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In plants, programmed cell death (PCD) has diverse, essential roles in vegetative and
reproductive development, and in the responses to abiotic and biotic stresses. Despite
the rapid progress in understanding the occurrence and functions of the diverse forms
of PCD in plants, the signaling components and molecular mechanisms underlying
the core PCD machinery remain a mystery. The roles of BAK1 (BRASSINOSTEROID
INSENSITIVE 1-associated receptor kinase 1), an essential co-receptor of multiple
receptor complexes, in the regulation of immunity and development- and defense-
related PCD have been well characterized. However, the ways in which BAK1 functions
in mediating PCD need to be further explored. In this review, different forms of
PCD in both plants and mammals are discussed. Moreover, we mainly summarize
recent advances in elucidating the functions and possible mechanisms of BAK1 in
controlling diverse forms of PCD. We also highlight the involvement of post-translational
modifications (PTMs) of multiple signaling component proteins in BAK1-mediated PCD.
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INTRODUCTION

Plants have evolved surveillance systems and cellular responses to sustain their growth
while protecting themselves against various environmental stresses, often through deploying
programmed cell death (PCD) to balance the survival signaling with proper development patterns
and abiotic stresses or microbial infections (Van Hautegem et al., 2015; Kabbage et al., 2017). In
response to microbial invasions, plants reply on cell surface receptor proteins to detect extracellular
molecules produced by pathogens, collectively called pathogen-associated molecular patterns
(PAMPs) and activate the PAMP-triggered immunity (PTI) pathway (Zipfel, 2014; Bigeard et al.,
2015). Typical PTI responses include callose deposition, ROS production, and the expression of
specific marker genes (Jones and Dangl, 2006). The receptor proteins located on plant cell surface
that perceive PAMPs are known as pattern-recognition receptors (PRRs), which include receptor
kinases (RKs) and receptor-like proteins (RLPs; Song et al., 1995; Gomez-Gomez and Boller, 2000;
Chinchilla et al., 2006; Zipfel et al., 2006; Dardick et al., 2012).

In addition to PTI, a second layer of plant defense detects the presence of effector proteins from
pathogens by intracellular immune receptor proteins, most of which are nucleotide-binding site
leucine-rich repeat (NB-LRR or NLR) proteins and trigger robust immune responses, including
ROS production, activation of specific effector-triggered immunity (ETI) marker genes, and rapid
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collapse of living tissues named as hypersensitive response (HR),
a type of plant-specific PCD. PCD may limit the spread of
pathogens; under other stresses, PCD may allow the recycling
of nutrients to sustain growth (Jones and Dangl, 2006; Caplan
et al., 2008; Eitas and Dangl, 2010; Feng and Zhou, 2012).
In plant–microbe interactions, PCD has been recognized as a
hallmark of ETI, and also important responses in certain PTI
processes (Jones and Dangl, 2006; Caplan et al., 2008; Eitas and
Dangl, 2010; Coll et al., 2011; Feng and Zhou, 2012). Other
works revealed that PCD is a common and fundamental process
that occurs in most eukaryotic organisms (Danon et al., 2000;
Ameisen, 2002). PCD is also an intrinsic and indispensable
process for plant vegetative and reproductive development. For
example, differentiation and maturation of tracheary elements,
and abscission of floral organs and tapetum degeneration all
involve PCD. PCD was first reported in animals, where it serves
as a mechanism to remove unwanted or damaged cells through
development-related cell suicide and disease-related cell death
(Zakeri et al., 1995; Raff, 1998).

Interestingly, plant PCD associated with development and
immunity seems to be often connected to a cell-surface localized
receptor kinase named BRI1-associated receptor kinase 1 (BAK1)
(Chinchilla et al., 2007; Heese et al., 2007; Chinchilla et al.,
2009; Ma et al., 2016). BAK1 was originally discovered as
a key component of brassinosteroid (BR) signaling. Research
in past decades demonstrated that BAK1 functions as a co-
receptor in multifaceted receptor complexes to regulate a variety
of processes, including BR-dependent development involving
the receptor BRASSINOSTEROID INSENSITIVE 1-(BRI1), and
Flagellin-Sensitive 2 (FLS2)-dependent PTI responses (Chinchilla
et al., 2009; Ma et al., 2016). Readers who are interested in the
topics about the role of BAK1 in innate immunity are strongly
suggested to refer to several recent excellent reviews and herein
(Ma et al., 2016; Yamada et al., 2016; Yasuda et al., 2017).

There is growing evidence to suggest that BAK1 plays an
essential role in regulating various types of PCD (He et al.,
2007; Kemmerling et al., 2007; Gao et al., 2009; Schwessinger
et al., 2011; Gao et al., 2013b; de Oliveira et al., 2016; Du
et al., 2016). The current review will focus primarily on the
recent progress made in elucidating the functions of BAK1 in
both development- and immunity-associated cell death. The
possible mechanisms underlying BAK1-mediated cell death
via its cooperation with multiple signaling components and
its diverse regulatory mechanisms, including post-translational
modification (PTM), will also be discussed.

PCD IN PLANTS

Unique Features of Plant Cell Death
Based on the cell morphology, cell death in mammalian cells
was classified into three types: apoptosis, autophagy, and necrosis
(Zakeri et al., 1995; Kroemer et al., 2009; van Doorn, 2011).
These three different types of cell death have different causes and
different regulatory mechanisms. Apoptosis is characterized by
early collapse and condensation of the nucleus, fragmentation of
chromatin, generation of nucleosomal ladders, nuclear blebbing,

and cytoplasmic condensation (Zakeri et al., 1995; Yu et al.,
2002). The typical biochemical features of apoptosis include
DNA cleavage, degradation of the DNA repair enzyme poly
(ADP ribose) polymerase, and activation of caspases, a group
of cysteine protease (Yu et al., 2002). Autophagy is normally
characterized by an increase in the abundance of lytic vesicles
termed autophagosomes (Berry and Baehrecke, 2008; Xu et al.,
2015), and is regulated by a number of autophagy-related
genes (ATGs) (Zhang and Tang, 2005; Patel et al., 2006; Berry
and Baehrecke, 2008; Xu et al., 2015). Necrosis is typically
accompanied by cell and organelle swelling, rupture of organelles
and the plasma membrane, increases in ROS and calcium in
cytoplasm, and decreases in cellular ATP (Farber, 1994; Postel
et al., 2010; Heller et al., 2018). PCD is also involved in numerous
biological processes in plants (Greenberg, 1996; Beers, 1997;
Pennell and Lamb, 1997; Lam et al., 1999; Van Hautegem et al.,
2015), such as cell differentiation and regulation of cell number,
embryogenesis (Bozhkov et al., 2005), abiotic stress responses
(Gepstein and Glick, 2013), and plant–pathogen interactions
(Beers, 1997; Greenberg, 1997; Coll et al., 2011). Compared to
animals, plants are sessile and plant cell surface is coated with
much larger number of receptor proteins (∼600 RLK RLPs
in Arabidopsis genome) (Tang et al., 2017), therefore, plant
is thought to deploy differential, yet complexity strategies of
PCD to adapt to diverse and harsh environmental stresses. To
better understand the similarities and differences of PCD between
plant and animal kingdoms, readers are suggested to refer to
several excellent reviews (Kroemer et al., 2009; van Doorn, 2011;
Rantong and Gunawardena, 2015; Dickman et al., 2017; Kabbage
et al., 2017).

