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The creation of intergeneric somatic hybrids between Citrus and Poncirus is an efficient
approach for citrus rootstock breeding, offering the possibility of combining beneficial
traits from both genera into novel rootstock lineages. These somatic hybrids are also
used as parents for further tetraploid sexual breeding. In order to optimize these latter
breeding schemes, it is essential to develop knowledge on the mode of inheritance in
the intergeneric tetraploid hybrids. We assessed the meiotic behavior of an intergeneric
tetraploid somatic hybrid resulting from symmetric protoplast fusion of diploid Citrus
reticulata and diploid Poncirus trifoliata. The analysis was based on the segregation
patterns of 16 SSR markers and 9 newly developed centromeric/pericentromeric SNP
markers, representing all nine linkage groups of the Citrus genetic map. We found strong
but incomplete preferential pairing between homologues of the same ancestral genome.
The proportion of gametes that can be explained by random meiotic chromosome
associations (τ) varied significantly between chromosomes, from 0.09 ± 0.02 to
0.47 ± 0.09, respectively, in chromosome 2 and 1. This intermediate inheritance
between strict disomy and tetrasomy, with global preferential disomic tendency, resulted
in a high level of intergeneric heterozygosity of the diploid gametes. Although limited,
intergeneric recombinations occurred, whose observed rates, ranging from 0.09 to
0.29, respectively, in chromosome 2 and 1, were significantly correlated with τ. Such
inheritance is of particular interest for rootstock breeding because a large part of the
multi-trait value selected at the teraploid parent level is transmitted to the progeny, while
the potential for some intergeneric recombination offers opportunities for generating
plants with novel allelic combinations that can be targeted by selection.

Keywords: Citrus, somatic hybrid, tetraploid, disomic, tetrasomic, intermediate inheritance, SSR markers, SNP
markers
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INTRODUCTION

Polyploidization is a major evolutionary pathway (Ramsey
and Schemske, 2002; Adams and Wendel, 2005; Soltis et al.,
2009) with important implications for breeding. In plants,
polyploid lineages arise naturally through the union of
unreduced gametes (Harlan and deWet, 1975; Ramsey and
Schemske, 1998) and chromosome doubling of somatic cells
(Aleza et al., 2011). They can also be artificially produced by
treatment of cell tissue with colchicine (Aleza et al., 2009)
or somatic hybridization (Grosser et al., 2000). Natural
polyploidization is often associated with hybridization
between species, resulting in allopolyploidy. Allopolyploids
typically show strict preferential pairing in meiosis, resulting
in disomic inheritance, without an opportunity for interspecific
recombination (Soltis and Soltis, 2000; Pairon and Jacquemart,
2005). In allotetraploids, disomic inheritance leads diploid
gametes to display interspecific heterozygosity throughout
the genome. However, it has been recognized that even
allopolyploids that combine strongly diverged parental genomes
may have occasional nonhomologous chromosome pairing,
leading to nonstrict disomic inheritance and intergenomic
recombination (Stebbins, 1947; Sybenga, 1994, 1996; Udall
and Wendel, 2006; Stift et al., 2008; Jeridi et al., 2012).
Differential chromosome pairing affinities is therefore an
essential component determining species evolution in natural
polyploid populations. It is also a key parameter to design
efficient polyploid breeding strategies, as it strongly impacts
the inheritance of chromosome fragments and agronomical
traits. Molecular marker analysis is a powerful approach to study
the genetic structures of gametes produced by allopolyploid
organisms, and in turn to estimate the preferential pairing
pattern and its impacts on genome fragment inheritance and
recombination (Allendorf and Danzmann, 1997; Barone et al.,
2002; Jannoo et al., 2004; Bousalem et al., 2006; Landergott et al.,
2006).

