,
2013; Shu et al., 2016) are still unclear in maize. Our data
showed that the inhibition of LRI by NaCl required ABA;
NaCl treatment increased the accumulation of ABA. The
distribution of auxin, regulated by ABA, inhibits LRI and
development. In Arabidopsis, NaCl treatment increases
ABA and decreases auxin accumulation (Duan et al., 2013;
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FIGURE 7 | NaCl promoted ABA accumulation and altered the distribution of PIN1 and auxin. (A–O) show the transverse sections of the LRs. (A,D,G,J,M) show the
fluorescence of PIN1-YFP. (B,E,H,K,N) show the fluorescence of DR5-RFP. The white dotted lines represent the profile of the LRP, and the arrow points to the
distribution of DR5-RFP in the root tips of LRs under different treatments. (C,F,I,L,O) show the immunofluorescence of ABA. The white dotted line in images
(A,D,G,J,M) show the enlarged part. The arrow points to the location of PIN1-YFP in the LRs under different treatment concentrations: 200 mM NaCl, 100 µM ABA,
5 µM DZ, and 10 µM FLU. All the pictured transmission graphs are given in Supplementary Figure S13. The figures were selected from five replicates, with 10
seedlings per replicate, and all of the seedlings presented similar results.

Ding et al., 2015), but the response mechanism following salt
stress may differ in maize.

ABA Accumulates in LRs and Is Involved
in the NaCl Regulation of LR
Development
Abscisic acid is reported to inhibit LR development at the
post-emergence stage under different environmental stressors,

indicating that LRs are more sensitive than PRs to ABA in
Arabidopsis, a dicotyledonous species (Signora et al., 2001; De
Smet et al., 2003; Duan et al., 2013). However, the effects of
ABA on LR development in monocotyledonous plants, such as
maize and rice, still need to be studied. In particular, how the
localization of ABA affects LR development should be elucidated.

Previous studies have shown that the expression of ABI1 in
the endodermis and pericycle of Arabidopsis roots can rescue the
inhibition of root development by ABA, while the expression of
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FIGURE 8 | Distribution of ABA and auxin within root tips and LRs. (A,D,G,J)
indicate the immunofluorescence of DR5-RFP. (B,E,H,K) indicate the
immunofluorescence of ABA. The immunofluorescence of DR5-RFP was
observed in living (plant body) tissue and then fixed to the ABA
immunofluorescence observation, superimposing the two images. The roots
grew for 3 days, after which 200 mM NaCl treatment was applied for 8 h
(D–F,J–L). Bars = 100 µm (A–F). Bars = 50 µm (G–L). The figures were
selected from five replicates, with 10 seedlings per replicate, and all of the
seedlings presented similar results.

ABI1 in other tissues cannot (Duan et al., 2013). These results
show that ABA must localize to specific tissues to function.
Using immunolocalization methods, we observed the localization
of ABA under control and high-NaCl conditions. Our results
showed that ABA accumulated in the tips of the roots above
the quiescent center in LRs and, to a lesser degree, in LRP of
maize (Figures 2A,E). ABA biosynthesis, ABA catabolism and
expression of response genes increased under NaCl treatment
(Supplementary Figure S2); these results are similar to those
in Arabidopsis (Ondzighi-Assoume et al., 2016). By observing
transverse root sections, we found that ABA accumulated in
the endodermis, pericycle, and phloem under control conditions
(Figure 3B), which is different from the results in Arabidopsis;
in Arabidopsis, ABA accumulated in the endodermis (Ondzighi-
Assoume et al., 2016). This difference may be related to the
differences in root structure between monocots and dicots. In
maize, LRP originate in the pericycle (Orman-Ligeza et al.,
2013) and represent the primary location of ABA accumulation.
Therefore, these results indicated that ABA participated in the
regulation of LR development. The NaCl and exogenous ABA
treatments increased the accumulation of ABA in the PRs and
LRs and caused its distribution to expand to all tissues. A similar
result was also reported in Arabidopsis in response to KNO3
treatment (Ondzighi-Assoume et al., 2016).

ABA has been indicated to mediate osmotic stress-
and NaCl stress-dependent LR inhibition in Arabidopsis
(De Smet et al., 2003; Deak and Malamy, 2005; He et al., 2005;
Duan et al., 2013). Our results showed that the inhibition of LRs
by NaCl was restored by the exogenous ABA biosynthesis
inhibitor FLU in maize and was weakened in the ABA
biosynthesis mutant vp14 (Figures 3D–F, 4). These results
indicated that ABA also plays an important role in NaCl-
inhibited LR development in maize. Previous studies have
indicated that NaCl treatment induces the quiescence of LRs
in Arabidopsis (Duan et al., 2013). Our results also showed that
ABA could induce the quiescence of LRs in maize, and the
quiescence of LRs induced by ABA could be rescued when the
maize seedlings were transferred to a new nutrient solution that
lacked ABA (Supplementary Figure S8). These results showed
that ABA might play similar roles in regulating the quiescence of
LRs in both maize and Arabidopsis.