There are several commonalities of PCD features between
plants and animals, including the existence of apoptosis-like
morphological features and caspase-like proteases, as well as
ATG genes in plants (Dickman et al., 2017; Kabbage et al.,
2017). The hallmarks of PCD in mammalian systems, including
the formation of apoptotic bodies and DNA cleavage (Mittler
et al., 1995; Levine et al., 1996; Wang et al., 1996), also
exist in plants (Greenberg, 1996). For example, in Nicotiana
benthamiana, BECLIN 1, an ortholog of yeast ATG6/VPS30
and mammalian beclin 1 has been identified and characterized
as a key regulator in both developmental and HR-type PCD.
BECLIN 1 deficient N. benthamiana plants showed accelerated
leaf senescence, while the HR-type cell death was suppressed in
BECLIN1-silenced plants (Liu et al., 2005). However, many of
the features and precise mechanisms of plant PCD are not fully
understood.

Several features of PCD are distinct in plant cells, involving
different types of caspases and phagocytosis systems compared
with those in mammalian cells; the mechanisms involved in plant
PCD differ from those in animal PCD, probably due to the genetic
and functional redundancy of PCD components as well as plant-
specific cellular features such as rigid cell walls, totipotency, and
the presence of chloroplasts (Williams and Dickman, 2008).

The nature of apoptosis in plants is controversial. For instance,
the viable aleurone cells of mature barley seeds undergo PCD
when the seed starts to germinate, and the cells become highly
vacuolated; however, aleurone cell death at this stage does

Frontiers in Plant Science | www.frontiersin.org 2 January 2019 | Volume 9 | Article 1913

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01913 December 27, 2018 Time: 17:39 # 3

Gao et al. The Roles of BAK1 in PCD

not display the hallmarks of mammalian apoptosis-like PCD,
probably due to the absence of major animal apoptosis regulators
in plants (Fath et al., 2000; Dickman et al., 2017; Kabbage
et al., 2017). Intriguingly, treatments with the Fumonisin B1
mycotoxin or abiotic stresses can trigger the formation of
apoptosis-like bodies in plants (Li and Dickman, 2004; Li W.
et al., 2010); therefore, caution should be paid when the presence
of apoptosis-like cell death in plants is proposed (Dickman
et al., 2017). Moreover, during senescence and the differentiation
of the tracheary elements, cell death-associated physiological
changes often involve vacuole collapse, providing evidence for
the essential role of the vacuole in plant PCD (Jones, 2001).
Besides vacuole, other organelles, including mitochondria and
chloroplasts, have also been suggested to function in plant PCD
(Lam et al., 2001).

Numerous environmental factors can trigger PCD, including
salt (Li et al., 2007), drought (Duan et al., 2010; Hameed et al.,
2013), ozone (Overmyer et al., 2005), and heat (Zuppini et al.,
2007; Li Z. et al., 2012). When Arabidopsis roots were subjected
to water deficit stress, for example, the typical features of PCD,
including increased vacuole size, organelle degradation, and the
collapse of tonoplast and plasma membrane, were observed in
the apical meristem of the Arabidopsis primary root (Duan et al.,
2010). Prolonged salt stress for 24 h caused by treatment with
either NaCl or KCl resulted in the significant degradation of
organelles in the green algae Micrasterias denticulate (Affenzeller
et al., 2009). All together, these studies point to the existence and
complexity of different forms of PCD in plants, in response to
differential types of stresses. It has to be noted that, however,
it remains enigmatic whether a common core machinery is
shared for different types of PCD upon perception of either
developmental or various abiotic or biotic stress cues (Huysmans
et al., 2017).

Classification of PCD in Plants
The classification of PCD in plants is contradictory, depending
on the criteria. It was divided previously into two classes based
on morphological features: vacuolar cell death and necrosis
(van Doorn et al., 2011) but later updated to autolytic and
non-autolytic cell death (van Doorn, 2011). Based on the
triggers of PCD in plants, however, several previous studies have
suggested that PCD could be classified into development-related
PCD (dPCD), environment-related PCD (ePCD), and pathogen-
triggered PCD (pPCD) (Daneva et al., 2016; Huysmans et al.,
2017). dPCD is morphologically characterized by senescence,
vacuolar collapse, nuclear degeneration or fragmentation, and
cell elimination, which facilitates the successful establishment
of reproductive organ identity and structural determination
(Daneva et al., 2016). dPCD also occurs during vegetative
development in plants, such as xylogenesis, as well as in organ
abscission and dehiscence, where it is characterized by tonoplast
rupture, vacuolar content release, mitochondrial degradation,
and cytoplasmic clearance (Kuriyama, 1999; Yu et al., 2002).
ePCD is thought to arise as a response to stress caused by diverse
environmental conditions, including abiotic and biotic factors
(Wu et al., 2014; Petrov et al., 2015). To better conceptually
delineate the mechanisms involved in PCD, we propose that PCD

is classified into dPCD, aPCD (abiotic stress-related PCD), and
bPCD (biotic stress-related PCD). Currently, there is very limited
information for the direct function of BAK1 in controlling
aPCD; therefore, we will only focus on the involvement of
BAK1 in the regulation of dPCD and bPCD in the following
sections.