In citrus, polyploidy has been described to improve adaptation
to different stresses and resilience (Mouhaya et al., 2010; Podda
et al., 2013; Allario et al., 2013; Tan et al., 2015; Tan et al.,
2017; Dutra de Souza et al., 2017; Oliveira et al., 2017; Oustric
et al., 2017, 2018), and several teams worldwide have been
developing rootstock breeding at the tetraploid level (Grosser
and Chandler, 2000; Grosser et al., 2000, 2015; Ollitrault et al.,
2000, 2007; Guo et al., 2007; Grosser and Gmitter, 2010; Dambier
et al., 2011; Guerra et al., 2016). Many of these programs
focus on combinations of Citrus species with Poncirus, a related
genus. Poncirus and Citrus species are sexually compatible
(Spiegel-Roy and Goldschmidt, 1996). However, molecular
phylogenic studies based on whole genome resequencing data
have demonstrated substantial genetic differentiation (Carbonell-
Caballero et al., 2015; Wu et al., 2018). Poncirus has agriculturally
useful traits such as cold adaptation, tolerances to Phytophthora
species and nematodes, and resistance to the citrus tristeza
virus (CTV; Yang et al., 2001). It has also been described
to provide some tolerance to Huanglongbing, a devastating
citrus disease caused by the phloem bacterium Candidatus
Liberibacter sp. (Stover et al., 2010). However, Poncirus suffers

iron chlorosis on alkaline soils and it is susceptible to
salinity, which limits its use in some areas, particularly in
the Mediterranean Basin (Spiegel-Roy and Goldschmidt, 1996).
Rootstock breeding programs attempt to combine beneficial
Poncirus traits with abiotic stress tolerance traits present in
Citrus species. Although some interesting diploid intergeneric
sexual hybrids [e.g., citrange (P. trifoliata × C. sinensis) and
citrumelo (P. trifoliata × C. paradisi)] have been produced,
the long generation times, partial apomixes, and segregation of
beneficial allelic combinations due to the high heterozygosity
of parental genotypes (Herrero et al., 1996; Ollitrault et al.,
2003; Barkley et al., 2006; Wu et al., 2018) limit the efficiency
of conventional diploid breeding. Somatic hybridization is an
efficient alternative for citrus rootstock breeding as it allows
breeders to combine favorable parental genes regardless of their
heterozygosity level (Ollitrault et al., 1998; Grosser and Gmitter,
2010; Dambier et al., 2011; Ruiz et al., 2018). In citrus, somatic
hybridization has also been successfully applied to diversify the
tetraploid gene pool used as parent for triploid breeding (Grosser
et al., 2000; Ollitrault et al., 2007, 2008) and to generate hybrids
(Aleza et al., 2016b). The “Tetrazyg” approach (Grosser and
Gmitter, 2010) was introduced to breed new tetraploid rootstock
by sexual hybridization using selected allotetraploid somatic
hybrid rootstock as parent material. In order to optimize the
efficiency of the “Tetrazyg” strategy, it is essential to develop
knowledge on the mode of inheritance in the allotetraploid
hybrids.

Previous studies on tetraploid citrus revealed different meiotic
behavior. Weak or no preferential pairing of homologous
chromosomes (i.e., mostly tetrasomic inheritance) with
bivalents and quadrivalent meiotic configurations was
observed for a mandarin + lemon somatic hybrid (Kamiri
et al., 2011), for a somatic hybrid between tangelo and
pummelo (Xie et al., 2015), and doubled-diploid clementine
(Aleza et al., 2016a). By contrast, the doubled-diploid
“Mexican” lime had predominantly disomic segregation
(Rouiss et al., 2018). However, no data were available on the
inheritance mode of tetraploid Citrus-Poncirus intergeneric
hybrids.

