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Autophagy is a major pathway that recycles cellular components in eukaryotic cells
both under stressed and non-stressed conditions. Sugars participate both metabolically
and as signaling molecules in development and response to various environmental
and nutritional conditions. It is therefore essential to maintain metabolic homeostasis
of sugars during non-stressed conditions in cells, not only to provide energy, but also
to ensure effective signaling when exposed to stress. In both plants and animals,
autophagy is activated by the energy sensor SnRK1/AMPK and inhibited by TOR kinase.
SnRK1/AMPK and TOR kinases are both important regulators of cellular metabolism
and are controlled to a large extent by the availability of sugars and sugar-phosphates
in plants whereas in animals AMP/ATP indirectly translate sugar status. In plants,
during nutrient and sugar deficiency, SnRK1 is activated, and TOR is inhibited to allow
activation of autophagy which in turn recycles cellular components in an attempt to
provide stress relief. Autophagy is thus indirectly regulated by the nutrient/sugar status of
cells, but also regulates the level of nutrients/sugars by recycling cellular components. In
both plants and animals sugars such as trehalose induce autophagy and in animals this
is independent of the TOR pathway. The glucose-activated G-protein signaling pathway
has also been demonstrated to activate autophagy, although the exact mechanism is
not completely clear. This mini-review will focus on the interplay between sugar signaling
and autophagy.
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INTRODUCTION

Autophagy is a mechanism by which eukaryotic cells transport cellular components to lytic
vacuoles where they are degraded and recycled. Basal autophagy is maintained under non-
stressed conditions for cellular homeostasis, but the intensity of autophagy is typically further
increased under stress to provide temporal stress relief (Inoue et al., 2006; Yang and Bassham,
2015). Macro-autophagy (stress-induced autophagy, or in short autophagy) involves the delivery
of undesirable cytoplasmic materials by specialized double-membrane vesicles (autophagosomes)
to the lytic compartment for their removal and/or to provide energy and building blocks for cellular
processes (Li and Vierstra, 2012; Liu and Bassham, 2012; Yoshimoto, 2012). More specific modes of
autophagy include the specific recycling of organelles and specific proteins (Svenning et al., 2011;
Floyd et al., 2012; Schreiber and Peter, 2014).

The process of autophagosome formation is described in detail elsewhere (Lamb et al., 2013).
The final step includes the fusion of the autophagosome membrane with the lytic compartments
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(vacuoles in plants and yeast, lysosomes in animals). The whole
process relies on more than 30 AuTophaGy-related (ATG) genes
(for a detailed review see Mizushima et al., 2011). The ATG
proteins were initially identified in yeast, but their orthologs
are highly conserved in eukaryotes (Tsukada and Ohsumi, 1993;
Mizushima et al., 2011; Yu et al., 2018).

Autophagy is closely associated with the metabolic status of
cells, and its regulation should closely link to sugar signaling
and sensing mechanisms, especially under stress. This review
will discuss the current understanding of autophagy in plants
under stressed and non-stressed conditions, with focus on the
role of sugars and sugar signaling pathways in the process. In
particular, we will discriminate between “sugar starvation” and
“sugar excess” types of autophagic responses.

It should be noted that some stresses (e.g., extended darkness,
acute heat stress) induce sugar starvation responses (Slocombe
et al., 2004; Barros et al., 2017) while other stresses (e.g., slowly
progressing drought, salt and cold stresses) lead to sugar excess
(Krasensky and Jonak, 2012; Tarkowski and Van den Ende, 2015).

