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Modern agriculture is facing twin challenge of ensuring global food security and
executing it in a sustainable manner. However, the rapidly expanding salinity stress
in cultivable areas poses a major peril to crop yield. Among various biotechnological
techniques being used to reduce the negative effects of salinity, the use of arbuscular
mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration
of salinity stress. AMF deploy an array of biochemical and physiological mechanisms
that act in a concerted manner to provide more salinity tolerance to the host
plant. Some of the well-known mechanisms include improved nutrient uptake and
maintenance of ionic homeostasis, superior water use efficiency and osmoprotection,
enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced
antioxidant metabolism. Molecular studies in past one decade have further elucidated
the processes involved in amelioration of salt stress in mycorrhizal plants. The
participating AMF induce expression of genes involved in Na+ extrusion to the soil
solution, K+ acquisition (by phloem loading and unloading) and release into the
xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially
affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs),
which consequently improves water status of the plant. Formation of AM (arbuscular
mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts
quantum efficiency of PSII under salt stress conditions by mounting the transcript
levels of chloroplast genes encoding antenna proteins involved in transfer of excitation
energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones,
abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been
associated with the salt tolerance mechanism. This review comprehensively covers
major research advances on physiological, biochemical, and molecular mechanisms
implicated in AM-induced salt stress tolerance in plants. The review identifies the
challenges involved in the application of AM in alleviation of salt stress in plants in order
to improve crop productivity.

Keywords: antioxidants, arbuscular mycorrhizal fungi, aquaporins, ionic homeostasis, photosynthetic efficiency,
osmotic balance, salinity
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INTRODUCTION

Worldwide, soil salinity is becoming a significant problem as
it is encountered in all climates. Amongst the various salts
present in the soil, NaCl is the most prevalent one. Soils are
rendered saline due to deposition of salt either by natural
(primary) or anthropogenic (secondary) processes. Primary
processes include weathering of parent rocks, deposition from sea
water and atmospheric deposition. Secondary processes include
poor drainage facilities, irrigation with brackish groundwater,
continuous irrigation for long durations, improper management
of water, and cultural methods in irrigated agriculture. In
addition, growing annual plants with shallow root-systems in
place of deep-rooted perennial flora raises the water table
leading to rise of saline groundwater (Food and Agriculture
Organization [FAO], 2015). It is projected that around one billion
hectares (ha) traversing more than 100 countries encounter
salinity problems (Food and Agriculture Organization [FAO],
2015). Soil salinity is rapidly increasing with an estimated yearly
addition of 0.3–1.5 million ha of farmland thereby decreasing
crop production by more than 20% (Porcel et al., 2012; Food and
Agriculture Organization [FAO], 2015). It also renders another
20–46 million ha with decreased capacity for production. On the
other hand, the earth is home to 7.7 billion people with addition
of 83 million people every year at the rate of 1.09% (United
Nations [UN], 2018). Therefore, achieving food security for the
growing population amidst the declining farmland is one of the
most important missions for modern agriculture.

High salt deposition in the soil results in osmotic as
well as specific ion effects, which further lead to secondary
oxidative stress in plants. Thus, salinity shows adverse effects
on germination, growth, and reproduction of plants that
subsequently diminish crop yield (Chinnusamy et al., 2005).

Plants have evolved to be a highly flexible system which
can adjust its morphological, physiological, biochemical, and
molecular mechanisms to survive and sustain the changing
environment. To counter the problems of salinity, plants

Abbreviations: ABA, abscisic acid; AI, acid invertase; AM, arbuscular mycorrhiza;
AMF, arbuscular mycorrhizal fungi; APX, ascorbate peroxidase; AsA, ascorbate;
BR, brassinosteroids; CAT, catalase; Ci, intercellular CO2 content; CK, cytokinin;
CNGCs, cyclic nucleotide-gated channels; Cu, copper; DHA, dehydroascorbate;
F0, minimal fluorescence; FAO, Food and Agriculture Organization; Fm,
maximal fluorescence; Fv/Fm, quantum yield of photosystem II; GA, gibberellic
acid; GR, glutathione reductase; GSH, reduced glutathione; GSSG, oxidized
glutathione; H2O2, hydrogen peroxide; HATs, high affinity transporters; HKT,
high affinity potassium transporter; JA, jasmonic acid; K, potassium; M,
mycorrhizal; N, nitrogen; NaCl, sodium chloride; NAD-MDH, NAD-dependent
malate dehydrogenase; NADP-MDH, NADP-dependent malate dehydrogenase;
NADP-ME, NADP-malic enzyme; NHX, sodium/hydrogen exchanger; NM,
non-mycorrhizal; NO, nitric oxide; NPQ, non-photochemical quenching; NR,
nitrate reductase; .O2

−, singlet oxygen; O2−, superoxide anions; OH, hydroxyl
ions; P, phosphorus; PC5S, pyrroline-5-carboxylate synthase; PEPC, phospho-
enol-pyruvate carboxylase; Pi, intrinsic phosphate concentration; PIP, plasma
membrane intrinsic proteins; POX, peroxidase; PPBK, pyruvate orthophosphate
dikanase; PSII, photosystem II; Put, putreseine; ROS, reactive oxygen species;
SA, salicylic acid; SKOR, outward rectifying K+ channel; SLs, strigolactones;
SOD, superoxide dismutase; SOS1, salt overly sensitive 1; Spd, spermidine;
Spm, spermine; SPS, sucrose phosphate synthase; SS, sucrose synthase; SULTR,
sulfate transporters; TIPs, tonoplast intrinsic proteins; TPP, trehalose-6-phosphate
phosphatase; TPS, trehalose-6-phosphate synthase; TRE, trehalase; TSS, total
soluble sugar; Zn, zinc; 8PSII, quantum efficiency of photosystem II.

exhibit growth plasticity (morphological and developmental
pattern change), accumulation of compatible osmolytes to
maintain turgor as well as prevent ultrastructural damage, ion-
homeostasis, regulation of water uptake and enhanced water
use efficiency, enhanced photosynthesis, detoxification of ROS
through antioxidant enzymes and molecules, and induction of
phytohormones (Munns and Tester, 2008; Ruiz-Lozano et al.,
2012; Augé et al., 2014). However, these adaptive strategies
become inefficient to cope with the rapidly increasing salinity.