The aim of the present study was to investigate the mode
of inheritance in a tetraploid intergeneric somatic hybrid called
Flhorag1 obtained through protoplast fusion between Citrus
reticulata cv “Willowleaf” mandarin and Poncirus trifoliata cv
“Pomeroy” (Ollitrault et al., 2000). This somatic hybrid provided
improved agronomic traits when used as rootstock with sweet
orange (Dambier et al., 2011). For this purpose, a triploid
progeny population (2n = 3x = 27) resulting from “Chandler”
pummelo × Flhorag1 sexual hybridization was genotyped at
19 simple sequence repeat (SSR) and 9 single nucleotide
polymorphism (SNP) loci to infer the allelic constitution of
gametes produced by the somatic hybrid. The likelihood-based
approaches proposed by Stift et al. (2008) for multi allelic
loci and Aleza et al. (2016a) for di-allelic loci in duplex
tetraploid were applied to analyze the meiotic behavior of
Flhorag1. The implications for citrus rootstock breeding are
discussed with a special focus on intergeneric heterozygosity
restitution.
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MATERIALS AND METHODS

Plant Materials
An intergeneric somatic hybrid between a diploid (2n = 2x = 18)
Citrus reticulata Blanco (“Willowleaf” mandarin SRA 133,
hereafter called WLM) and a diploid (2n = 2x = 18)
Poncirus trifoliata L. (“Pomeroy” trifoliate orange SRA 1074,
hereafter called PON) was previously obtained by protoplast
electrofusion (Ollitrault et al., 2000). To assess the inheritance
of the tetraploid somatic hybrid (2n = 4x = 36; hereafter
called Flhorag1), we performed a cross with diploid Citrus
maxima (Burm.) Merr (2n = 2x = 18) (“Chandler” pummelo
SRA 608, hereafter called CHA), using Flhorag1 as pollen
donor. The pollen was collected on the mother tree of
Flhorag1 (the plant directly regenerated from protoplast
fusion).

CHA was chosen because it is self-incompatible, not
apomictic, and it is genetically well differentiated from both
WLM and PON. Cross was performed at the San Giuliano
Research Station (Corsica, France). Recovered mature seeds were
germinated in vitro in MT medium (Murashige and Tucker,
1969) supplemented with 30 g l−1 sucrose and 1 mg l−1 GA3
(Ollitrault et al., 1996). The obtained plants were grafted on
“Volkamer” lemon (C. limonia Osbeck) and further grown in a
growth chamber.

Flow Cytometry and Cytogenetic
Analyses
The ploidy of the progeny was determined by flow cytometry
and confirmed by chromosome counts. For flow cytometry,
approximately 0.5 cm2 of plantlet leaf and a similar amount of
leaf tissue from a diploid reference C. madurensis (2n = 2x = 18)
were chopped with a sharp razor blade in 250 µl of extraction
buffer (Partec Cystain UV PreciseP) to isolate intact nuclei. After
filtering the resulting suspension (30 µm pore size), 800 µl of
DAPI (4-6-diamine-2-phenylindol) staining buffer was added
(Partec, Cystain UV Precise P Staining Buffer). Samples were
analyzed with a PA-I flow cytometer (Partec, Germany). We
followed the protocol of D’Hont et al. (1996) for chromosome
preparations. Briefly, fresh young leaf tissues were treated in
0.04% hydroxyquinoline for 4 h at room temperature and fixed
for 48 h in 3:1 ethanol:acetic acid and stored at 4◦C in 70%
ethanol. The preparations were then treated for 20 min in
5N HCl and washed with distilled water. Finally, the tissue
was deposited on microscope slides, stained with a drop of
DAPI staining buffer (Partec, Cystain UV Precise P Staining
Buffer), and squashed. Chromosomes were counted under
an Eclipse 80i fluorescence microscope (Nikon Instruments,
France).

DNA Extraction
DNA was extracted from leaves using a modified mixed alkyl
trimethyl ammonium bromide (MATAB) procedure (Gawel and
Jarret, 1991). The DNA concentration was determined using
the Hoechst 33258 (Sigma Chemical Co., MO, United States)

protocol (Sambrook and Russell, 2006). Samples were diluted
with MQ sterile water and stored at−20◦C until use.