THE FUNCTION OF AUTOPHAGY IN
PLANTS UNDER NON-STRESSED
CONDITIONS

Initially autophagy was thought to be a non-specific bulk removal
and transport of cytoplasmic material to lytic vacuoles where
the content is recycled, but it became clear that it is a tightly
regulated and much more specific process, controlling overall
plant development, metabolism, senescence, biotic and abiotic
stress responses, and innate immunity (Liu and Bassham, 2012;
Wang et al., 2017). Although basal autophagy contributes to
cellular homeostasis during growth, the majority of atg mutants
complete their life cycle without detrimental defects (Doelling
et al., 2002; Thompson et al., 2005; Phillips et al., 2008). In
plants with suppressed autophagy, however, general fitness is
compromised, including reduced growth, early leaf senescence,
altered anthocyanin levels and hypersensitivity to several stresses
(Masclaux-Daubresse et al., 2014, 2017; Wang et al., 2017;
Bárány et al., 2018; Jiménez-Nopala et al., 2018; Minina et al.,
2018). In contrast, plants over-expressing autophagy genes show
increased resistance to necrotrophic pathogens and oxidative
stress, enhanced growth and delayed aging (Minina et al., 2018).
For an extensive overview of the mechanisms and proteins
investigated on autophagy to date see the review by Yoshimoto
and Ohsumi (2018).

Focusing on seed development, autophagy has been linked
to seed maturation in maize following pollination, by increasing
the lipidation of the ATG8 protein in the endosperm (Chung
et al., 2009). This was also the case after seed germination,
illustrating that autophagy plays a role in the remobilization
of nutrients from the endosperm to support early seedling
development (Chung et al., 2009). Abscisic acid (ABA) and
ethylene are necessary for basic development and were linked
to basal autophagy (Yu and Xie, 2017; Ceusters and Van de
Poel, 2018). Autophagy has also been linked to regulating the
supply of nutrients during the development of anthers in rice

(Zhang et al., 2011; Kurusu et al., 2014). It is believed that
autophagy regulates the supply of nutrients in the tapetum cells
of monocots, and rice autophagy defective mutants are male
sterile due to a lack of lipid and starch accumulation in pollen
grains (Kurusu et al., 2014). Dicots produce lipidic tapetosomes,
whereas monocots do not form the tapetosomes required for
transport of lipids in tapetal cells. Autophagy seems to play
a role in postmeiotic anther development through degradative
processes in tapetum cells. Thus the dicot Arabidopsis autophagy
mutants do not share this defect (Kurusu et al., 2014). UDP-
Glucose (UDP-Glc) was recently proposed as a potential signaling
molecule and regulator of autophagy in plants (Janse van
Rensburg and Van den Ende, 2017). This was suggested on the
basis of Arabidopsis UDP-glucose pyrophosphorylase (UGPase)
mutants with reduced UDP-Glc showing severe vegetative
growth defects and male sterility, which could be rescued by
exogenous UDP-Glc application but not by Sucrose (Suc) (Park
et al., 2010). Interestingly, Arabidopsis Suc synthase (SuSy)
mutants with reduced Suc breakdown (lower UDP-Glc) in
seeds showed decreased starch in the seed coat and it was
suggested that starch synthesis is regulated by the downstream
metabolites rather than by SuSy itself (Angeles-Núñez and
Tiessen, 2010, 2012). In contrast, rice mutants accumulating
UDP-Glc developed spontaneous programmed cell death (PCD),
a phenotype also observed in seedlings treated with exogenous
UDP-Glc (Xiao et al., 2018). Autophagy may contribute to the
PCD phenotype observed in plants with increased UDP-Glc,
potentially signaling metabolic imbalances.