Arbuscular mycorrhizal fungi establish a symbiotic union
with roots of 80% land plants (Smith and Read, 2008). This
symbiosis constitutes a distinctive system with more efficiency
than roots alone for uptake and transfer of mineral nutrients
from the soil (Ruiz-Lozano et al., 2012). The plant associated
extramatrical hyphae of AMF can extent up to 100 m g−1 of soil,
and enhance the plant’s ability to explore soil. These hyphae are
leaner than roots, hence facilitate mining of water-filled pores,
which otherwise are inaccessible to roots (Smith et al., 2010).
Owing to this, AM can boost several mechanisms in plant to
manage salt stress (Evelin et al., 2009; Ruiz-Lozano et al., 2012).
Formation of AM has been reported to – (i) improve nutrient
acquisition and maintain ionic homeostasis; (ii) improve water
uptake and maintain osmotic equilibrium in plants; (iii) induce
antioxidant system to prevent damage by ROS; (iv) protect
photosynthetic apparatus and enhance photosynthetic efficiency;
and (v) modulate phytohormone profile to minimize salt effects
on growth and development (Figure 1) (Evelin et al., 2009, 2012;
Ruiz-Lozano et al., 2012; Augé et al., 2014; Khalloufi et al., 2017).
These effects act in coordination to improve plant’s resilience
to salinity stress. These ameliorative effects can be evaluated in
terms of improved plant growth exhibited by mycorrhizal (M)
in comparison to NM plants. In the past decade, significant
progress has been made to understand these mechanisms. This
review comprehensively covers all biochemical and physiological
changes that occur in plants that are inoculated with AM fungi
and exposed to salt stress. It essentially takes stock of the
advances made in the last decade toward better understanding
of the mechanisms that contribute to salt stress alleviation in M
plants. These include molecular bases for higher K+:Na+ ratio
and higher concentration of N in M plants via regulation of
transporters; maintenance of efficient water status via differential
regulation of aquaporin genes (PIPs and TIPs); and elucidation
of better photosynthetic efficiency via upregulation of RuBisCo
gene as well as protection of PSII by upregulation of genes
encoding D1 and D2 proteins of PSII. It updates the role of AM
in influencing interplay of phytohormones in plants subjected to
salt stress. Finally, it identifies the gaps in the understanding of
the mechanisms, and presents the research challenges to be met
in the future studies.

MECHANISMS OF SALT
TOLERANCE IN M PLANTS

The ability of plants to tolerate salinity stress is usually evaluated
in terms of biomass produced (da Silva et al., 2008; Ruiz-
Lozano et al., 2012). Several studies have highlighted that AMF
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FIGURE 1 | Differential response of non-mycorrhizal and mycorrhizal plants under salt stress. Accumulation of salt in soil creates competition for nutrient uptake and
transport. This leads to imbalance of the ionic composition of plant, thereby affecting plant’s physiological traits. AMF increase the volume of soil explored by plant
roots, upregulate several cation transporters, leading to improved nutrient uptake, and also maintains ionic homeostasis. Salinity lowers soil water potential causing
cellular dehydration due to decrease in water uptake. AM negates this effect by mediating accumulation of osmolytes and also improves plant’s water status by
improving root hydraulic conductivity. Salinity induces oxidative stress due to imbalance in ROS (reactive oxygen species) generation and the quenching activities of
antioxidants. AMF are known to improve both enzymatic and non-enzymatic antioxidant systems of plants. Photosynthesis is also negatively affected by salinity. AM
has a positive effect on photosynthesis under salt stress. Overall, AMF improve the performance of plant under salt stress.

imparts salinity tolerance in host plants by virtue of higher
biomass as compared to NM plants. AMF colonization enhanced
biomass in Trigonella foenum-graecum (Evelin et al., 2012),
Oryza sativa (Porcel et al., 2015), Medicago sativa (Campanelli
et al., 2013), Gossypium hirsutum (Liu et al., 2016), Elaeagnus
angustifolia (Chang et al., 2018), and Chrysanthemum morifolium
(Wang et al., 2018). Higher biomass subsequently leads to
dilution of Na+ and Cl−, and manifests as better crop yield
(Talaat and Shawky, 2011).

Alteration in Root Architecture
Root system, being the plant structure responsible for uptake
of water and nutrients, is crucial for enhancing plant resistance
to salt stress. It is also the organ that regulates salt acquisition
and translocation (Jung and McCouch, 2013). In the presence of
salt in the rhizosphere, plants experience a decline in primary
root growth due to salt-induced inhibition of cell division and
elongation of root epidermal cells while lateral root development
gets initiated (Rahnama et al., 2011; Jung and McCouch, 2013).
In fact, it is well established that AMF colonization can improve

plant’s adaptive ability by modifying the structure of root
according to the requirements of time and space (Kapoor et al.,
2008). Wu et al. (2010) observed that the length, surface area,
and projected area of the root were more in M than the NM
Citrus plants. Kumar et al. (2010) reported greater root length
and biomass in M than NM Jatropha curcas plants. Similar
observations have been reported in Trigonella foenum-graecum
(Evelin et al., 2012), Medicago sativa (Campanelli et al., 2013),
Ephedra aphylla (Alqarawi et al., 2014), and Cucurbita pepo var.
pepo (Harris-Valle et al., 2018). Better root system enables the
plant to track non-saline areas for water and minerals until
exploitation of salt areas become indispensable (Wu et al., 2010;
Campanelli et al., 2013; Alqarawi et al., 2014).

Nutrient Acquisition and
Ionic Homeostasis
Excess salt (Na+ and Cl−) in the soil affects availability of
nutrients by imposing competition during uptake, translocation
or apportioning within the plant (Rabie, 2005). Therefore, high
Na+ and Cl− concentrations in the soil solution may suppress
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nutrient associated activities and result in undesired ratios of
Na+:Ca2+, Na+:K+, and Ca2+:Mg2+ (Abdel-Fattah and Asrar,
2012). Such a phenomenon can lead to imbalance in ionic
composition of the plant, thereby affecting plant’s physiological
traits (Hasegawa et al., 2000; Munns et al., 2006). However, AMF
colonization has been shown to improve nutrient uptake and
maintain ionic homeostasis in host plants grown in saline soils
(Table 1). In fact, it has been assessed that the extramatrical
hyphae of AMF can supply up to 80, 25, 10, 25, and 60% of
plant’s P (phosphorus), N (nitrogen), K (potassium), Zn (zinc),
and Cu (copper), respectively (Marschner and Dell, 1994). AMF
colonization also influences the concentration and profile of
organic acids and polyamines in plants (Sheng et al., 2011;
Evelin et al., 2013; Talaat and Shawky, 2013). Organic acids
play important role in lowering soil electrical conductivity and
increasing the availability of N, P, and K in soil (Sheng et al., 2011).
Polyamines help in retaining ion homeostasis in plant cells by
enhancing the uptake of nutrients and water (Pang et al., 2007).

Phosphorus
Salinization renders P unavailable to plants due to its preci-
pitation with other cations, such as Ca2+, Mg2+, and Zn2+

depending upon the pH of the soil environment (Azcon-G de
Aguilar et al., 1979), thereby creating salt-induced P deficiency
in plants. This results in stunted growth of the plant and the
older leaves die prematurely (Taiz and Zeiger, 2006). However,
AMF can significantly improve P acquisition for better growth
and development of host plant (Table 1). Enhanced P acquisition
in M plants is attributed to – (i) increased availability of P in the
soil due to secretion of acid and alkaline phosphatases by hyphae
that liberates P from its bound form; (ii) maintenance of intrinsic
phosphate concentration (Pi) by forming polyphosphates inside
the hyphae; (iii) ability of AMF to take up P at lower threshold
owing to the expression of high affinity phosphate transporter
genes (GvPT, GiPT, and GmosPT); and (iv) sustained movement
of P into the roots as AMF are capable of accumulating vast
amounts of absorbed P than roots (Bolan, 1991; Marschner and
Dell, 1994; Selvaraj and Chellappan, 2006; Abdel-Fattah and
Asrar, 2012). Thus in M plants, effective P uptake aids in –
(i) preserving the integrity of cell membrane; (ii) reducing leakage
of ions; (iii) compartmentalization of toxic ions in vacuoles and;
(iv) selective uptake of ions (Rinaldelli and Mancuso, 1996; Evelin
et al., 2012), consequently reducing the adverse effects of salinity.