BAK1 IS INVOLVED IN THE REGULATION
OF DIVERSE FORMS OF PCD

BAK1 belongs to the SERK (somatic embryogenesis-related
kinase) family, which are a small group of membrane-localized
RLKs that can perceive diverse extracellular ligand stimuli and
relay these signals, normally via a phosphorylation cascade
(Li, 2010). The first plant SERK identified, DcSERK, was
detected in carrot (Daucus carota) hypocotyl cell suspension
cultures (Schmidt et al., 1997) during a search for marker
genes to enable the monitoring of the transition from
somatic cells into embryogenic cells. Most SERKs contain
a small extracellular LRR-domain with five repeats, a single
transmembrane domain, and a cytoplasmic kinase domain
(Li, 2010). The Arabidopsis thaliana genome encodes five
SERKs, AtSERK1, AtSERK2, AtSERK3, AtSERK4, and AtSERK5,
which arose through gene duplication (Aan den Toorn et al.,
2015). Baudino et al. (2001) isolated and identified maize
(Zea mays) ZmSERK1 and ZmSERK2 using degenerate primers
based on DcSERK and AtSERK1, and ZmSERK3/BAK1 was
later characterized for its function in embryogenesis (Zhang
et al., 2011). Identification of SERK homologs in sequenced
genomes of both higher plants and lower plants, such
as moss (Physcomitrella patens), suggests an evolutionarily
conserved significance of SERKs (Aan den Toorn et al.,
2015).

To date, numerous genetic and biochemical studies have
demonstrated that BAK1 functions as a master player at the
convergence of multiple physiological processes, including the
regulation of development, and responses to biotic stresses
(Heese et al., 2007; Chinchilla et al., 2009; Schwessinger et al.,
2011; Shen et al., 2011; Meng et al., 2015). For instance,
BAK1 participates in BR signaling, vascular differentiation, stem
elongation, flowering, floral abscission, fertility, and senescence
(Li et al., 2002; Nam and Li, 2002; Postel et al., 2010; Meng et al.,
2016). It was also reported to function in PHYTOSULFOKINE
alpha (PSK)-regulated root growth (Ladwig et al., 2015), ERECTA
(ER) and EPIDERMAL PATTERNING FACTORS (EPFs)-
dependent cell fate specification in stomatal patterning (Meng
et al., 2015).

How can BAK1 as a single RLK participate in so many
different signaling pathways? One important reason is
that BAK1 could function as a co-receptor or signaling
regulator of multiple receptor kinases and RLPs; for example,
BAK1 forms complexes with BRI1 to activate BR signaling,
and with FLS2 to regulate a PTI pathway (Nam and Li,
2002; Chinchilla et al., 2007; Kemmerling et al., 2007; Ma
et al., 2016). Additionally, BAK1 cooperates with multiple
immune-related RLKs or RLPs at either the plasma membrane
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TABLE 1 | Different forms of BAK1-mediated PCD in plants.

PCD type Trigger of PCD Receptor Perturbation of
BAK1 function

PCD phenotype Possible
Regulation

Reference

PCD by disruption
of BAK1 and
related proteins

bkk1/serk4 bak1 Spontaneous cell
death

Phosphorylation;
Glycosylation

He et al., 2007;
Kemmerling et al.,
2007; Jeong et al.,
2010; de Oliveira
et al., 2016

BAK1 OE BAK1
over-expression

Spontaneous cell
death, BRI1 OE
suppress this cell
death

Domnguez-
Ferreras et al.,
2015; Kim et al.,
2017

SOBIR1 OE NA Spontaneous cell
death

Phosphorylation Gao et al., 2009;
Liebrand et al.,
2014

bir1 bak1 Spontaneous cell
death dependent
on SOBIR1

Phosphorylation Gao et al., 2009

bir2 bak1 enhanced HP upon
pathogen

Phosphorylation Halter et al., 2014;
Liu et al., 2016;
Imkampe et al.,
2017

bir3 bak1 Enhanced HR Phosphorylation Halter et al., 2014;
Imkampe et al.,
2017

bon1 NA Spontaneous cell
death

Phosphorylation Wang et al., 2011;
Kim et al., 2017;

CRK28 OE NbSerk3 silencing Suppressed HR Glycosylation Yadeta et al., 2016,
2017

bir1pad4-1 sobir7-1/bak1 Suppressed HR Liu et al., 2016; Wu
et al., 2018

bPCD by PAMPs SCFE1 (Sclerotnia) RLP30-SOBIR1 bak1 suppressed HR Zhang et al., 2013

NLP (bacteria,
fungi, oomycete)

RLP23-SOBIR1-
BAK1

bak1 suppressed HR Albert et al., 2015

INF1 (Phytophthora
infestans)

Sl ELR-SOBIR1 bak1 Suppressed HR Heese et al., 2007;
Chaparro-Garcia
et al., 2011;
Domazakis et al.,
2018

BcXYG1 (Botrytis) BAK1-SOBIR1 bak1 Suppressed HR Zhu et al., 2017

BcScp1 (Botrytis) bak1 Suppressed HR Dagvadorj et al.,
2017

Eix (fungal) LeEix1/2
(LRR-RLP)

BAK1 silencing Suppressed HR Bar et al., 2010

Pst SCR1 (Puccinia
stratiform)

bak1 Suppressed HR Dagvadorj et al.,
2017

pep2 PEPR bak1 Enhanced HR Yamada et al.,
2016

bPCD upon
pathogen

Hpa bak1 Enhanced HR Heese et al., 2007

Alternaria bir2 Enhanced HR Halter et al., 2014

bPCD by effector Aphid Mi-1 (NLR) bak1 Suppressed HR Peng et al., 2016

FolAvr1 (Fusarium) I (LRR LRP) bak1 Suppressed HR Catanzariti et al.,
2017

Avr4/9
(Cladosporium)

Cf-4, Cf-9 bak1 Suppressed HR Endocytosis Postma et al., 2016

dPCD TDIF PXY bak1 Treachery element
PCD

Ma et al., 2016;
Zhang et al., 2016

TPD1 EMS1 serk1/2 Tapetal PCD Li Z. et al., 2017

IDA HSA/HSL2 serk1/2/3 PCD in abscission
zone

Meng et al., 2016

Frontiers in Plant Science | www.frontiersin.org 4 January 2019 | Volume 9 | Article 1913

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01913 December 27, 2018 Time: 17:39 # 5

Gao et al. The Roles of BAK1 in PCD

or in the cytoplasm, modulating distinct PCD processes
(Table 1).