SUGAR STARVATION AUTOPHAGY AND
THE SnRK1/TOR NEXUS

During nutrient starvation, autophagy helps to recycle
metabolites. This is evident from ATG gene expression
studies and the reactions of atg mutants exposed to carbon
and nitrogen starvation (Thompson et al., 2005; Avila-Ospina
et al., 2014; Mukae et al., 2015; Soto-Burgos and Bassham, 2017;
Di Berardino et al., 2018; Sun et al., 2018). During nitrogen
starvation, atg mutants display a hypersensitive response (HR)
with reduced remobilization and seed production compared
to wild-type (WT) plants, indicating that autophagy assists in
nitrogen remobilization (Guiboileau et al., 2012; Wada et al.,
2015). Besides its role during nitrogen recycling, autophagy also
plays an important role during starch remobilization (Izumi
et al., 2013a,b; Wang et al., 2013; Wada et al., 2015). Under
carbon starvation, growth of atg mutants is reduced due to the
accumulation of proteins and reduced amino acid levels (Di
Berardino et al., 2018). Autophagy mutants also show a reduction
in amino acid synthesis during carbon starvation, indicating
its major contribution to maintain cellular homeostasis (Izumi
et al., 2013a; Avin-Wittenberg et al., 2015).

How are ATG genes regulated in plants? Historically, plant
research is running behind on animal and yeast research. It was
found that AMPK (animals) and Snf-1 (yeast) are important
energy and metabolic sensors regulating cellular homeostasis in
balance with the TOR-kinase complex, and both kinases clearly
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link to autophagy (Noda and Ohsumi, 1998; Pattingre et al.,
2008; Liu and Bassham, 2010). SnRK1 is the plant ortholog of
the AMPK and Snf-1 proteins (Sugden et al., 1999; Crozet et al.,
2014). The interplay of SnRK1 and TOR is often referred to
as the “Yin and Yang” of controlling metabolites and biological
processes of cells in response to metabolic and environmental
stimuli (Dobrenel et al., 2016). During low energy and nutrient
starvation, AMPK and Snf1 inhibit anabolic processes such as
protein, fatty acid and cholesterol synthesis, whereas catabolic
processes such as glycolysis, fatty acid oxidation and autophagy
are activated (Crozet et al., 2014). The AMPK/Snf1 complex in
animals and yeast regulates autophagy via at least two pathways,
the first being through inhibiting TOR (Lee et al., 2010), thus
preventing inhibition of autophagy, and secondly by directly
phosphorylating ATG1, which activates autophagy (Wang et al.,
2001; Egan et al., 2011; Kim J. et al., 2011).

In contrast to its animal and yeast counterparts, SnRK1
uses small phosphorylated sugars [glucose-6-phosphate (Glc6P),
glucose-1-phosphate (Glc1P), trehalose-6-phosphate (T6P)] as
the gauge of cellular energy status instead of directly by AMP
(Figure 1; Broeckx et al., 2016 and references therein). Most
focus is on the sugar phosphate T6P (Figure 1), signaling Suc
availability, but also functioning as a negative feedback regulator
of Suc levels, contributing to cellular Suc homeostasis (Figueroa
and Lunn, 2016). In this regard, T6P acts as a negative regulator
of SnRK1 through direct interaction with the catalytic subunit,
KIN10, thus translating cellular Suc status (Zhai et al., 2018).
In response to starvation, SnRK1 activates several downstream
components such as the basic leucine zippers (bZIPs), specifically
the G-box binding factor (GBF5), bZIP11, and bZIP63 (Baena-
González et al., 2007; Delatte et al., 2011; Mair et al., 2015). These
transcription factors control the expression of genes involved
in catabolic pathways such as the degradation of cell walls,
amino acids, protein, starch and initiation of autophagy to
provide alternative sources of metabolites and energy under sugar
starvation conditions (Baena-González et al., 2007). Similar to the
situation in animals, the KIN10 catalytic subunit phosphorylates
the regulatory-associated protein of mTOR (RAPTOR) from the
TOR complex (Nukarinen et al., 2016).