K+:Na+ Ratio
Sodium and potassium ions, due to their similar physico-
chemical nature, compete at the transport sites for entry into the
symplast. Therefore, in saline soils where concentration of Na+
in rhizosphere is very high, K+ uptake faces a stiff competition
from Na+, eventually decreasing K+:Na+ ratio in the cytosol.
Low K+:Na+ ratio in the cell subsequently disrupts protein
synthesis, enzyme activity, photosynthesis, turgor maintenance,
and stomatal movement (Maathuis and Amtmann, 1999). The
integrity and selectivity of root membrane are also altered by Na+
(Grattan and Grieve, 1999).

High Na+:K+ ratio in plants indicates a higher level of stress.
Therefore, plants must consistently maintain low Na+:K+ to

be able to resist the deleterious effects of salinity (Evelin et al.,
2012). One of the significant advantages of favorable K+:Na+
ratio is the protection of photosynthetic tissues by inhibition
of Na+ entry into them, a pivotal trait involved in overcoming
salinity stress in glycophytes (Colmer et al., 2006; Munns
and Tester, 2008; Cuin et al., 2011). In fact, photosynthetic
organs constitute a major site for maintaining desirable K+:Na+
ratio. This, in turn, determines the photosynthetic ability, and
hence development and productivity of the plant under saline
conditions (Wu et al., 2013).

Mycorrhizal plants have unfailingly shown higher K+:Na+
ratio than their NM counterparts under salt stress conditions
atleast in reported studies (Table 1). M plants can control Na+
translocation to aboveground parts as well as regulate internal
concentrations of Na+. This is attributed to M plant’s ability to
sequester Na+ into the vacuoles or exclude it from the cytosol.
The toxic effects of Na+ in apoplast are lesser with respect to
cytoplasm. Furthermore, AM facilitates host plant to retract Na+
from xylem, and divert it away from photosynthetic tissues to
roots (Evelin et al., 2012; Maathuis, 2013). In this regard, it is
interesting to note that, M plants have an added advantage
over their NM counterparts as salinity induces accumulation
of glomalin in participating AMF (Hammer and Rillig, 2011).
Glomalin, a glycoprotein has been described as a heat shock
protein 60 (HSP60) homolog (Gadkar and Rillig, 2006) and is
hypothesized to participate in lowering cytosolic damages due
to Na+-mediated protein misfolding (Maathuis and Amtmann,
1999). The strong correlation between salinity and production of
glomalin only strengthens our understanding of AM protection
of plants under salt stress (Hammer and Rillig, 2011).

Recent studies have explained the molecular bases of high
K+:Na+ ratio in M plants (Asins et al., 2013; Porcel et al., 2016;
Chen et al., 2017). Mycorrhizal Oryza sativa plants were able
to compartmentalize Na+ into the vacuole via up regulation
of OsNHX3 (sodium/hydrogen exchanger), and mediate efflux
of Na+ from cytosol to apoplastic spaces via higher expression
of OsSOS1 (salt overly sensitive) and OsHKT2;1 (high affinity
potassium transporter) (Porcel et al., 2016). NHXs are vacuolar
Na+/H+ antiporters present in roots and leaves that help in
sequestering Na+ in the vacuole (Munns, 2005). SOS1 are plasma
membrane Na+/H+ antiporters responsible for secretion of Na+
from the cytosol beyond plasma membrane, their reallocation
in roots and shoots, and restraining them from getting into the
photosynthetic organs (Munns, 2005; Olías et al., 2009). HKT
are Na+/K+ transporters responsible for diverting Na+ from
photosynthetic tissues to roots, and confiscating Na+ from the
xylem (Figure 2) (Davenport et al., 2007). It is proposed that
the functions of SOS1 and HKT are synchronized to bring Na+
homeostasis and apportioning among the plant organs (Pardo
et al., 2006; Olías et al., 2009). Moreover, the level of stress is
crucial in regulating the expression of a HKT gene (Porcel et al.,
2016). For instance, OsHKT1;5 gene expression increased seven-
fold in M rice plants at 75 mM NaCl; however, its expression
remained more or less same in NM plants at higher salinity level
(Porcel et al., 2016).

In Robinia pseudoacacia roots, under salinity stress, AM
symbiosis enabled exclusion of Na+ from root cells, unloading of
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FIGURE 2 | Role of transporter proteins in maintaining favorable K+:Na+ ratio in salt stressed plants. Salinity renders more concentration of Na+ and Cl- in the soil.
This results in imbalance in the ion uptake by plants. Na+ and K+ have similar physico-chemical nature and hence compete at their transport sites for entry into root
symplast. Salt stress results in higher Na+ uptake and thus its cellular composition increases, leading to disruption of enzyme activity, protein synthesis, turgor
maintenance, and so on. Plants counteract such negative effects by maintaining lower cellular Na+ content by activating certain cation transporters such as NHXs
(sodium/hydrogen exchanger), SOS (salt overly sensitive), SKOR (outward rectifying K+ channel), HKT (high affinity potassium transporters), and AKT (inward
rectifying K+ channel). NHXs are vacuolar Na+/H+antiporters. They help in maintaining lower cellular Na+ content by sequestering Na+ inside the vacuole. SOS1 is
a plasma membrane Na+/H+ antiporter that extrude Na+ from the cytosol. It helps in reallocation of Na+ in roots and shoots. HKTs are Na+/K+ transporters that
act in removing Na+ from the xylem stream and translocating it into the xylem parenchyma. SKOR mediates translocation of K+ toward shoot through xylem. AKT is
a K+ channel present in phloem and mediate influx of K+ to shoots.

Na+ from xylem, and translocation of K+ to the shoots. These
effects were associated with the up regulation of root RpSOS1,
RpSKOR, and RpHKT1 (Chen et al., 2017). SKOR (outwardly
rectifying K+ channel) is involved in the translocation of K+
toward shoot through xylem (Figure 2) (Gaymard et al., 1998).