BAK1 in Controlling dPCD
Numerous studies have revealed that BAK1 plays crucial
roles in regulating dPCD; for example, silencing GhBAK1 in
cotton (Gossypium hirsutum) triggers high levels of cell death
accompanied by increased ROS production, suggesting that the
regulation of cell death by BAK1 is conserved in diverse plant
species (Gao et al., 2013b). Interestingly, the BAK1 homolog,
SERK5, does not regulate cell death in the Arabidopsis ecotype
Col-0, whereas in the ecotype Landsberg erecta it has a regulatory
role in cell death (Wu et al., 2015). The serine/threonine protein
kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) functions with
BAK1; in the bak1bik1 double mutant, a constitutive immune
response and spontaneous cell death causes severe growth defects
and a dwarf phenotype, accompanied with enhanced expression
levels of immune genes, including PR1, PR5, PAD4, WRKY45,
and ERF1 (Liu et al., 2017). Additionally, BAK1 interacts with
BIR1 (BAK1-interacting receptor-like kinase 1), and the bir1
mutant displays a constitutive cell death phenotype (Gao et al.,
2009). Both BAK1 and BIR1 interact in vitro and in vivo with
BONZAI1 (BON1), a calcium-dependent phospholipid-binding
protein; bon1 mutants genetically interacted with bir1 to
produce temperature-dependent growth defects and cell death in
Arabidopsis (Wang et al., 2011).

It has been noted that BAK1, together with other SERK
family members, could function as a co-receptor of PXY
(phloem intercalated with xylem) (Zhang et al., 2016). PXY
is a LRR-RLK receptor of tracheary element differentiation
inhibitory factor (TDIF), also known as CLAVATA3/EMBRYO
SURROUNDING REGION-RELATED (CLE), which regulates
vascular development in Arabidopsis, revealing the involvement
of these essential components in dPCD (Ma et al., 2016; Zhang
et al., 2016). It has been demonstrated that tracheary elements
(TEs) typically undergo an autophagic type of PCD during
differentiation in Zinnia elegans and Arabidopsis (Fukuda, 1997;
Fukuda, 2000; Turner et al., 2007; Williams and Dickman, 2008).
This type of PCD is characterized by a clearing process for
the removal of dead protoplasts, normally achieved by multiple
proteases, including xylem cysteine proteases 1 and 2 (XCP1 and
XCP2), bifunctional nuclease 1/endonuclease 1 (BFN1/ENDO1)
and metacaspase 9 (MC9) (Avci et al., 2008; Bollhoner et al.,
2013; Xu et al., 2018). Some transcriptional factors, such as
VASCULAR-RELATED NAC-DOMAIN6/7 (VND6/7), appear to
also be responsible for the PCD process activated by TDIF
signaling (Ito and Fukuda, 2002; Pyo et al., 2007; Zhong et al.,
2010; Heo et al., 2017). However, evidence supporting that BAK1
directly regulates dPCD is still missing.

Intriguingly, BR signaling was also found to be involved in
xylem differentiation, as evidenced by the findings that treatment
using the BR signaling inhibitor brassinazole, and the BR
biosynthesis inhibitor uniconazole, resulted in aberrant vascular
patterning and PCD (Yamamoto et al., 1997; Asami et al., 2000),
while the BR deficient mutant, cpd (photomorphogenic dwarf)
showed defective xylem biogenesis (Szekeres et al., 1996), and
bri1 single mutants and bri1 brl1 brl3 triple mutants all displayed

severe vascular defects (Cano-Delgado et al., 2004). Furthermore,
upon perception of TDIF ligands CLV3 and CLE41, the TDIF
receptor (TDR) interacts with BIN2 (Brassinosteroid-Insensitive
2), a member of GSK3 (Glycogen Synthase Kinase 3), to suppress
procambial cell differentiation into xylem, which also involves
the suppression of BES1 (BRI1-EMS Suppressor 1) downstream
of TDR-GSK3 (Kondo et al., 2014; Heo et al., 2017). Given
that BAK1 forms a signaling complex with BRI1 and PXY,
respectively, it is possible that BAK1 acts as a convergent
component shared by the PXY/TDR and BRI1 signaling pathways
in dPCD regulation, yet this hypothesis remains to be further
investigated and approved.

The BAK1 homologs SERK1 and SERK2 might also play a
role in regulating dPCD in anther, in which they interact with
the receptor-like kinase EMS1 to perceive the signal of a peptide
ligand, TPD1, and control the differentiation of tapetum (Li Z.
et al., 2017). Degeneration of tapetum through PCD and the
release of its content to nurture maturation of pollen is essential
for the success of male reproductive development. In serk1, serk2,
or ems1 mutants, tapetum differentiation and PCD were not
properly initiated (Li Z. et al., 2017). This is a scenario similar
to that in tracheary element differentiation. Again, a direct link
between SERK1/2 and tapetal PCD needs solid experimental
support. In the abscission zone, an IDA-HAS/HSL2 signaling
pathway also relies on SERK members (SERK1/2/3) to transduce
signals for abscission, where PCD is essential (Meng et al., 2016).
Whether it is a common theme that BAK1 and other SERKs
function upstream of certain dPCDs awaits future studies.

BAK1 in Controlling bPCD
Functional Perturbation of BAK1 and Its Partners
Triggers bPCD
BAK1 functions as a co-receptor of multiple RLKs and is involved
in diverse signaling pathways. BAK1’s function seems essential
and is under tight surveillance so that PCD is triggered once its
function is perturbed. Previously, a genetic investigation on the
single mutation of BAK1 itself and double mutation of BAK1
with its closest homolog BKK1 (SERK4) revealed that while bak1
showed strong premature senescence (Kemmerling et al., 2007;
Jeong et al., 2010), cell death in bak1 bkk1 double mutants occurs
post-embryogenesis, suggesting that BAK1 and BKK1 function
redundantly to negatively control cell death (He et al., 2007; de
Oliveira et al., 2016). bak1 single mutants developed a type of
uncontained PCDs upon infection with virulent necrotrophic
pathogens, which differs from both necrotizing elicitor- and SA-
inducible PCD (Kemmerling et al., 2007). Similarly, silencing
BAK1 in N. benthamiana also leads to enhanced PCD upon
infection with Hyaloperonospora parasitica (Heese et al., 2007).

Interestingly, over-expression of BAK1 or its ectodomain also
elicited spontaneous PCD, accumulation of SA and expression
of multiple PCD-related genes, including BON1, BIRs, and
SOBIR1 (Kim et al., 2017). In line with this finding, constitutive
expression of BAK1 or its ectodomain or excess of BAK1 could
trigger strong dwarfism and premature death phenotype, as well
as autoimmunity without microbe attacks (Domnguez-Ferreras
et al., 2015). Therefore, the abundance of BAK1 seems important
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and needs to be kept in check. It is hypothesized that over-
expression of BAK1 might sequestrate BIR1 to trigger PCD (Ma
et al., 2016). At present, it remains unclear whether bak1/bkk1
cell death is due to the loss of negative regulation of PCD by
BAK1 or is caused by an unknown mechanism that monitors
developmental defects in bak1.