SnRK1 is a heterotrimeric complex (Sugden et al., 1999; Crozet
et al., 2014). The SnRK1 complex consists of a catalytic/kinase
(α) and two regulatory (β, γ) subunits (Crozet et al., 2014).
The regulatory subunits are classified into two groups, the plant
specific subunits (β3 and βγ), and the classical subunits (β1,
β2, and γ) which are conserved between mammals and yeast
(Halford et al., 2003; Emanuelle et al., 2015; Broeckx et al.,
2016). In animals the γ subunit functions as the sensor for
energy (adenylate binding). It is interesting that the majority of
the active SnRK1 complexes in plants consist of a βγ hybrid
subunit that acts as the canonical γ subunit, even though plants
have a specific γ subunit (Ramon et al., 2013). Arabidopsis
has three catalytic subunits of SnRK1, namely KIN10, KIN11,
and KIN12, however, it seems that only KIN10 and KIN11 are
expressed in vegetative tissues and the majority of SnRK1 can
be attributed to KIN10 (Baena-González et al., 2007; Jossier
et al., 2009; Wurzinger et al., 2017). When KIN10 and KIN11
are overexpressed, plants show either late or early flowering,

and kin10kin11 double mutants appear to be lethal, suggesting
potential redundancy (Baena-González et al., 2007; Williams
et al., 2014). Single mutants of kin10 and kin11 have the WT
phenotype, however, reduced expression of both genes causes
several developmental defects and lower responses of stress-and-
starvation-related genes (Baena-González et al., 2007).

TOR is a negative regulator of autophagy, probably through
the conserved ATG1/ATG13 kinase inhibition (Suttangkakul
et al., 2011). In Arabidopsis, the TOR complex forms the major
component of the TOR signaling pathway and it consists of three
main components, the serine/threonine kinase TOR (Menand
et al., 2002), RAPTOR (Anderson et al., 2005; Deprost et al.,
2005), providing the substrates for phosphorylation by TOR
(Hara et al., 2002), and LST8, the stabilizer of the complex
(Moreau et al., 2012). For an in-depth review of the TOR
complex in plants see Schepetilnikov and Ryabova (2018). TOR
is expressed at high levels in actively growing Arabidopsis tissues
such as endosperm, meristem and embryo (Menand et al.,
2002). Plants with reduced TOR expression showed stunted root
growth, whereas over-expressing plants showed enhanced root
growth (Deprost et al., 2007). In general, TOR is activated in
nutrient-rich conditions stimulating growth, and in sink tissues,
in particular, by Glc derived from imported Suc (Figure 1ii;
Xiong and Sheen, 2012, 2013; Xiong et al., 2013). TOR regulates
autophagy alongside other growth-promoting processes such as
the initiation of translation in response to nutrient availability
(Deprost et al., 2007; Xiong and Sheen, 2015). In animals, the
TOR complex prevents ATG13-ULK1 interaction by directly
phosphorylating ATG13, thus inhibiting autophagy, whereas
AMPK promotes autophagy by the direct phosphorylation of
ULK1 (Kim et al., 2011). The activator of autophagy, ULK1, is the
animal homolog of the serine/threonine kinase ATG1 in plants.
Alternatively, AMPK in animals can phosphorylate the TOR
complex, rendering autophagy active (Gwinn et al., 2008). In
plants, it is not completely clear whether SnRK1 and/or TOR can
directly phosphorylate ATG1 (as is the case for ULK1 in animals),
urging further research in this area (Suttangkakul et al., 2011;
Chen et al., 2017). In any case, when the catalytic subunit KIN10
is over-expressed in plants, phosphorylation of ATG1 increases
(Chen et al., 2017), and SnRK1 and ATG1 interaction seems to be
present in all tissue types (Chen et al., 2017).

Arabidopsis plants with disrupted TOR-kinase expression
showed reduced growth due to constitutive autophagy, whereas
a complete knockout of TOR is embryo-lethal (Menand et al.,
2002; Deprost et al., 2007; Liu and Bassham, 2010). Nevertheless,
overexpression of TOR prevents autophagy activation during
several abiotic stresses (Pu et al., 2017). Interestingly, constitutive
TOR expression inhibited autophagy even in plants over-
expressing SnRK1 during stress conditions, illustrating that
TOR plays a central regulatory role during autophagy, acting
downstream of SnRK1/AMPK, both in plants and animals (Pu
et al., 2017).