Nitrogen
Plants absorb N as nitrate (NO3

2−) and ammonium (NH4
+)

ions (Frechilla et al., 2001). However, salinity conditions interfere
with their uptake by immobilizing them (Hodge and Fitter,
2010; Miransari, 2010). While NO3

2− uptake is challenged by
Cl−, NH4

+ absorption faces competition from Na+ at the
membrane. Salt-induced disruption of membrane proteins that
change plasma membrane integrity also affects the uptake of
NO3

2− and NH4
+ (Köhler and Raschke, 2000). This competition

results in a low flux of NO3
2− from soil to roots leading to

reduced activity of NR, as it is a substrate-inducible enzyme
(Hoff et al., 1992). Several studies have reported that AMF
colonization helps in increasing N uptake under stress conditions
(Table 1). In fact, AMF hyphae have been reported to supply up
to 25% of plant’s N (Marschner and Dell, 1994). Improved nitrate
uptake in M plants is attributed to AMF-facilitated maintenance
of membrane stability and increased NR activity (Talaat and
Shawky, 2014). Higher NR activity in M plants can be explained
by – (i) the sustained phosphate supply to the enzyme (Ruiz-
Lozano and Azcón, 1996); (ii) a higher flux of nitrate (substrate),
mediated by extramatrical mycelium of AMF; and (iii) regulation
of NR activity (Kaldorf et al., 1998). Recently, Felicia et al.
(2017) demonstrated that higher nitrogen uptake in M plants
under salt stress is due to higher expression of nitrate (NRT1.1,
NAR2.2) and ammonium transporters (AMT1.1 and AMT1.2) in
M durum Triticum aestivum plants (colonized with a mixture of
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Rhizophagus irregularis and Funneliformis mosseae). NRT1.1 is a
dual affinity transporter protein that is responsible for both low
and high affinity nitrate uptake in roots (Crawford and Glass,
1998; Wang et al., 1998; Liu et al., 1999) while NAR2.2 is a protein
that takes part in HATs (high affinity transporter systems) by
actively interacting with the genes involved in effective NO3

2−

transport (Filleur et al., 2001). However, in a prior study, it was
observed that AMF symbiosis significantly up regulated the
expression of NRT1.1, NRT2, NAR2.2, AMT1.2, and AMT2.1 in
durum Triticum aestivum only when grown under N-limiting
conditions (Saia et al., 2015).

Ca2+:Na+ and Ca2+:Mg2+ Ratio
One of the parameters to measure salt stress in plants is to
determine Ca2+:Na+ ratio. Under salt stress, an elevated Na+
concentration in the rhizosphere hampers the absorption of
Ca2+ by replacing them in cell wall and plasma membrane.
This results in translocation of less Ca2+, thereby reducing
Ca2+:Na+ ratio in salt stressed plants (Grattan and Grieve,
1999). Low Ca2+:Na+ ratio decreases hydraulic conductivity and
cell turgor, and disturbs Ca2+ signaling (Läuchli and Lüttge,
2002). Ca2+ uptake is also challenged by the presence of Mg2+.
Magnesium is a macronutrient and is the central ion of the
chlorophyll molecule. It is responsible for harvesting light for
photosynthesis. It is also required for proper functioning of many
enzymes, such as RNA polymerases, phosphatases, carboxylases,
ATPases, protein kinases, and glutathione synthase (Shaul, 2002).
Several studies have reported that Mg2+ concentration in plants
decreases under salt stress conditions (Table 1). However, M
plants possess higher concentration of Mg2+ than NM plants.
It is interesting to note that M plants, despite accumulating
more Mg2+ than NM plants, are also shown to have desirable
Ca2+:Na+ ratio by improving Ca2+ uptake under salt stress
conditions (Evelin et al., 2012). This AM effect is yet to
be understood and requires further studies to unravel the
mechanisms involved.

Micronutrients
The acquisition of micronutrients (Zn, Cu, Fe) by plants is
exceedingly affected by salinity (Grattan and Grieve, 1992).
Salinity decreases the solubility and mobility of micronutrients,
such as Cu and Fe (Grattan and Grieve, 1999), thereby creating
a depletion zone around the root. The depletion zone around
the root results in decrease in uptake of the micronutrients
by plants. However, M plants showed higher concentration of
these micronutrients than NM plants (Table 1). This may be
credited to – (i) widespread root-hyphal system that shortens the
path of nutrients’ entry into plant (Subramanian et al., 2009);
(ii) fungal mycelium serving as a substrate for nutrients to bind;
(iii) AMF-induced changes in the pH of the rhizosphere, which
modulates nutrient solubility and thus their availability (Li and
Christie, 2001); (iv) increase in sink size of Cu and Zn due to
higher shoot P, which subsequently instigate nutrient uptake and
translocation to shoots (Liu et al., 2000); (v) up regulation of the
expression of transporter gene of these nutrients, for example,
a plasma membrane Zn transporter gene, MtZIP2 is up regulated
upon colonization by AMF (Burleigh et al., 2003).

The role of AMF in maintaining ionic balance is being
elucidated at molecular level. However, much remains to be
investigated on AMF-influenced higher Ca2+:Na+, Ca2+:Mg2+

ratios as well as uptake of micronutrients.

Osmoregulation
Salt stress causes cellular dehydration by lowering turgor pressure
in plant cells. In order to negate this effect, plants employ
osmoregulation as a mechanism to tolerate salt stress (Munns,
1993; Zou et al., 2013). The buildup of Na+ and Cl− in soil
decreases the water potential of the soil. In such a condition,
plants must retort to lower water potential in order to maintain
a favorable gradient for water flow from soil into roots, and
prevent dehydration of cells. To accomplish this, plants start
to accumulate osmolytes, such as proline, betaine, polyamines,
sugars, organic acids, amino acids, and trehalose. Osmolytes are
small organic solutes that are water soluble and non-toxic at
high concentrations and are also known as compatible solutes
(Chen and Murata, 2011). Under salt stress, M plants have
been shown to possess higher osmotic potential than their NM
counterparts (Navarro et al., 2014) due to accumulation of more
osmolytes (Figure 3) (Evelin et al., 2013; Garg and Baher, 2013;
Alqarawi et al., 2014). The fundamental role of these osmolytes
is osmotic adjustment (Hasegawa et al., 2000) In addition, they
are also involved in ROS quenching, maintenance of membrane
integrity, and enzyme as well as protein stabilization, hence are
also known as osmoprotectants (Ashraf and Foolad, 2007). The
osmolytes and their role in improving salt tolerance in M plants
are discussed subsequently.

Proline
Salt stress tolerance mechanisms often include accumulation
of proline. Proline can scavenge ROS and stabilize DNA,
proteins and membranes, and reduce NaCl-induced enzyme
denaturation (Kaur and Asthir, 2015). In addition, it also
delivers carbon, nitrogen, and energy. This, in turn, supports
plant during stress and aids in its recovery from stress. The
reports on impact of AMF on proline concentration in salt
stressed plants have been inconsistent. Many studies reported
higher proline content in M plants compared to NM plants,
while others have reported lower proline content in M plants
(Table 2). Higher proline content in M plants has been attributed
to – (i) increase in the expression of gene encoding P5CS involved
in proline biosynthesis; (ii) higher activity of the enzyme P5CS;
(iii) higher activity of the enzyme, glutamate dehydrogenase,
that is responsible for synthesizing glutamate, the precursor
of proline; and (iv) inactivation of proline dehydrogenase, an
enzyme that catalyze the degradation of proline (Abo-Doma
et al., 2016). Besides its role as an osmoprotectant, proline is
also considered as a stress marker. Therefore, M plants may
accumulate less proline as they experience reduced stress (Rabie
and Almadini, 2005; Sannazzaro et al., 2007).