NaCl Enhances Auxin Response Maxima
and Inhibits Root Development in Maize
Auxin is reported to act as a key regulator that is involved in all
stages of LR development (Lavenus et al., 2013). Environmental
stressors such as NaCl, osmotic stress and exogenous ABA
reduce auxin response maxima and inhibit PR and LR growth
in Arabidopsis (De Smet et al., 2003; Ding et al., 2015). We
found different results when we treated maize with NaCl:
the auxin response maxima in the roots increased under
both the 100 and 200 mM NaCl treatments (Figure 5).
When DR5rev::mRFPer transgenic lines were used to detect
fluorescence in the PRs, auxin was distributed primarily in
the root tips (below the quiescent center), and the NaCl
and exogenous ABA treatments increased the auxin response
maxima. Additionally, these NaCl treatments inhibited LRI and
growth (Figures 1, 7 and Supplementary Figure S1). We also
measured the expression of genes related to auxin pathways
in response to these treatments and found that the NaCl and
ABA treatments increased the expression of genes involved in
auxin biosynthesis, auxin catabolism and the auxin response in
maize (Supplementary Figure S9). Moreover, our results showed
that the ABA biosynthesis inhibitor FLU partially rescued the
NaCl-induced inhibition of LR development (Figure 7).

These results indicated that the auxin response maxima
increased under NaCl treatment, and this increase correlated
with an increase in ABA concentrations. These results are not
consistent with processes in Arabidopsis because, in that species,
an increase in ABA was shown to reduce the response maxima of
auxin and inhibit LR growth (Shkolnik-Inbar and Bar-Zvi, 2010;
Duan et al., 2013). Auxin plays a central role during all stages
of LR development, and a decrease in auxin biosynthesis and
response affects LRI and growth in Arabidopsis (Lavenus et al.,
2013). Therefore, it is very interesting that NaCl increased ABA
and the auxin response maxima in maize and that this increase
did not affect LRI but inhibited LR growth (Figures 2, 6, 7). To
better understand these effects, we used different concentrations
of exogenous IAA to treat maize; the results showed that 0.1 µM
IAA increased PR elongation, while 1–10 µM IAA slightly
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FIGURE 9 | Plausible model for NaCl-regulated LR and PR development.
ABA and auxin accumulate in PRs and LRs under NaCl treatment. In PRs,
ABA and auxin are induced by NaCl, but the polarity of the distribution does
not change. In LRs, ABA is distributed to the top of the LRs, which affects the
polarity of the distribution of auxin in LRP by altering the polarity of the
localization of PIN1; this phenomenon leads to auxin accumulation around the
apices of LRs, resulting in loss of polar growth of LRP. The growth of LRP is
ultimately inhibited, and the number of LRs decreases.

inhibited PR growth (Figure 6), and only 10 µM IAA inhibited
LR growth. We also determined the auxin response maxima in
the LRs in response to treatment with exogenous ABA as well as
FLU and DZ, which are inhibitors of ABA biosynthesis and ABA
catabolism, respectively. The results indicated that exogenous
ABA and DZ slightly increased the auxin response maxima in
LRs under NaCl treatment, while FLU slightly decreased the
maxima (Figure 8). In addition, ABA and DZ inhibited LR
development, while FLU rescued the NaCl-induced inhibition
of LR development; however, the results also showed that
exogenous IAA could rescue the NaCl-induced inhibition of LRs
(Supplementary Figures S12, S13). These results indicated that
the auxin response maxima may not be directly correlated with
the phenotype. Therefore, we suggest that, in maize, it may be
not the concentration but the distribution of auxin that regulates
LR development under NaCl stress.

ABA Participates in NaCl-Regulated LR
Development by Regulating the
Distribution of Auxin
Auxin affects plants not only by its concentration but also by
its distribution (De Smet et al., 2007; Adamowski and Friml,
2015; Xi et al., 2016). An altered auxin distribution can result
in severe phenotypes, such as that of the pin1 mutant, which is
characterized as having a stem that is nearly devoid of organs
such as leaves and flowers (Okada et al., 1991). Polar auxin
transport also plays a central role in root development, as it affects
LR formation and root gravitropism (Shkolnik-Inbar and Bar-
Zvi, 2010; Xi et al., 2016). Compared with wild-type plants, pin
mutants progress more slowly through development, and LRs
are generated at a lower frequency or cannot be formed at all
(Benkova et al., 2003; Adamowski and Friml, 2015). Therefore,
we also measured the auxin distribution in response to different
treatments and found that auxin was located in the LRP and in the