KIN10 activates autophagy by inhibiting the TOR signaling
pathway (Soto-Burgos and Bassham, 2017). When TOR is
inhibited, autophagy is activated, and the inhibition of SnRK1
has no effect on this activation. Increased SnRK1 activity does
not induce autophagy when TOR is still active, confirming that
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FIGURE 1 | Model for the regulation of autophagy in Arabidopsis seedlings under sugar starvation and sugar excess. The model represents three conditions,
(i) sugar starvation, (ii) normal (unstressed) growth conditions, (iii) high sugar levels and/or stress conditions. (i) Low T6P levels activate sugar starvation-based
autophagy, by rendering SnRK1 active. Active SnRK1 in turn inhibits TOR, activating autophagy. (ii) Suc is broken down to sugars and sugar phosphates by Suc
synthase (SuSy) and invertases (INV). When these Suc-splitting enzymes (Susy/INV) are readily able to deal with Suc, T6P is synthesized by TPS and TPP, its level
mirroring Suc levels. T6P inhibits SnRK1 which on its turn inhibits TOR-kinase, an inhibitor of autophagy. (iii) Excess sugar levels (excessive import, exogenous sugar
supply) can probably also induce autophagy, at least partly through stimulating ABA synthesis and signaling the SnRK2/TOR nexus. Suc can also be metabolized in
the apoplast by cell wall INV (cwINV), producing free Glc and Fru. Normally, these hexoses are rapidly imported by sugar transport proteins (STP) and used for
growth associated with TOR signaling. Under stress, growth is compromised, leading to reduced uptake and increased extracellular Glc which can be sensed by the
Regulator of G-protein signaling (RGS1), in turn activating autophagy through an unknown mechanism. Red blunt arrows indicate negative regulation and green
arrows positive regulation. Dashed lines represent potential regulatory mechanisms. Enzymes are indicated in blue. Mechanisms that are not active during a specific
condition are faded.

SnRK1 acts upstream of TOR (Soto-Burgos and Bassham, 2017).
Thus, SnRK1 can induce autophagy both via TOR-dependent
and TOR-independent pathways in Arabidopsis. In concordance,
plants over-expressing KIN10 exhibited a typical “sugar
starvation” type of autophagy, including an increased adaptation
to nutrient starvation, increased abiotic stress tolerance and
delayed leaf senescence (Baena-González et al., 2007; Li et al.,
2014).

THE POTENTIAL ROLE OF THE
SnRK2/TOR NEXUS IN SUGAR EXCESS
AUTOPHAGY

So far, most of the research focused on “sugar starvation”
mediated autophagy. Yet, accumulating evidence suggest that
autophagy can also intensify under “sugar excess” conditions. In
animals for instance, diabetes (increased Glc levels in the blood)
promote autophagy (Moruno et al., 2012) and progressive loss
of cardiac cells (Munasinghe et al., 2016). Likewise, the most
devastating abiotic stresses in plants (drought, salt and cold

stresses) typically lead to increased sugar levels in leaves due to
disturbed source-sink balances (Krasensky and Jonak, 2012). In
the resurrection species Tripogon loliiformis, increased Suc and
trehalose (Tre) levels coincided with autophagosome formation
(Williams et al., 2015). Moreover, autophagy is induced by salt
stress and was demonstrated to be essential for ABA-mediated
salt tolerance (Luo et al., 2017). Under stress, ABA-activated
SnRK2s phosphorylate RAPTOR (Wang et al., 2018). Thus, it is
tempting to speculate that ABA and sugar excess would stimulate
autophagy mainly through the SnRK2/TOR nexus, although
ABA was reported to also stimulate SnRK1 (Rodrigues et al.,
2013; Figure 1iii). High sugar and ABA trigger natural leaf
senescence (Pourtau et al., 2006; Gao et al., 2016). The triple
mutant snrk2.2/2.3/2.6 exhibited a stay-green phenotype after
ABA treatment (Gao et al., 2016). ABA, which is known to
be systemically induced upon several stress conditions, induces
TOR inhibition through SnRK2s, allowing autophagy to take
place independently of the energetic cellular level (Figure 1iii).
High levels of Suc may enhance ABA signaling (Huijser et al.,
2000; Rook et al., 2002) and SnRK2-mediated TOR inhibition
(Figure 1iii). Suc and its non-metabolizable analog, turanose,
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were shown to induce ABA accumulation in strawberry fruits
(Jia et al., 2013), suggesting that Suc signaling may boost ABA
synthesis and signaling (Figure 1iii), but this connection needs
further exploration. Interestingly, Suc and its non-metabolizable
analog palatinose induced AGPase activation in potato tubers
through SnRK1 (Tiessen et al., 2003).