Trehalose (Tre)
Trehalose (α-D-glucopyranosyl-1,1-α-D-glucopyranoside) is a
non-reducing storage disaccharide that regulates carbohydrate
metabolism (Lunn et al., 2014). It acts as a stress protection
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FIGURE 3 | Salinity stress induced osmotic stress tolerance mechanism in plants. Salinity leads to build up of Na+ and Cl- in soil, consequently lowering the soil
water potential as compared to water potential of plant cells. This leads to reduced water uptake by plants and eventually causes cellular dehydration. Plants, in
order to avoid such consequences, accumulate osmolytes, such as proline, trehalose, polyamines, and sucrose in higher concentration. Osmolytes accumulation
results in lowering of cellular water potential and thereby maintains a favorable gradient for water uptake from soil to root. Thus, it prevents cellular dehydration and
subside osmotic stress caused by salinity. AM symbiosis alleviates osmotic stress by influencing the expression of specific genes (P5CS, pyrroline-5-carboxylate
synthase; TPS, trehalose-6-phosphate synthase; SPS, sucrose phosphate synthase; SS, sucrose synthase) involved in the biosynthesis of osmolytes.

metabolite by maintaining K+:Na+ ratio, scavenging ROS, and
increasing the concentration of soluble sugars in plants (Garg
et al., 2002; Redillas et al., 2012; Chang et al., 2014). Salinity
enhances the buildup of trehalose and AM symbiosis can further
boost the accumulation of this osmolyte. Garg and Pandey
(2016) reported that M plants under salt stress accumulate
more trehalose than their NM counterparts. Higher trehalose
concentration in M plants can be attributed to AMF-facilitated
increased activities of TPS and TPP and lower activity of TRE
(Garg and Pandey, 2016). TPS and TPP are enzymes responsible
for the biosynthesis of trehalose while TRE is a trehalose
degrading enzyme.

Organic Acids
Organic acids are important osmolytes in plant vacuoles, and
the regulation of their metabolism plays an important role
in providing tolerance to salt stress (Guo et al., 2010). AMF
colonization can also influence the concentration and profile

of organic acids in plants. Under salt stress, M Zea mays
plants accumulated more of acetic, citric, fumaric, malic, and
oxalic acids, whereas concentration of formic acid and succinic
acid decreased, while there was no difference in lactic acid
concentration as compared to NM plants (Sheng et al., 2011).
However, the mechanisms underlying changes in organic acids in
M plants are not known and calls for investigation. It is speculated
that AMF impart protection to the enzymes involved in organic
acid biosynthesis (Sheng et al., 2011).

Polyamines
Polyamines are aliphatic, low molecular weight polycations that
have been indicated to participate in cellular osmoregulation
in plants under salt stress (Duan et al., 2008; Kuznetsov and
Shevyakova, 2010). Under salt stress, polyamines accumulate in
plants as compatible solutes (Minocha et al., 2014; Singh et al.,
2015; Yang and Guo, 2017; Zapata et al., 2017). Major polyamines
that accumulate under salt stress are putrescine (Put, diamine),
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spermidine (Spd, triamine), and spermine (Spm, tetraamine)
(Pang et al., 2007; Kusano et al., 2008; Minocha et al., 2014).
However, it remains unclear as to which polyamine is responsible
more in imparting salt tolerance. AMF has also been found
to modulate polyamine pool to help plants tolerate salt stress
(Sannazzaro et al., 2007; Evelin et al., 2013; Talaat and Shawky,
2013). Mycorrhizal plants had higher Spd+Spm:Put ratio than
NM Trigonella foenum-graecum plants (Evelin et al., 2013). The
effect of AM on individual polyamine varies with genotype
and intensity of stress (Sannazzaro et al., 2007). However,
the mechanism underlying AMF-facilitated modulation of
polyamines for salt tolerance in plants is yet to be deciphered,
and further investigations should focus polyamines metabolism.

Sugars
Accumulation of TSSs such as, glucose, sucrose, dextrins, and
maltose in salt stressed plants is another way of osmotic
adjustment. They play a vital role in osmoprotection and as
carbon storage (Parvaiz and Satyawati, 2008). Plants direct the
synthesis of TSS from starch and sucrose by upregulating the
activities of sucrose anabolizing enzymes. Starch is converted
into dextrins and maltose by α- and β-amylases, respectively
(Schrader and Sauter, 2002; Ballicora et al., 2004). SPS and SS
catalyze the synthesis of sucrose while AI catalyzes the breakdown
of sucrose to glucose (Van den Ende et al., 2002; Peng et al.,
2016). During salt stress, sucrose undergoes decomposition in
order to meet the requirement of glucose (Geigenberger and Stitt,
1993). Salt stress induced TSS accumulation is further enhanced
by AM symbiosis (Talaat and Shawky, 2011; Liu et al., 2016; Garg
and Bharti, 2018; Zhu et al., 2018). The higher accumulation of
TSS in M plants has been credited to – (i) higher photosynthetic
efficiency; (ii) higher activities of α- and β-amylases, SS, and AI;
(iii) higher organic acid content; and (iv) carbon requirement
of AMF (Garg and Baher, 2013; Yu et al., 2015; Zhu et al.,
2016, 2018). Garg and Bharti (2018) reported that salt tolerant
M Cicer arietinum cultivar (PBG 5) accumulated more sugars
than its salt sensitive M counterparts (BG256) indicating that
accumulation of TSS can enhance tolerance to salt stress. This
is accompanied by higher activities of α- and β-amylases in M
plants, indicating rapid hydrolysis of starch to glucose in salt
tolerant M Cicer arietinum (Garg and Bharti, 2018). The activity
of SPS as well as SS and AI increased simultaneously indicating
that sucrose is synthesized upon salt stress, and concomitantly
converted to glucose leading to increase in TSS concentration
(Garg and Bharti, 2018).

The role of AM symbiosis in reinforcing osmotic adjustment
in plants under salt stress via enhanced accumulation of osmolyte
is now well-understood. However, these mechanisms are yet
to be explicated at the molecular level. Therefore, directing
future research in unraveling the molecular bases of osmolyte
accumulation in M plants will help in all-inclusive understanding
of the mechanisms.

Oxidative Stress
Salinity mediated hyperosmotic and hyperionic stress induce
another secondary stress in plants, called oxidative stress.
It results due to the disturbance of equilibrium between ROS

generation and its diminution by several antioxidants (Gill and
Tuteja, 2010). ROS consists of a group of chemically reactive
oxygen molecules such as hydroxyl radical (OH−), H2O2, .O2

−,
and O2−. ROS are generated as an after-effect of disengaged
pathways in plant metabolism that causes the transfer of high
energy electrons to molecular oxygen (Gill and Tuteja, 2010).
Excessive generation of ROS disturbs various cell functions by
attacking several biomolecules such as nucleic acid, protein, and
membrane lipid (Foyer and Noctor, 2005). Salinity increases
the level of lipid peroxidation (Evelin et al., 2012; Pedranzani
et al., 2016; Zhang et al., 2018) resulting in higher membrane
permeability and loss of ions from the cells (Estrada et al., 2013;
Felicia et al., 2017).