SSR Amplification
From previously identified, characterized, and mapped SSR
loci (Froelicher et al., 2008; Luro et al., 2008; Ollitrault
et al., 2010, 2012), we selected 19 loci (Table 1) that (i)
were polymorphic between WLM and PON (diploid parents
of the tetraploid somatic hybrid) and the seed parent CHA,
and (ii) represented each of the nine linkage groups of
the clementine genetic map (Ollitrault et al., 2012). Primers
were labeled with WELLRED fluorochrome PA-2(dye2), PA-
3(dye3), or PA-4(dye4) (Beckman-Coulter, CA, United States)
and synthesized by Sigma-Aldrich (France). Among the selected
markers, the mCrCIR02F12 locus was known to have a
frequent null allele in Poncirus accessions (unpublished data),
and the PON parent was suspected to be heterozygous
(A0).

PCR reactions were performed in 20 µl with 1× Taq
buffer, 1.5 mM MgCl2, 0.8 U Taq DNA polymerase, 0.5 ng/µl
template DNA, 0.2 mM dNTPs, 0.4 µM forward primer, and
0.4 µM reverse primer in an AG Primus 96 plus thermocycler
(MWG, Germany). The PCR program consisted of 5 min initial
denaturation (94◦C), followed by 40 cycles of 30 s denaturation
(94◦C), 1 min primer annealing (50 or 55◦C depending on the
primers, Table 1), and 45 s extension (72◦C), and a final extension
of 4 min (72◦C). Fragment analysis and allele calling were
done by capillary electrophoresis using the CEQ 8800 genetic
analyzer and software (Beckman Coulter, CA, United States). As
CHA is totally differentiated from the WLM + PON tetraploid
parent, the diploid gamete genotypes were directly inferred from
the triploid hybrid genotypes by removing the specific CHA
alleles.

Centromeric SNP Development and
Analysis
We have developed new SNP markers in centromeric region
of the nine citrus chromosomes. “Pomeroy” trifoliate, “Willow
leaf” mandarin and “Chandler” pummelo whole genome
resequencing data (available, respectively, with SRX2442480,
SRX372685, and SRX372688 SRA number in NCBI database)
were mapped on the haploid clementine reference genome
(Wu et al., 2014) using “BWA-MEM, v0.7.12-r1039” (Li and
Durbin, 2010) and variant calling was performed with GATK
(McKenna et al., 2010). To be able to infer the intergeneric
gamete structure from the genotyping of the triploid issued
from diploid Chandler diploid X (Willow Leaf + Pomeroy)
tetraploid hybridizations, we selected SNPs homozygous for
“Willow leaf” (AA), “Chandler” (AA), and “Pomeroy” (BB) in
gene sequences of the identified centromeric/pericentromeric
regions (Wu et al., 2014; Aleza et al., 2015). The genetic distances
to the centromeres were inferred from available genetic mapping
data (Ollitrault et al., 2012; Aleza et al., 2015) considering
the flanking markers in the physical sequence (Wu et al.,
2014). We were able to select efficient markers located at
less than 1 cM for seven chromosomes, at less than 2 cM
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TABLE 1 | Characteristics of selected SSR markers used for the Willowleaf mandarin + Pomeroy Poncirus somatic hybrid (Flhorag1) allelic inheritance.

Locus EMBL Linkage Group Primer Sequence (5′–3′) Tm (C◦)