EXTRACELLULAR GLC, G PROTEIN
SIGNALING, AND AUTOPHAGY

Plasma membrane (PM) receptors perceive apoplastic signals.
Heterotrimeric G protein complexes transfer the extracellular
signal to the intracellular environment (Figure 2A). Upon
activation, the heterotrimeric G protein, located at the
cytoplasmic side of the membrane, exchanges GDP for GTP
(Urano et al., 2013; Urano and Jones, 2014). The GTP bound
complex can then interact with intracellular components (Kleuss
et al., 1994; Chuang et al., 1998; Urano et al., 2012). Plants
have 7-transmembrane regulator of G-protein signaling (RGS)
proteins that maintain the inactive state of the complex (Jones
et al., 2011), and G signaling is activated when the receptor-RGS
protein is internalized through endocytosis (Figure 2A). In the
resting state, AtRGS1 binds to the Gα subunit, AtGPA1, thus
maintaining the inactive state of G protein signaling. Although
still under debate, it is assumed that Glc activates G-protein
signaling through the RGS1 receptor by binding directly to
the extracellular 7-transmembrane region of RGS1 (Grigston
et al., 2008). Increasing levels of extracellular Glc recruits a
with-no-lysine kinase (AtWNK) that phosphorylates RGS, which
leads to the endocytosis of RGS1 (Figure 2A; Urano et al., 2012;
Fu et al., 2014).

A few studies in animals also point to a relationship between
the autophagy pathway and RGS (Ogier-Denis et al., 2000;
Pattingre et al., 2003; Garcia-Marcos et al., 2011; Law et al., 2016).
Recently, endocytosis of RGS1 has been linked to autophagy
pathways in plants (Yan et al., 2017). It was demonstrated that
autophagy plays an essential role in regulating the Glc-induced
RGS1-mediated signaling pathway in Arabidopsis (Figure 2A).
Autophagy not only promoted the endocytosis of RGS1, but also
inhibited its recovery to the membrane during Glc treatment
(Yan et al., 2017). The expression of several ATG genes was
also up-regulated in response to Glc treatments in WT plants
but not in RGS1 null mutants, indicating that extracellular Glc
induces autophagy via RGS1 (Yan et al., 2017). The interplay
between autophagic and endocytotic pathways is well known in
plants (Pečenková et al., 2017; Zhu et al., 2018). This interplay
should regulate either the recycling of RGS1 back to the PM or
degradation in the vacuole. It is not yet clear whether RGS1 is
actually localized within the autophagic body after Glc-mediated
endocytosis (Yan et al., 2017). It can be debated that RGS1
activates autophagy via the G-protein signaling pathway, and this
in turn recycles the endocytosed RGS1 to the vacuole and that
de novo synthesized RGS1 is then re-located to the PM. It should
be noted that this is in contradiction with photosynthetically
derived Glc which activates TOR, thus repressing autophagy,
suggesting compartmentalization differences (Xiong et al., 2013).