Plants employ a two-pronged system to counteract the
adverse consequences of ROS; enzymatic and non-enzymatic
antioxidative systems. The enzymatic system consists of SOD,
POX, CAT, APX, and GR. Non-enzymatic antioxidant molecules
such as AsA, glutathione (GSH), carotenoids, and α-tocopherol
also take part in quenching of toxic by-products of ROS (Gill
and Tuteja, 2010). In fact, salinity tolerance in plants has been
associated with the induction of antioxidative pathways and
diminution of oxidative damage (Figure 4) (Porcel et al., 2012).

In the last few years, several studies have shown that one of
the mechanisms AMF employ to alleviate salinity stress is an
efficient ROS scavenging system. AMF augment the activities
of antioxidant enzymes as well as increase the production of
antioxidant molecules, ensuring a better ROS scavenging system.
AMF colonization increases the concentrations of antioxidant
molecules such as, α-tocopherols, AsA, GSH, and carotenoids
in plants (Evelin and Kapoor, 2014). High α-tocopherol content
limits auto-oxidation of lipids, thus preventing M plants
from lipid peroxidation (Serbinova and Packer, 1994). High
α-tocopherol content in M plants can be attributed to improved
production of tocopheroxyl radicals, facilitated by the high AsA
content (Thomas et al., 1992; Noctor and Foyer, 1998). Higher
GSH levels and GR activity result in higher AsA levels in plants.
GSH enables plants to directly scavenge more .O2

− and H2O2
as well as other ROS (Smirnoff, 1993; Briviba et al., 1998;
Noctor and Foyer, 1998), and recycle more AsA via the AsA-
glutathione cycle (Foyer and Halliwell, 1976). Carotenoids also
prevent .O2

−production (Viljanen et al., 2002; Ramel et al., 2012).
Mycorrhizal plants are reported to possess higher activities

of enzymatic antioxidants under both saline and non-saline
conditions. Elevated SOD activity was reported in M plants in
comparison to their NM counterparts (Table 3). Higher SOD
activity is associated with higher tolerance to salinity (Benavídes
et al., 2000). Higher SOD enables detoxification of more O2− to
H2O2, that is further detoxified to H2O. The conversion of H2O2
to H2O can be catalyzed by enzymes, such as CAT, APX, and
POX. Mycorrhizal plants are reported to have higher activities
of H2O2 scavenging enzymes. Higher AsA concentration in M
plants induces higher activity of APX, that is consecutively reliant
on enhanced GR activity in M plants. This results in higher
GSH pool, which ultimately depletes DHA concentration and
recycles AsA (Foyer and Halliwell, 1976). Improved efficiency
of GR maintains higher GSH:GSSG and NADP+:NADPH ratios
and lowers superoxide radical production by sustaining the
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FIGURE 4 | Salinity stress induced oxidative stress tolerance mechanism in plants. Salinity causes oxidative stress in plants due to redox imbalance resulting from
disturbance in equilibrium between ROS (reactive oxygen species) and antioxidants. Increased ROS concentration in the cell results in protein denaturation,
membrane peroxidation, and nucleic acid denaturation. This consequently disturbs the normal functioning of the cell. To counteract the adverse consequences,
plants induce antioxidative pathways (enzymatic and non-enzymatic). Enzymatic antioxidants include superoxide dismutase (SOD), peroxidase (POX), catalase (CAT),
ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Non-enzymatic
antioxidants include ascorbate (AsA), glutathione (GSH), carotenoids, and α-tocopherol. An efficient antioxidative system abates the oxidative damage in plants. AM
symbiosis reinforces the tolerance mechanism of plants to salinity induced oxidative stress.

photosynthetic electron transport (Noctor and Foyer, 1998;
Mittler, 2002). Higher activities of these enzymes in M plants
are partially explained by better nutritional status. Mycorrhizal
plants have been shown to have higher concentrations of
micronutrients, such as Cu, Zn, Mn, and Fe. On the other
hand, these enzymes are metalloenzymes whose activities are also
governed by the availability of these micronutrients. However, the
activities of these enzymes are dependent on various factors such
as plant species, plant tissues, AMF species, level of salinity, and
duration of stress.

Additionally, lower oxidative stress in M plants is also
due to improved concentrations of osmolytes, such as proline,
polyamine, and glycinebetaine (Pang et al., 2007; Evelin et al.,
2012; Frosi et al., 2017). They bring about stabilization of
sub-cellular components of cell membranes such as lipids
and proteins, quenching of free radicals, and buffer cellular

redox potential under salinity stress (Kishor et al., 1995;
Yang et al., 2008).

Water Status
High salt concentration in the rhizosphere also imposes
physiological drought in plants. Salt immobilizes water and
renders it unavailable for the plants (Füzy et al., 2008). Yang et al.
(2014) observed that M Malus hupehensis seedlings maintained
relatively higher leaf turgidity and lower leaf osmotic potential
compared to NM plants, when subjected to salt stress. Chen
et al. (2017) reported higher relative water content in M as
compared to NM Robinia pseudoacacia plants under salt stress.
This observation is explained by improved hydraulic conductivity
of M plants attributed to AMF-induced altered root morphology,
and the ability of M plants to explore macroelements well beyond
the depletion zone facilitated by the extensive extramatrical
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mycelium of AMF (Schnepf et al., 2011). In addition, M plants
also accumulate more compatible solutes to adjust the osmotic
potential and enable efficient water usage by host plants (Graham
and Syvertsen, 1984). Better water status in M plants may be
explicated by the AMF regulated expression of aquaporin genes
present in leaves and roots of salt stressed plants. However, each
aquaporin gene in roots of M plants may respond differently
to salt stress. For instance, in Lycopersicon esculentum, AMF
colonization downregulated LePIP1 gene (Ouziad et al., 2006)
while the same gene was upregulated in Lactuca sativa (Jahromi
et al., 2008). Recently, Chen et al. (2017) described the expression
profile of aquaporin genes (RpPIP1;1, RpPIP1;3, RpPIP2;1,
RpTIP1;1, RpTIP1;3, RpTIP2;1) in leaves and roots of M and NM
Robinia pseudoacacia subjected to saline stress. Hence, the effect
of AM symbiosis on transcription of aquaporin genes varies with
the plant species, type of plant tissue they are expressed, and level
of salinity. Furthermore, potential of different aquaporin genes to
transport water and other solutes may differ and depend on their
location in the cell (Ruiz-Lozano et al., 2012).