CiBE5055 ET111355 1 F:AACAGTGGTTCTGGGAAATAG 55

R:GGTGGTCTCAAAGTCATCATC

MEST431 FC883898 1 F: GAGCTCAAAACAATAGCCGC 55

R: CATACCTCCCCGTCCATCTA

mCrCIR02D09 FR677569 2 F:AATGATGAGGGTAAAGATG 55

R:ACCCATCACAAAACAGA

MEST46 FC901824 2 F: AACCAGAATCAGAACCCGA 55

R: GGTGAGCATCTGGACGACTT

mCrCIR02G12 FR677575 3 F:AAACCGAAATACAAGAGTG 55

R:TCCACAAACAATACAACG

mCrCIR02D04b FR677564 4 F:CTCTCTTTCCCCATTAGA 50

R:AGCAAACCCCACAAC

mCrCIR03D12a FR677577 4 F:GCCATAAGCCCTTTCT 50

R:CCCACAACCATCACC

mCrCIR07D06 FR677581 4 F:CCTTTTCACAGTTTGCTAT 55

R:TCAATTCCTCTAGTGTGTGT

mCrCIR03F05 FR692364 4 F:CTAAGGAAGAGTAGAGAGCA 50

R:TAAAATCCAAGGTTCCA

mCrCIR01F08a AM489737 5 F:ATGAGCTAAAGAGAAGAGG 50

R:GGACTCAACACAACACAA

mCrCIR07E12 AM489750 5 F:TGTAGTCAAAAGCATCAC 50

R:TCTATGATTCCTGACTTTA

mCrCIR02F12 FR677570 6 F:GGCCATTTCTCTGATG 55

R:TAACTGAGGGATTGGTTT

mCrCIR02D03 FR692360 7 F:CAGACAACAGAAAACCAA 55

R:GACCATTTTCCACTCAA

mCrCIR07E05 AM489749 7 F:GGAGAACAAAACACAATG 50

R:ATCTTTCGGACAATCTT

mCrCIR02A09 FR677568 8 F:ACAGAAGGTAGTATTTTAGGG 50

R:TTGTTTGGATGGGAAG

mCrCIR07B05 AM489747 8 F:TTTGTTCTTTTTGGTCTTTT 50

R:CTTTTCTTTCCTAGTTTCCC

mCrCIR02G02 FR677572 8 F:CAATAAGAAAACGCAGG 55

R:TGGTAGAGAAACAGAGGTG

mCrCIR07C09 AJ567410 9 F:GACCCTGCCTCCAAAGTATC 55

R:GTGGCTGTTGAGGGGTTG

mCrCIR02B07 AJ567403 9 F:CAGCTCAACATGAAAGG 50

R:TTGGAGAACAGGATGG

EMBL, accession number in the EMBL–EBI database (https://www.ebi.ac.uk/).

for chromosome 5 and less than 5cM for chromosome 8
(Table 2). The selected SNPs were analyzed with KASParTM

Genotyping System (a competitive, allele-specific dual Förster
resonance energy transfer–based assay). Primers were designed
by LGC Genomics from the SNP locus flanking sequence
(Supplementary Material 1). Detailed explanation on the
specific conditions and reagents used can be found in Cuppen
(2007). Identification of allele dosages in heterozygous triploid
hybrids was carried out on the basis of relative allele signals, as
described by Cuenca et al. (2013). For the nine SNP markers, the
allelic configuration was as follow: “Chandler” (AA)× ”Flhorag1”
(AABB) producing AAA, AAB, and ABB triploid progenies with
direct inference of the “Flhorag1” diploid gametes (AA, AB, and
BB, respectively).

Data Analysis
Pluri-allelic SSR markers: first we tested if the SSR allele
frequencies observed in gametes deviated from those expected
based on the parental genotypes (chi-square goodness-of-fit
test), which would indicate the presence of null alleles or
selection against particular alleles. Subsequently, we applied a
likelihood based approach that simultaneously estimates two
parameters: (1) τ – the proportion of gamete allelic constitutions
that can be explained by random tetrasomic segregation and
(2) β – the double reduction frequency relative to τ (Stift
et al., 2008). This was done for each preferential pairing
scenario (e.g., for a marker displaying the ABCD genotype
for WLM + PON, we evaluated three pairing scenarios: A
with B, C with D; A with C, B with D; A with D, B
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TABLE 2 | Location of nine centromeric/pericentromeric SNP loci fully
distinguishing “Pomeroy” poncirus from “willow leaf” mandarin and “Chandler”
pummel.