Multiple signaling components distinct from the BRI1
pathway are also engaged by BAK1 to trigger PCD upon pathogen
infection. For instance, a BAK1-interacting RLK, BIR1, was
identified by a reverse genetics approach; the bir1-1 mutant
displayed extensive cell death and constitutive immunity (Gao
et al., 2009). Intriguingly, further suppressor screening using
bir1-1 led to the identification of suppressor of bir1-1 (sobir1-
1), which strongly suppressed the cell death observed in bir1-1
(Gao et al., 2009). Moreover, over-expression of SOBIR1 results
in elevated cell death, indicating that SOBIR1 functions as a
positive regulator of cell death (Gao et al., 2009; Liebrand
et al., 2014). Using Co-IP coupled with liquid chromatography-
electrospray ionization-tandem mass spectrometry (LC/ESI-
MS/MS), two close BIR1 homologs, BIR2 and BIR3, were
identified and demonstrated to constitutively interact with,
and be phosphorylated by, BAK1, which in turn prevents the
formation of the BAK1–FLS2 receptor kinase complex, thus
negatively regulating PTI signaling (Halter et al., 2014; Imkampe
et al., 2017). Examination of an allelic series of bak1 mutation
showed that BIR1 and BAK1 interact genetically to regulate BR
signaling, cell death and immune response (Wierzba and Tax,
2016).

bir1 has enhanced SA-dependent PCD (Liu et al., 2016).
Moreover, upon infection with a necrotrophic pathogen,
Alternaria brassicicola, bir2 mutants had enhanced cell death
and susceptibility to this pathogen, whereas BIR2 interacts with
BAK1 and suppresses the autoimmune cell death response in
the absence of PAMPs (Halter et al., 2014). Furthermore, it was
reported that while BIR3 interferes with BRI1-dependent growth
by interacting with and stabilizing BAK1, it also negatively affects
the formation of the BAK1–FLS2 complex to suppress cell death
and immunity, exemplified by the enhanced spontaneous cell
death in the bak1 bir3 mutant (Imkampe et al., 2017).

BAK1 Is Involved in Certain PAMP-Triggered PCD
As a co-receptor of multiple RLKs that perceive PAMPs, BAK1
is required for certain PAMP-triggered PCD; for example, in
N. benthamiana, triggering of ROS accumulation and HR by the
INF1 protein secreted from the oomycete pathogen Phytophthora
infestans was prevented by a mutation in BAK1 (Heese et al.,
2007; Chaparro-Garcia et al., 2011). A recent study showed
that silencing of SOBIR1 in N. benthamiana attenuated INF1-
triggered cell death and resistance to P. infestans, while SOBIR1
was found to form a receptor complex with ELR (Elicitin
Response) protein isolated from Solanum microdontum, which
is a RLP perceiving INF1 (Domazakis et al., 2018). Moreover,
BAK1 is recruited to the ELR/SOBIR1 signaling complex to
activate downstream defense response, suggesting that both
SOBIR1 and BAK1 are required for INF1-regulated PCD and
immunity. Similarly, BcXYG1, a xyloglucanase protein secreted
from Botrytis cinerea, interacts with BAK1 and SOBIR1 to trigger

cell death and the immune response (Zhu et al., 2017). A small
apoplast-targeted cysteine-rich protein, PstSCR1, secreted from
the wheat rust pathogen Puccinia striiformis f. sp. tritici, triggers
PCD and immunity in N. benthamiana via a pathway that appears
to be dependent on the BAK1 pathway (Dagvadorj et al., 2017).

Moreover, BAK1 cooperates with SOBIR1 and RLP30
(Receptor-Like Protein 30) to control PCD caused by
necrotrophic pathogens. RLP30 is responsible for the sensitivity
to SCLEROTINIA CULTURE FILTRATE ELICITOR1 (SCFE1)-
containing fraction, which contains a proteinaceous elicitor,
produced by S. sclerotiorum, and rlp30 mutants showed increased
cell death and susceptibility to infection with necrotrophic
pathogens S. sclerotiorum and B. cinerea (Zhang et al., 2013). In
addition, BAK1 was found to interact with one of the LRR-RLP
receptors in N. benthamiana, LeEix1, to attenuate the LeEix2-
mediated Eix (Ethylene-inducing xylanase) response in tobacco
(Nicotiana tabacum) and tomato (Solanum lycopersicum) in
order to trigger the typical HR response (Bar et al., 2010).

Using proteomic approaches several RLKs, cysteine-rich
receptor-like kinases (CRKs) enriched at the plasma membrane,
were identified while the expression levels of these CRKs were
activated upon the ligand elicitation of flagellin in Arabidopsis
(Yadeta et al., 2017). Among those CRKs, the induction of CRK28
activity was highly correlated with enhanced resistance to the
wheat rust pathogen P. striiformis f. sp. tritici and increased ROS
production; moreover, the kinase active site of CRK28 (K377)
is required for triggering cell death. CRK28 associates with the
FLS2/BAK1 immune complex in a flg22-dependent manner, and
CRK28-induced cell death was abolished in NbSerk3-silenced
N. benthamiana plants, suggesting that BAK1 is required for
CRK28-mediated cell death (Yadeta et al., 2017).

However, in some cases, loss of BAK1 function enhances the
cell death triggered by PAMPs or DAMPs. A recent study showed
that when PTI signaling is compromised by BAK1 disruption,
danger peptide receptor PEPRs (Pep Receptors) signaling could
be activated to ensure basal resistance. Depletion of BAK1
sensitized PEPRs signaling toward cell death upon ligand
elicitation, as the ligand Pep2 was found to induce extensive
cell death in bak1-4 mutants, which is dependent on PEPRs
(Yamada et al., 2016). It is believed that such an enhanced PCD
phenotype in bak1 mutant upon pathogen infection is caused
by the subsequent dysfunction of BAK1/BON1 suppressed cell
death, which in turn activates the PEPR signaling pathway to
reversely trigger cell death and to retain immunity to biotrophic
pathogens (Yamada et al., 2016).