Photosynthesis
Salt stress impedes photosynthesis and brings an enormous
decline in crop productivity (Pitman and Läuchli, 2002;
Sheng et al., 2008). Salt stress affects photosynthesis in
several ways (Table 4). Salt-induced osmotic stress leads to
lowering of leaf area, coupled with a decrease in stomatal
and mesophyll conductance, which limits CO2 availability and
assimilation (Chaves et al., 2009). This consequently decreases
the supply of CO2 to RuBisCO. In addition to this, RuBisCO
being sensitive to Cl−, loses its activity under salt stress
(Seemann and Critchley, 1985). The decline in CO2 assimilation
also leads to accumulation of excess energy that leads to
increased accumulation of electrons in the thylakoid membranes.
To dissipate this energy, PSII loses massive amount of
electrons and causes injury of the photosynthetic tissues, which
subsequently affects the net photosynthetic rate (Redondo-
Gómez et al., 2010). Furthermore, salt stress has also been
shown to degrade D1 and D2 proteins of PSII reaction center.
These proteins are structural components of the PSII reaction
center and play fundamental roles in phosphorylation of proteins
coupled with flow of electrons (Jansen et al., 1996). A decline in
the activity of photosynthetic pigment synthesizing enzymes is
another way by which salt stress affects photosynthesis resulting
in decreased concentration of photosynthetic pigments (Giri and
Mukerji, 2004; Murkute et al., 2006; Sheng et al., 2008). The
low concentration of chlorophyll may also be attributed to salt-
induced low uptake of Mg2+ (Giri and Mukerji, 2004; Ibrahim
et al., 2011), destruction of pigment-protein complexes due to
salt-induced augmentation of chlorophyllase enzyme activity,
and reduction of de novo protein synthesis (Levitt, 1980; Sultana
et al., 1999; El-Tayeb, 2005).

Plants can safeguard the photosystems from light induced
inhibition and damage in many ways. These include minimizing
harvesting of light and dispersion of excess energy by non-
photochemical quenching (NPQ) or cyclic electron flow (Lima
Neto et al., 2015). AM symbiosis is known to bolster up these
mechanisms and alleviate the negative effects of salinity on

plant photosynthetic capacity (Talaat and Shawky, 2014; Porcel
et al., 2015; Wu et al., 2015; Hidri et al., 2016; Chen et al.,
2017). As compared to NM plants, M plants have higher net
photosynthetic rate, more quantum yield (Fv/Fm; Fv = Fm− F0;
Fm = maximal fluorescence; F0 = minimal fluorescence), and
actual quantum yield of PSII (8PSII) photochemistry under
salt stress (Table 4) (Talaat and Shawky, 2014; Porcel et al.,
2015; Wu et al., 2015; Hidri et al., 2016; Chen et al., 2017).
AM symbiosis combats the negative effects of salt stress on
photosynthesis in following ways – (i) improved water status
in M plants results in maintaining larger leaf area and higher
stomatal conductance, and consequently better assimilation of
CO2 (Wu et al., 2015; Chen et al., 2017). Furthermore, aquaporins
besides transporting water, can also promote diffusion of CO2
across plasma membrane of the mesophyll cells (Yang and
Cui, 2009); (ii) ability of M plants to abate intercellular CO2
concentration (Ci) ensures protection of the photosynthetic
apparatus (Sheng et al., 2008; Chen et al., 2017). This is possible
due to enhanced RuBisCO activity in M plants (Talaat and
Shawky, 2014; Porcel et al., 2015; Garg and Bhandari, 2016b;
Chen et al., 2017) owing to higher expression of the large
subunit of RuBisCO, RprbcL gene (Chen et al., 2017). However,
up regulation of gene expression may not always translate to
increased RuBisCO activity due to delay in protein translation
after gene transcription (Porcel et al., 2015); (iii) AM symbiosis
empowers host plants to maintain the integrity of PSII by its
prompt action to repair salt-induced degradation of D1 and D2
proteins. The genes encoding D1 (RppsbA) and D2 (RppsbD)
were found to be up regulated by AM symbiosis under salinity
conditions (Chen et al., 2017). This may also be due to higher
concentration of polyamines and glycinebetaine in M plants
(Pang et al., 2007; Talaat and Shawky, 2014). Glycinebetaine
stabilizes PSII pigment-protein complexes as well as protect the
activities of enzymes such as, RuBisCO and rubisco activase
that are responsible for fixing CO2 (Talaat and Shawky, 2014).
In fact, previous studies have reported that maintenance of PSII
activity can help plants to adapt to abiotic stresses (Sheng et al.,
2008; Hajiboland et al., 2010; Porcel et al., 2016; Hu et al.,
2017); (iv) Mycorrhizal plants maintain higher chlorophyll and
carotenoid concentration by improving the uptake of Mg2+

(Evelin et al., 2012; Hashem et al., 2015). Moreover, an increase
in NPQ can limit Fv/Fm (Baker, 2008). However, M plants are
reported to have lower NPQ (Baker, 2008). Thus, AM symbiosis
enhances photosynthetic efficiency by proficient conversion of
harvested light into chemical energy, and minimizing NPQ as
compared to NM plants (Hu et al., 2017).

Furthermore, salinity also increases the activities of carbon
metabolizing enzymes such as, pyruvate orthophosphate dikinase
(PPDK), phospho-enol-pyruvate carboxylase (PEPC), NADP-
MDH, and NAD-MDH (Hashem et al., 2015). Higher activities
of these enzymes are required for better plant growth to
overcome stress conditions (Doubnerová and Ryšlavá, 2011).
Mycorrhizal plants were found to possess lower activities
of these enzymes suggesting lower level of stress. On the
other hand, salinity decreased the activity of NADP-ME
and AMF colonization induced the activity of this enzyme
(Hashem et al., 2015). Higher NADP-ME in M plants can
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increase carbon metabolism and contribute to stress tolerance
(Hashem et al., 2015).

Hormonal Regulation
Phytohormones regulate growth and development of plants
under ambient as well as stressed conditions, and hence are
also known as growth regulators (Fahad et al., 2015). They are
derived from plant biosynthetic pathways and can act at the site of
production or away from it. Phytohormones such as, ABA, auxin,
BR, CK, GA, JA, SA, SLs, NO, and triazoles have been implicated
to play significant roles in imparting salt-stress tolerance in
plants (Fahad et al., 2015). In order to initiate suitable plant
response to environmental stimulus, these hormones interplay
amongst themselves to modulate biochemical and physiological
processes that translate into mediation of growth, development,
nutrient allocation, and source/sink transitions (Saeed et al.,
2017). However, despite the large amount of literature available
on phytohormones’ role in salinity tolerance, this aspect has
found little interest in studies pertaining to AMF-mediated
salinity tolerance in plants. Moreover, during AM symbiosis,
ABA, auxin, JA, and SA are known to act as signaling molecules
(Gutjahr and Paszkowski, 2009; Miransari, 2012). Therefore,
it is postulated that these hormones play significant roles in
improving plant tolerance to salinity stress.