Marker Scaffold Position SNP Gene ID D/Cent (cM)

P1_16582061 1 16582061 [C/T] Ciclev10007229m.g <1

P2_19903193 2 19903193 [T/C] Ciclev10014147m.g <1

P3_16287238 3 16287238 [T/C] Ciclev10024301m.g <1

P4_9505439 4 9505439 [A/G] Ciclev10031824m.g <1

P5_20142568 5 20142568 [T/A] Ciclev10000575m.g <2

P6_3130249 6 3130249 [G/A] Ciclev10011214m.g <1

P7_15458045 7 15458045 [A/G] Ciclev10025280m.g <1

P8_16631925 8 16631925 [A/T] Ciclev10030352m.g <5

P9_12062066 9 12062066 [C/T] Ciclev10006749m.g <1

SNP positions, gene ID, and flanking position came from the haploid clementine
reference sequence (Wu et al., 2014; https://phytozome.jgi.doe.gov/pz/portal.
html#!info?alias=Org_Cclementina).

with C). For parameter estimation, we used the constrained
non-linear regression (CNLR) function implemented in SPSS
15.0 (SPSS syntax file1). We then used a likelihood ratio
test (LRT) evaluated against a compound distribution of
1/2χ2

0 +
1/2χ2

1 (Self and Liang, 1987) to determine if the
model with the estimated τ explained the data significantly
better than a random null model (i.e., a model with strict
tetrasomic segregation, τ = 1). For loci for which “Flhorag1”
had less than four alleles, we considered the possibility of
null alleles using a G-test for contingency tables to evaluate
the most probable constitution. In case of three alleles, we
compared abc0 and abcc (for parents of the somatic hybrid
genotyped ab and cc), and in the case of two allele aabb,
aab0, abb0, or ab00 (parents of the somatic hybrid aa and
bb).

Di-allelic centromeric/pericentromeric SNP markers: for
centromeric diallelic markers the segregation model for duplex
tetraploid parents (AABB configuration) is greatly simplified
because the double reduction effect can be missed and the
segregation pattern is a direct function of τ. Therefore, for these
markers τ was estimated by the maximum likelihood approach
proposed by Aleza et al. (2016a).

Genetic dissimilarities between diploid gametes were
estimated with the DARwin 6.0 software (Perrier and
Jacquemoud-Collet, 2006) using the “simple matching”
dissimilarity index using the pluriallelic SSRs markers to
integrate intergeneric and intraspecific polymorphisms.

RESULTS

Ploidy Level Determination
The cross between the diploid maternal parent (CHA) and
the tetraploid somatic hybrid (“Flhorag1”) resulted in 63 fully
developed seeds collected from 41 fruits, from which 59
plantlets germinated. Flow cytometry indicated that the plantlets
were triploid, with one tetraploid exception (data not shown).

1http://www.genetics.org/cgi/content/full/genetics.107.085027/DC1

Chromosome counts (Supplementary Material 2) confirmed the
flow cytometry results. The segregation analyses were performed
for the 58 triploid hybrids.

SSR Genotyping
For 15 out of the 19 SSRs markers, allele frequencies observed in
the gametes did not significantly differ from expected frequencies
based on the “Flhorag1” genotype, that is, there was no
segregation distortion. This confirmed the correct determination
of allele doses in the somatic hybrid and the absence of null
alleles. For one marker (mCrCIR02F12), a scenario assuming
the previously suspected presence of a null allele in the PON
genome could explain the observed allele frequencies. Moreover,
the “microsatellite DNA allele counting—peak ratios” (MAC-
PR) method based on relative areas of the peaks of the different
alleles provided additional evidence of a null allele at this
locus.

At the three remaining loci (mCrCIR02D03, mCrCIR07C09,
and mCrCIR03F05), the progeny allele frequencies were
significantly distorted (P< 0.05) and remained so when scenarios
were considered involving null alleles in either WLM or PON
(Table 3). In addition, MAC-PR provided no evidence for null
alleles at these loci. They were excluded from further analyses,
so the segregation analyses were performed with 16 loci with
Mendelian segregation. For these 16 SSR markers, the MAC-
PR analysis of “Flhorag1” confirmed a full addition of parental
(WLM and PON) alleles.