BAK1 and Effector Triggered PCD
Lines of evidence suggest that PCD triggered by perturbation
of BAK1 functions shows similarity to R-protein-mediated
PCD. SALICYLIC ACID INDUCTION-DEFICIENT (SID2)
and ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5), two
chloroplast-localized components of the salicylic acid (SA)-
mediated ETI pathway, were also proposed to contribute to
cell death by BAK1/BKK1 mutations, thereby regulating PCD;
the sid2 and eds5 mutations suppress cell death in bak1-3bkk1-
1 mutants, and this cell death is dependent on light and
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SA (Gao et al., 2017). In line with this finding, the over-
expression of BAK1 resulted in the accumulation of SA and
hydrogen peroxide, as well as the enhanced expression of
BON1, BIRs, and SOBIR, the processes strongly associated with
spontaneous cell death (Kim et al., 2017). BON1, functioning
as a negative regulator of R-mediated resistance, interacts with
both BAK1 and BIR1 to interfere with the immune response
and PCD (Wang et al., 2011). Furthermore, enhanced cell
death in bir1 plants was found to be partially dependent on
PHYTOALEXIN DEFICIENT4 (PAD4) and EDS1, which is
required for TIR NLR signaling. This suggests that BIR1 might
be guarded by plant resistance (R) protein signaling (Gao et al.,
2009).

BAK1 seems also to participate in other PCDs during
ETI. Two effectors from the tomato pathogen Cladosporium
fulvum, Avr4 and Avr9, are recognized by the R proteins Cf-
4 and Cf-9, respectively, which in turn recruit BAK1 and
subsequently trigger the HR and immunity against C. fulvum
(Postma et al., 2016). The BAK1/SOBIR1-dependent pathway
was also shown to mediate the interaction between the tomato
resistance gene I, a LRR-RLP involved in the immunity to
Fusarium oxysporum f. sp. lycopersici (Fol), and the FolAvr1
effector, triggering necrosis in N. benthamiana (Catanzariti
et al., 2017). Moreover, BAK1 positively regulates the NLR
protein Mi-1 in resistance and cell death upon potato aphid
infection in the tomato (Peng and Kaloshian, 2014; Peng et al.,
2016).

POSSIBLE MECHANISMS UNDERLYING
CONTRADICTORY FUNCTION OF BAK1
IN PCD

As reviewed above, BAK1 is involved in different forms of
PCDs. However, it is intriguing that BAK1 could serve as both
positive and negative regulators of PCDs. The question about
how BAK1, as a single RLK, is capable of controlling different
PCD processes oppositely remains open to answer. Here, we
would like to summarize the possible molecular mechanisms that
might explain the complicated function of BAK1 in PCD.

It is possible that the output specificity of BAK1 functions in
different PCD processes is determined by the ligand specificity
of corresponding RLKs. Therefore, the effects of disrupted
BAK1 functioning are likely dependent on the role of BAK1
in that specific complex. BAK1 also interacts with other RLKs
including BIR1, BIR2,and SOBIR1. The balance between different
BAK1-incorporated complexes is obviously influenced by the
abundance of BAK1. These interacting RLKs might keep each
other under tight control to ensure proper activation of PCDs.
It has been shown that both BIR1 and BIR2 appear to be
essential in structurally keeping BAK1-regulated PCD under tight
control in the case of no ligand binding, thus interfering the
unwanted interaction between BAK1 and different PRRs (Ma
et al., 2017). Moreover, a specific ligand stimulates the release
of BIR2-sequestered BAK1, which subsequently enhances the
interaction complex formation between BAK1 and PRR, FLS2,
EFR, BRI1, PEPR1, etc., (Halter et al., 2014). Interestingly, BIR1,

BIR3, and BIR4 all formed a stable heterodimeric complex
with BAK1 at pH 6.0 through their ecto-domains, and flg22-
bound FLS2 outcompeted BIR1LRR for binding to BAK1LRR

(Ma et al., 2017). On the other hand, upon pathogen infection,
bak1bir3 showed increased pathogen-inducible PCD (Imkampe
et al., 2017); upon ligand perception, overexpression of BIR2
suppressed the BAK1/FLS2 (PRR) complex formation (Halter
et al., 2014). Moreover, BAK1 overexpression results in runaway
cell death, and simultaneous overexpression of BRI1 and BAK1
suppresses this cell death, suggesting that activation of the BAK1–
PRR signaling complex upon ligand binding is essential to
suppress this type of auto-immune PCD (Belkhadir et al., 2012;
Halter et al., 2014).

The downstream signaling events upon activation of PRR–
BAK1 complexes also show specificity to ligands. A very recent
study suggests that the specificity might be determined by
the phosphosite code in BAK1. They identified multiple BAK1
phosphosites specific to the signaling processes, e.g., immunity
or growth, but not others (Perraki et al., 2018). In this case,
the mutation of multiple key phosphorylation sites in BAK1,
including S602D/T603D/S604D or S612D, resulted in impaired
PTI responses, including flg22-induced MAPK signaling and
immunity to Pst DC3000, but dispensable for BR-signaling.
Moreover, the mutation of Y403 in the BAK1 C-terminal
attenuated the phosphorylation and BAK/EFR signaling complex
formation upon elf18 elicitation (Perraki et al., 2018). Other
studies also support that the intracellular domains have separable
functions in mediating different signaling processes. In a bir1
suppressor screen using bir1-1pad4-1 mutant, sobir7-1, a bak1
allele with a nonsense mutation within the carboxyl-terminal
tail (CT) of BAK1, was identified (Liu et al., 2016; Wu et al.,
2018). A series of genetic evidence proved that the CT domain of
BAK1 was essential for its kinase activity to trigger PTI response,
but dispensable for controlling cell death and BR signaling (Liu
et al., 2016; Wu et al., 2018). It is worth investigating how
the differential regulation of PCD involving BAK1 might also
attribute to the diverse phosphosite codes activated.

As discussed above, the PCD triggered by disruption of
BAK1 might be mediated by certain R proteins, which is a
well-accepted theme that host protein is guarded by cognate R
proteins. If this is true, the cell death caused by BAK1/BKK1
loss-of-function does not imply they are negative regulators
of PCD, but instead that they are such important signaling
components that their disruption is monitored by R-protein.
Some cases whereby R proteins guard important host signaling
components have been reported. For example, RIN4 is guarded
by two NLRs, RPM1 and RPS2, and disruption of the MAP
kinase cascade, MEKK1/MKK5/MPK4, will trigger the activation
of SUMM2 R-protein and cell death (Zhang et al., 2012).
Moreover, PAD4-dependent immunity is activated in bir1-1,
raising the possibility that BIR1 is guarded by R gene, too (Liu
et al., 2016). Indeed, it has been proposed that BAK1/BIR1 is
probably guarded by two or more R proteins in the absence of
pathogens. Mutation of BAK1 or BIR1 results in the activation
of those guard R proteins, which subsequently trigger different
signaling pathways, e.g., disease resistance and/or PCD, mediated
by PAD4 and SOBIR1, respectively, (Gao et al., 2009). In
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line with this finding, SRF3, an LRR-RLK structurally similar
to BIR2, has been reported to regulate hybrid incompatibility
along with the R gene RPP1, during which necrotic PCD,
enhanced SA levels and immune response were found. This
illustrates a model that SRF3 is guarded by RPP1 to control
incompatibility in the absence of pathogens (Alcazar et al.,
2010).