tips of both PRs and LRs (Figures 5A,E), which is complementary
to the distribution of ABA under control conditions (Figure 8).
NaCl treatment did not alter the distribution of auxin in the
PRs but disrupted the distribution of auxin in the LRs. In
response to NaCl treatment, the location of the auxin changed
from being in the LR tips to having an unorganized distribution,
and the auxin response maxima increased (Figures 6, 8 and
Supplementary Figure S13). The inhibitor of ABA biosynthesis
reduced the concentration of ABA in both the control and NaCl
treatment groups (Figure 7 and Supplementary Figure S4), and
it rescued the NaCl-induced inhibition of LR development and
the effects of auxin distribution caused by the NaCl treatments.
The FLU treatment restored the unorganized distribution of
auxin in the root tips in response to the NaCl treatments
(Figures 7B,I and Supplementary Figure S13). The results
also showed that the polar growth of the LRs diminished
under NaCl treatment; the LRs could initiate formation of
LRP, but the LRP grew without polarity and formed swollen
tissue, which was similar to results obtained from the ABA
and DZ treatments. The FLU treatment rescued this phenotype
(Figures 7B,C). 1-N-Naphthylphthalamic acid (NPA) is a
chemical compound that inhibits the polar transport of auxin.
NPA exhibited a weak inhibitory effect on the development of
PRs (Supplementary Figures S14A,B) but significantly inhibited
the number of LRs (Supplementary Figures S14C,D). These
results show that auxin polar transport is important for LR
development. Compared with NaCl, NPA mainly inhibits LR
development, which is consistent with the NaCl-based inhibition
of LR growth. These results supported our hypothesis: NaCl
treatment increased the accumulation of ABA, which disrupted
the distribution of PIN1, after which the unorganized distribution
of auxin inhibited the polar growth of the LRs.

As previously reported, the polar localization of auxin is
correlated with the polarized distribution of auxin transporters
(Robert et al., 2013; Adamowski and Friml, 2015). Thus, using
the transgenic line pZmPIN1a::ZmPIN1a:YFP under different
treatments, we investigated the distribution of PIN1, and
the results showed that the polar localization of PIN1 was
disrupted by the NaCl and exogenous ABA and DZ treatments
(Figure 7 and Supplementary Figure S13). However, the FLU
treatment did not alter the PIN1 distribution under control
conditions but did rescue the unorganized PIN1 distribution
when induced by NaCl. Moreover, exogenous IAA did not
alter the distribution of PIN1 under control conditions or
NaCl treatment and could not rescue the phenotype induced
by NaCl (Figure 7 and Supplementary Figure S13). These
results indicated that ABA could affect auxin distribution by
altering the localization of PIN1 and that NaCl regulated
auxin distribution by promoting the accumulation of
ABA in maize LRs.

Previous results have also shown that ABI1 is expressed
specifically in the endodermis and pericycle, both of which
constitute the primary location of ABA in our results (Figure 2B),
and that ABI1 rescued the inhibition of LR development by ABA
(Duan et al., 2013). High expression levels of ABI4 were detected
in mature regions of PRs and LRs, but relatively low levels
were detected in young LRs; no expression was detected in LRP.
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ABI affects auxin distribution by affecting PIN1 distribution in
Arabidopsis (Shkolnik-Inbar and Bar-Zvi, 2010), and our results
also showed that ABA accumulated in PRs and LRs but, to a lesser
extent, in young LRs and LRP (Figure 2). NaCl treatments also
altered the complementary distribution of ABA and auxin in LRs;
the distribution of ABA and auxin expanded its their original
location to encompass the entire LRs (Figures 7, 8). Surprisingly,
the complementary distribution of ABA and auxin in the PRs did
not change under NaCl treatment. We also found that PRs were
less sensitive than LRs to NaCl treatment (Figure 1). These results
showed that NaCl induced inhibition via different mechanisms in
PRs and LRs in maize.

Our data suggest that ABA regulates NaCl-modulated LR
development and that this regulation occurs by affecting the
auxin distribution rather than auxin response maxima. ABA
disrupts the polar localization of PIN1, an important auxin
transporter (Figure 9). NaCl induced both ABA accumulation
and auxin response maxima in the roots (Figures 2, 5); the ABA
distribution within the PRs did not change under NaCl treatment,
so the localization of auxin in the root tips was preserved,
while in LRs, the ABA distribution expanded from the root tips
throughout the LRs, which led to an unorganized distribution of
auxin and inhibited LR polar growth (Figure 8). PIN1 played
an important role in auxin polar transport, and its distribution
was affected by NaCl and ABA; this disrupted distribution
led to an unorganized distribution of auxin under NaCl
treatment and exogenous ABA and DZ treatments (Figure 7).
In brief, using the latest immunofluorescence technique and
pZmPIN1a::ZmPIN1a:YFP and DR5rev::mRFPer transgenic lines,
we described for the first time the distribution of ABA and
auxin under both control conditions and NaCl stress and
revealed a novel mechanism by which LR development is
regulated in maize.
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