Strongly increased extracellular Glc signals may be perceived
as “danger,” and extracellular Glc may be considered as a damage-
associated molecular pattern (DAMP) candidate (Versluys et al.,
2016 and references therein). Focusing on sink tissues, where
the roles of the putative RGS1 Glc sensor and cell wall invertase
(CWI) are best understood, apoplastic Glc levels depend on the
balance between Suc unloading (depending on photosynthesis
and leaf export efficiency), CWI activity and import efficiency
of Glc into the cells (Figures 1iii, 2B). It should be noted that
CWI and vacuolar invertase (VI) are mainly regulated at the
post-translational level by invertase inhibitors (Hothorn et al.,
2010). Evidently, increased apoplastic Glc can also originate
from cellular leakage processes under stress (Figure 2C). In this
regard, increased extracellular Glc levels, above certain threshold
levels, may be involved in inducing autophagy (Yan et al., 2017;
Figures 1iii, 2B). Autophagy was reported to be more active
in developing sink tissues, in particular during seedling growth
(Kim et al., 2013) and during cellular architectural remodeling
required under differentiation and development (Bassham et al.,
2006). RGS1 mutants develop etiolated hypocotyls partially due
to Glc insensitivity (Chen et al., 2006; Huang et al., 2015).
G protein signaling is known to promote seedling elongation
through activation of the cell cycle (Ullah et al., 2001; Ullah, 2003;
Chen et al., 2006). Thus, autophagy seems to be key in seedling
establishment, plant development and reproduction, potentially
through RGS1 (Figure 2B).

AUTOPHAGY AND ROS HOMEOSTASIS
UNDER OXIDATIVE STRESS

During oxidative stress, the production of reactive oxygen
species (ROS) by respiratory burst oxidase homolog (Rboh),
acts as the signal for the activation of stress responses,
including autophagy (Wang et al., 2017). Autophagy is regulated
through both Rboh-dependent and -independent pathways (Liu
et al., 2009; Chen et al., 2015). Arabidopsis atg mutants
are hypersensitive to submergence-induced hypoxia, linked
to salicylic acid-signaling pathways (Chen et al., 2015). In
animals, autophagy contributes to cell survival during hypoxia
(Kroemer et al., 2010). In plants, most abiotic stresses including
hypoxia submergence lead to oxidative stress through ROS
increases. Under oxidative stress, SnRK1 and AMPK activate
autophagy (Rabinovitch et al., 2017; Soto-Burgos and Bassham,
2017), helping organisms to overcome these stresses. However,
oxygen deprivation during hypoxia also leads to a switch
to anaerobic respiration, thus a decrease in energy produced
which can directly activate autophagy through the SnRK1/TOR
pathway (Voesenek and Bailey-Serres, 2013; Soto-Burgos and
Bassham, 2017). ROS production by Rboh is necessary for
plant tolerance to submergence and activation of autophagy
(Chen et al., 2015). However, ROS may oxidize key proteins
in these signaling pathways, threatening response viability.
For example, in mammals, TOR is known to be oxidized
and inactivated by H2O2, and a specific thioredoxin directly
interacts with TOR to prevent its oxidation and ensure its
functionality (Oka et al., 2017). Thus, the oxidative status and
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FIGURE 2 | Model for activation of RGS1 by glucose (Glc) and its potential effect on autophagy in plants. (A) In plants, the Gα subunit spontaneously exchanges
GDP, and 7-transmembrane RGS proteins such as RGS1 maintain the inactive state of G protein signaling. GPA1 (Gα subunit of G-protein) binds both RGS1 and its
partner AGB1/AGG (Gβ). Upon extracellular Glc binding, it is proposed that the equilibrium of Gα binding shifts from Gβ to RGS. Free Gβ then recruits WNK kinase
for RGS1 phosphorylation and internalization. Upon internalization, G protein signaling is self-activated and sustained. Internalization of RGS1 occurs in correlation
with autophagic pathways, potentially through MAPK signaling pathways. (B) The most active photosynthetic leaves produce Suc to feed the sink tissues. After
apoplastic unloading, this Suc can be converted to hexoses by CWI, and the released Glc moieties, when not immediately imported and metabolized into cells, may
surpass a certain threshold level in the apoplast, triggering extracellular sugar signaling mediated by RGS1. Autophagy is known to be more active in developing sink
tissues. In this way, Glc can contribute to promote autophagy in these tissues. (C) Wounding due to abiotic or biotic stress can result in the sudden increase of
apoplastic Glc. This DAMP signaling can lead to the induction of autophagy in neighboring cells, which is known to be relevant for (a)biotic stress tolerance.