Strigolactones consist of a new class of phytohormones that
are involved in many aspects of plant development such as
coordination of root growth and architecture according to the
nutrient availability in soil, suppression of secondary branches in
shoot, stimulation of internode length in a cross talk with auxin,
regulation of leaf senescence, and induction of AM symbiosis
(Agusti et al., 2011; Koltai, 2011; de Saint Germain et al., 2013;
Yamada et al., 2014). They also play regulatory roles against
abiotic stress. In order to exert its full effect, SLs need to
modulate and interact with other phytohormones, especially
auxin and ABA. In Sesbania cannabina seedlings, Kong et al.
(2017) reported that H2O2 and SLs signaling are involved in
AM mediated salt stress alleviation. Ren et al. (2018) observed
that that in contrast to NM plants, AM colonization in S.
cannabina maintained positive correlation between ABA and SLs.
They proposed that AM colonization intensively altered ABA
catabolism. This high ABA in M plants, protects it from salt stress
by inducing the production of SLs via H2O2 signaling (Ren et al.,
2018). On the perception of ABA signal, there is rapid production
of H2O2 in the apoplast. The accumulation of H2O2 depends
on NADPH oxidase activity, which also plays a significant role
in ABA signaling (Kwak et al., 2003). This subsequently leads
to increase in accumulation of SLs, and ultimately enhanced salt
tolerance (Ren et al., 2018).

Exogenous applications of GA and SA have displayed boost in
salinity tolerance in Solanum lycopersicum and Cicer arietinum,
respectively (Khalloufi et al., 2017; Garg and Bharti, 2018).
Foliar spray of GA3 resulted in better nutrient acquisition
and manifold increase in GA concentration in M Solanum
lycopersicum indicating that GA can promote salinity tolerance
(Khalloufi et al., 2017). AMF colonization has also been shown
to impart positive influence on the endogenous concentrations
of GA (Shaul-Keinan et al., 2002). Seed priming with SA

helped M Cicer arietinum to tolerate salinity stress by improving
ionic homeostasis, modulating carbohydrate metabolism, and
improving growth and yield. In fact, SA application also
promoted AMF colonization (Garg and Bharti, 2018) and vice
versa (Hashem et al., 2018). Salicylic acid, in conjunction with
AMF have also been shown to improve salinity tolerance by
reducing lipid peroxidation while increasing concentration of
proline, proteins, reduced sugars, and K+ ion contents in shoots
of Ocimum basilicum (Shekoofeh et al., 2012). In a recent study,
Hashem et al. (2018) have reported an increase in concentration
of JA in Cucumis sativus under salt stress. JA is a phytohormone
belonging to octadecanoid family and is involved in plant’s
response to biotic as well as abiotic stress. Pedranzani et al.
(2016) also reported increased concentrations of JA, 12-OH-JA,
and OPDA (precursor of JA) in Digitaria eriantha under salt
stress. Their concentrations were further boosted in the presence
of Rhizophagus irregularis. Thus, JA has also been implicated
to play a key role in imparting salinity tolerance to plants. The
underlying mechanisms of GA, SA, and JA in improving salinity
tolerance in M plants are yet to be fully understood. Therefore,
more studies are required to be directed toward AM-salinity
experiments involving phytohormones.

CHALLENGES

This review highlights the mechanisms that AM symbiosis
facilitates to impart salt stress tolerance in plants. However,
there are several challenges that future research should address
for comprehensive understanding of these mechanisms. The
challenges are briefly discussed below:

(1) There is no debate on the role of AMF facilitating
osmoregulation. However, studies pertaining to
osmoregulation are mainly limited to the evaluation
of concentrations of osmolytes. There is a need to
elucidate these phenomena at the molecular level by
investigating the genes that code for these molecules
and their biosynthetic enzymes.

(2) AMF have been consistently shown to improve nutrient
uptake and maintain ionic homeostasis. However, these
reports are focused on determining the concentrations
of nutrients in tissues and evaluating ratios, such
as K+:Na+, Ca2+:Na+, and Ca2+:Mg2+. Significant
progress has been made to understand the mechanisms
involved in maintenance of K+:Na+ ratio by studying
uptake and translocation of K+ and Na+ ions via
transporters. However, there are very few reports that
elucidate the uptake of nutrients at the molecular
level. CNGCs are non-selective cation channels that
take up K+, Na+, and Ca2+ (Kaplan et al., 2007).
Till now, there are no investigations on CNGCs in M
plants. Therefore, identification of ion transporters and
expression studies can provide a better understanding
of ion homeostasis in M plants.

(3) Sulfur is a major component of various molecules,
such as cysteine, a sulfur donor in ABA synthesis;
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and glutathione, an antioxidant molecule that helps
in detoxification of ROS, thereby helping plants cope
with salinity stress. Plants absorb sulfur as sulfate via
SULTR. It is also known that AMF can improve sulfur
nutrition by enhanced uptake and its translocation
to the root in low-sulfate environments (Allen and
Shachar-Hill, 2009). However, no studies are available
on the influence of AMF on plant sulfate uptake
regulation or SULTR genes under saline conditions.

(4) Studies regarding the role of phytohormones are limited
and inconclusive. For instance, far and few studies
with respect to AMF-salinity have focused on ABA
and SLs. Phytohormones, such as BR, JA, NO, and
SA have been indicated to improve plant’s tolerance to
salinity; however, they are yet to be explored as potential
candidates that impart salinity tolerance to M plants.
Moreover, SA and JA have been well documented as
signals to alert neighboring plants upon biotic stress.
On the other hand, M plants are well connected to each
other owing to the existence of common mycorrhizal
network. Therefore, future research should investigate
if SA and JA play any role in eliciting stress signals
to its neighbors.

(5) Under salt stress, lipid metabolism undergoes changes
that can be associated with profound alterations in
cell membrane integrity, composition, and function
(Parihar et al., 2015). Though lipid peroxidation
has been elucidated in AM-salinity studies, lipid
metabolism in salt stressed M plants is yet to
be investigated.

(6) Salt stress causes endocytosis (Hamaji et al., 2009).
Earlier, Evelin et al. (2013) reported that NaCl treatment
increased the incidence of endocytosis significantly in
Trigonella. The vesicular surface increases the surface
area for higher exchange capacity (K+ versus Na+),

protecting plants from ionic toxicities, imbalances, or
interactions between substances in the cytoplasm.

(7) Cell wall of a plant is the interface between plant and
environment. Therefore, it is the first organelle that,
senses, perceives, and responds to salt stress (Li et al.,
2012; Van der Does et al., 2017). Hence, it is crucial
that active cell wall integrity is preserved so as to allow
plants to sense and respond to stress rapidly. Thus,
it necessitates that the composition, biosynthesis of its
components and organization into a membrane under
stress conditions be well-informed. Therefore, future
research should direct studies that evaluate how AMF
influence the cell wall under saline conditions.

Directing future AM-salinity research to understand the
above-mentioned challenges will immensely improve our
understanding of the mechanisms of AMF facilitated salinity
tolerance in host plants in order to obtain maximum benefit
from AM symbiosis under salinity stress.
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