Nevertheless, as a center component involved in various
signaling pathways, it appears that an optimal amount of
BAK1 should be strictly maintained to optimize the fitness of
growth/development and disease resistance/PCD. While being
tightly guarded by and released from R proteins, and responding
to appropriate ligands to interact selectively with different PRRs,
BAK1 has evolved multiple strategies to cooperate with diverse
signaling components to fine-tune its function in regulating
different types of PCD.

REGULATION OF BAK1-MEDIATED PCD

Several studies have suggested that the perception of PAMPs
by the PRRs and the subsequent activation of downstream
signaling are associated with multiple regulation events,
especially PTMs (such as phosphorylation, ubiquitination,
glycosylation), and protein endocytosis (Lu et al., 2011;
Kadota et al., 2014; Lin et al., 2014). The importance
of some of these processes has also been demonstrated
to be associated with the functional dynamics of BAK1-
mediated PCD (Bender et al., 2015; de Oliveira et al., 2016;
Table 1).

As discussed above, BAK1 signaling specificity might be
determined by the code of phosphosites (Perraki et al., 2018).
The phosphorylation of non-RD plasma membrane-localized
LRR-RKs, including FLS2 and EFR, by BAK1 is essential for
inducing PTI upon the perception of PAMPs, which is different
from that of RD-kinase BRI1 phosphorylation by BAK1 (Schulze
et al., 2010; Schwessinger et al., 2011). In this case, the bak1-5
mutant, a novel mutant BAK1 allele carrying a single amino acid
substitution, C408Y, in the BAK1 cytoplasmic kinase domain, is
impaired in PTI signaling but not in cell death regulation. Upon
ligand elicitation, however, BAK1-5 kinase activity is required
for the formation of BAK1/FLS2 or BAK1/EFR PRR complexes.
Moreover, the bak1-5 line becomes insensitive to SCFE1, and
did not show enhanced PCD. This was different from bak1-
3 and bak1-4 mutants, which are susceptible to B. cinerea and
A. brassicicola (Kemmerling et al., 2007). These findings strongly
support the mechanistically uncoupled and phosphorylation-
dependent activation function for BAK1 in regulating distinct
signaling pathways, e.g., BR-associated development, PCD and
PTI responses (Schwessinger et al., 2011; Monaghan and Zipfel,
2012).

BAK1 is also capable of phosphorylating BIK1 at tyrosine
and serine/threonine sites, as evidenced by the requirement for
kinase activity and the presence of three tyrosine residues (Y150,
Y243, and Y250) in BIK1 for its function in immunity (Lin
et al., 2014). Furthermore, upon PAMP elicitation, BIK1 could
directly interact with and phosphorylate RBOHD to control the

ROS burst and promote resistance to bacterial pathogens (Kadota
et al., 2014).

In addition to phosphorylation, other PTM processes
participate in the regulation of BAK1 activity. For instance, the
PAMP flg22 triggers the recruitment of a pair of plant U-box
E3 ligases, PUB12 and PUB13, to FLS2, which is subsequently
degraded by ubiquitination. Interestingly, FLS2 ubiquitination
by PUB12/13 requires the BAK1-mediated phosphorylation of
FLS2 (Lu et al., 2011). Since it has been shown that disruption
of PUB13 caused a spontaneous cell death phenotype, which
was also enhanced under high humidity conditions (Li W. et al.,
2012), it is reasonable to speculate that an ubiquitination event
might also be involved in BAK1-mediated PCD.

Using the BAK1 cytoplasmic domain as bait to screen a
yeast two-hybrid library, a glutaredoxin (GRX) C2 (AtGRXC2)
protein was characterized to be a BAK1-interacting component.
AtGRXC2 can S-glutathionylate and form a heterodimer with
the BAK1 cytoplasmic domain in vitro in the presence of either
glutathione disulfide or glutathione plus H2O2, thus inhibiting
BAK1 kinase activity (Bender et al., 2015). BAK1 kinase activity
was enhanced by the mutation of an AtGRXC2-targeted essential
glutathionylation site, Cys408 to tyrosine, in a bak1-5 background
(Bender et al., 2015). Although it remains to be determined
whether BAK1 glutathionylation is directly associated with its
role in the regulation of PCD and immunity, this finding reveals
a novel regulatory mechanism of BAK1 signaling by redox status
and glutathionylation.

The process of endoplasmic reticulum (ER)-mediated protein
quality control (ERQC) and glycosylation were shown to be
important for BAK1-mediated PCD as well. To identify the
suppressor of cell death that silences BAK1/SERK4 (BKK1)
and BIR1, a virus-induced gene silencing (VIGS)-based genetic
screen was carried out in the bak1-4serk4-1 and bir1 mutant
backgrounds, leading to the identification of a mutant with a
defective STAUROSPORIN AND TEMPERATURE SENSITIVE3
(STT3a) protein (de Oliveira et al., 2016). The stt3a-2 mutation
significantly suppresses cell death, H2O2 accumulation, and PR1
and PR2 expression in the bak1-4serk4-1 and bir1 backgrounds,
providing strong genetic evidence for the positive role of STT3a
in triggering PCD and the immune response (de Oliveira et al.,
2016). Interestingly, several specific ERQC components, such as
ERdj3b and SDF2, seem to be involved in triggering cell death in
the bak1-4/serk4-1 mutants (Sun et al., 2014). On the other hand,
using an RNA-seq analysis, one of the most highly activated gene
families in bak1-4/serk4-1 was found to be the CRKs, including
CRK4 and CRK5, which strongly elicit cell death when transiently
overexpressed in N. benthamiana (de Oliveira et al., 2016).
Moreover, a biochemical analysis showed that CRK4 and CRK5
are likely the targets of glycosylation, as revealed by an obvious
migration shift under electrophoresis. Given the known function
of STT3 as a catalytic subunit of oligosaccharyltransferase in
protein N-glycosylation, these findings suggest that STT3a-
mediated N-glycosylation and ERQC are essential for CRK4-
mediated PCD. It remains to be determined whether CRK4 and
CRK5 are necessary and sufficient for the cell death in bak1-
4 serk4-1 mutant plants (de Oliveira et al., 2016). This result is
further supported by the finding that CRK28 is also a glycosylated
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transmembrane protein found in a PRR–RLK complex (Yadeta
et al., 2017). Intriguingly, it is noted that a subset of LRR-RK-type
PRRs, including EFR and Xa21, specifically require this ERQC
pathway in their proper folding and maturation (Saijo, 2010;
Beck et al., 2012), implying the possible recruitment of a similar
LRR-RK to mediate cell death in the absence of BAK1.