the activity of the SnRK1/TOR nexus are expected to be crucial
during autophagic responses, linking cellular sugar and ROS
homeostasis. Deeper studies are warranted in this area, under
different environmental conditions, since the composition and
concentration of sugars as well as ROS species can greatly vary
under these conditions.

LINKS BETWEEN ALTERNATIVE
SUGARS AND AUTOPHAGY

Autophagy itself also regulates sugar levels. In animal cells,
exogenous Tre, Suc and raffinose induce autophagy independent
of TOR (Chen et al., 2016). It is proposed that after a certain
amount of uptake, autophagy is induced in an attempt to aid
in the breakdown of these sugars. Considering that animal
cells do not usually contain high levels of Suc or raffinose,
this points to a mechanism employed to remove accumulating
sugars. Tre, Suc, raffinose family oligosaccharides and fructans
are involved in plant stress responses (Krasensky and Jonak,
2012; Keunen et al., 2013). Little is known about their role in
autophagy, but it can be speculated that extreme accumulation
may also lead to autophagy induction to prevent excessive build
up. Intriguingly, maltose, a breakdown product of starch has
been linked to SnRK1 activation, which in turn can activate

autophagy to recycle carbon derived from starch breakdown
during periods of stress (Wang et al., 2013; Ruiz-Gayosso et al.,
2018).

Contrary to Arabidopsis, where increased trehalase (decreased
endogenous Tre) resulted in increased drought tolerance (Van
Houtte et al., 2013), increased Tre is known to promote
desiccation tolerance in the Tre-accumulating resurrection
species Sporobolus stapfianus (Gaff et al., 2009; Griffiths et al.,
2014). Tre was suggested to induce autophagy (Williams et al.,
2015), with possible involvement of SnRK1 (Asami et al., 2018).
Interestingly, non-Tre accumulating resurrection species such
as Haberlea rhodopensis stays green in prolonged darkness for
several months, and SnRK1 seems to be a key player (Durgud
et al., 2018).

CONCLUDING REMARKS

Autophagy plays an important role to recycle cytosolic material
and maintain cellular homeostasis during periods of stress, but
also during the process of growth. The interplay between sugar
signaling -and -autophagy-pathways in plants is complex and
depends to a large extend on the organism and tissue type.
SnRK1 and TOR contribute to the major energy and/or stress
dependent regulation of autophagy; however, new advances
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suggest that alternative pathways also exist. Through SnRK1
and TOR, autophagy is regulated by sugar availability to
recycle and provide the required resources for growth and
development, and in turn autophagy assists in the removal
of excess sugar from the cytosol, thus regulating the level of
sugars available. This shows that sugars are not only important
in the regulation of autophagy, but autophagy can also be
important in regulating sugar homeostasis. Active TOR seems
to be an overriding factor in the control of autophagy through
energy-dependent pathways. Besides the SnRK1/TOR pathways,
regulation of autophagy has also been linked to the G-protein
signaling pathway in response to external Glc. The exact
mechanisms and sequence of events need further investigation
to understand whether this links to the SnRK1/TOR or TOR
autophagy pathways or functions independently. It is also
tempting to speculate that other SnRK complexes such as SnRK2
might regulate autophagy through ABA signaling pathways

under stress. The major constrains in understanding sugar
signaling and the interplay with autophagy is the complexity
and variation of these pathways between sink and source
tissues. In this regard it is important to take caution when
comparing results between different species, organs or even
growth stages.
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