In addition to the aforementioned ERQC pathway and
glycosylation, nucleocytoplasmic trafficking is also essential to
BAK1-mediated PCD. sbb1-1, another suppressor of cell death
in bak1-4 serk4-1, was identified in a genetic screen (Du et al.,
2016). SBB1 encodes a nucleoporin (NUP) 85-like protein that
is a member of the NUP107-160 sub-complex, the largest sub-
complex known to be highly conserved in vertebrates and
plants. Knocking out individual NUP members including SBB1
(NUP85), SEH1, NUP160, or NUP96 fully suppresses the cell
death phenotype of the bak1-4 and serk4-1 mutants. The sbb1
mutation reduced endogenous SA levels and the sbb1 mutant
suppressed cell death in bak1-4 and serk4-1, and expression
of SBB1 driven by its own promoter in bak1-3 bkk1-1 sbb1-2
can recapitulate cell death phenotype, suggesting that SBB1-
mediated cell death in bak1-4serk4-1 is SA-dependent (Du
et al., 2016). Interestingly, co-immunoprecipitation coupled
with LC-MS/MS analyses identified numerous SBB1-interacting
proteins, including DEAD-box RNA helicase 1 (DRH1), which
was found to directly associate with SBB1. Genetic data
demonstrated that SBB1-DRH1 is required for cell death
in bak1-4 and serk4-1. Consistent with the observation
that DRH1 is localized at the nucleus and that SBB1
functions in mRNA export, the SBB1–DRH1 complex-mediated
nucleocytoplasmic trafficking process likely contributes to
BAK1/SERK4-controlled cell death, which might be exerted
through its interference in the export of SA-related mRNAs (Du
et al., 2016).

Endocytosis is also involved in BAK1-mediated PCD. For
example, interaction of BAK1 with LeEix1 results in the
endocytosis of LeEix2, whereas LeEix1 interferes with the LeEix2-
triggered immune response and HR, which was impaired in the
BAK1-silenced plants (Bar et al., 2010). This finding reveals the
key role of BAK1 in regulating Eix-induced PCD and the PTM of
the LRR-RLP receptor upon pathogen infection.

CONCLUSION AND PERSPECTIVES

Cell death is an essential process for both mammals and plants.
Despite the remarkable progress made in the elucidation of
the occurrence and features of PCD, more research is needed
to determine how host plants perceive and transduce external
signals to activate PCD. Similar to animals, PCD is deployed by
plants to facilitate cell differentiation during development or to
promote survival by enabling plants to adapt to environmental
stresses and defend against pathogens. Accumulating evidence
points to the central role of BAK1 as a co-receptor or signaling
regulator of multiple receptor kinases and RLPs in different
types of PCD. BAK1 likely exerts its function via deploying
its specific phosphorylation sites to phosphorylate PCD-related
RLKs or RLPs (Perraki et al., 2018), differentiating responses

to the elicitation by various ligand bindings, and to distinctly
modulate PCD.

BAK1 has been intensively investigated for its function as the
key component of the BR-mediated signaling pathway and the
RLK-mediated PTI signaling pathway; thus, it is reasonable to
theorize that dPCD (meristem cell death) and bPCD converge at
BAK1. It has been proposed that calcium signaling (for example,
via the CDPKs) (Boursiac et al., 2010; Gao et al., 2013a) and
ROS production are involved in the regulation of both dPCD and
bPCD (Gechev and Hille, 2005; Boursiac et al., 2010; Petrov et al.,
2015; Serrano et al., 2015). Given the pivotal role of BAK1 as a
co-receptor of the PTI signaling complex in triggering PCD, it is
tempting to speculate that BAK1 may function upstream of ROS
and/or calcium signaling to regulate the diverse types of PCD,
probably through the activation of a MAPK signaling cascade (He
et al., 2007; Kemmerling et al., 2007; Jeworutzki et al., 2010; Gao
et al., 2013b).

PCD is considered to be a hallmark of the ETI response. Upon
ETI activation, PCD can also be triggered via CDPK-mediated
signaling, likely through the phosphorylation of specific WRKY
transcription factors (Gao et al., 2013a); however, it is unclear
whether BAK1 exerts its negative role in controlling PCD as
either a shared core regulator of ETI-triggered PCD or through
distinct mechanisms. There is accumulating evidence to suggest
that BAK1 could be targeted by multiple effectors (Macho and
Zipfel, 2014); for instance, by AvrPtoB (Shan et al., 2008) and
HopF2 (Zhou et al., 2014) from Pseudomonas syringae, and Avr3a
from P. infestans (Chaparro-Garcia et al., 2011), resulting in
disruption of PTI signaling as well as that of PCD suppressed
by BAK1. Furthermore, SOBIR1 associates with or interacts with
several R proteins (Qi et al., 2011; Ma and Borhan, 2015); thus,
it is possible that activation of ETI-associated PCD might be
attributed, at least to some extent, to the negative regulation
by BAK1 and BAK1/SOBIR1 receptor complexes. One should
be cautious, however, that BAK1 targeting by different effectors
leading to enhanced cell death may not be pertinent to all forms
of BAK1. This is because BAK1-5 is a hypoactive kinase and the
bak1-5 mutant is not impaired in cell death control (Schwessinger
et al., 2011), whereas the kinase domain of BAK1 seems to be
essential for AvrPtoB targeting structurally (Cheng et al., 2011).

PCD functions at essential steps in development and aging as
well as in abiotic and biotic stresses. It seems that plants may
deploy the BAK1 signaling complex to coordinate different types
of PCD and thus control the trade-off between development and
immunity, possibly via subverting hormone signaling, interacting
with R proteins, and integrating distinct PTM processes. Future
research should center on exploring how host plants control PCD
by orchestrating BAK1 homeostasis, which may also provide
practical implications for crop improvement. Moreover, despite
the fact that animal apoptosis-like cell death has not been fully
addressed in plants, recent evidence has suggested the presence
and functional importance of animal-type apoptosis in plant
PCD (Dickman et al., 2017). Another research direction will
therefore involve clarification of the relationship between BAK1-
regulated PCD and apoptosis-like cell death, as well as other cell
death processes, such as autophagy, under different stresses or
environmental stimuli.
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