SSR Inheritance in the Flhorag1
Tetraploid Somatic Hybrid
For all 16 analyzed loci, the estimated value of τ (proportion
of gametes that can be explained by random meiotic
chromosome associations) ranged from 0.07 to 0.58
(Figure 1 and Table 4). For each marker, fits between full
tetrasomic inheritance model (τ = 1) and the best fitting
intermediate model were compared. The LRT values were
all highly significant, with p values ranging from 7.56E−09
to 1.78E−02 (Table 4). Preferential pairing was always
between homologous chromosomes (between chromosomes
derived from the same parental genome; i.e., mandarin or
Poncirus).

The double reduction rate could only be estimated at
10 loci. Indeed, for MEST046, MEST431, mCrCIR01F08a,
mCrCIR07B05, and mCrCIR07E05 markers, WLM and
PON were both homozygous with a double homoduplex
conformation (AA, BB). For the mCrCIR02F12 locus, null
alleles prevented double reduction gamete identification.
Double reduction was detected for five loci (mCrCIR02D09,
mCrCIR02G12, mCrCIR03D12a, mCrCIR02A09, and
mCrCIR 02B07) with β estimates ranging from 0.03 to 0.07
(Table 4).

SNP Inheritance in the Flhorag1
Tetraploid Somatic Hybrid
For each SNP locus, “Flhorag1” was heterozygous with
equilibrated allelic doses (AABB). No allelic distortion was
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TABLE 3 | Distribution of inferred diploid gamete genotypes that produced CHA × (WLM + PON) progeny at the 19 studied loci.

Locus Linkage Group Parental Genotypes Inferred Genotypes of Diploid Gametes Allelic Distortion p Value

WLM PON

Segregation with two or three different alleles AA AB AC BB CC BC

CiBE5055 1 BC AA 5 22 28 0 0 3 0.68

MEST431 1 BB AA 5 46 n.a. 7 n.a. n.a. 0.68

mCrCIR02D09 2 AB CC 1 0 25 1 1 30 0.79

MEST46 2 BB AA 2 56 n.a. 0 n.a. n.a. 0.71

mCrCIR02G12 3 CC AB 2 3 25 1 0 27 0.54

mCrCIR02D04b 4 AA BC 5 28 24 0 0 1 0.66

mCrCIR03D12a 4 AA BC 1 28 24 1 1 3 0.66

mCrCIR07D06 4 AB CC 0 0 26 0 6 26 0.54

mCrCIR03F05 4 BB AC 2 27 8 0 4 17 0.02∗

mCrCIR01F08a 5 BB AA 3 50 n.a 5 n.a n.a 0.71

mCrCIR07E12 5 AC BB 0 26 5 2 0 25 0.79

mCrCIR02D03 7 AB AC 1 5 28 1 1 22 1.14E-06∗

mCrCIR07E05 7 BB AA 4 51 n.a. 3 n.a. n.a. 0.85

mCrCIR02A09 8 CC AB 1 1 28 0 2 26 0.87

mCrCIR07B05 8 BB AA 1 55 n.a. 2 n.a. n.a. 0.85

mCrCIR07C09 9 AC BC 1 20 7 1 11 18 0.04∗

mCrCIR02B07 9 AC BB 0 25 3 5 2 23 0.97

Segregation with four different alleles AA AB AC AD BB BC BD CC CD DD

mCrCIR02G02 8 AB CD 0 2 23 7 0 13 12 0 1 0 0.14

Segregation including a null allele AA AB AC A0 BB BC B0 CC C0 00

mCrCIR02F12 6 AB C0 0 3 14 10 0 21 9 0 1 0 0.16

WLM, Citrus reticulata cv Willowleaf mandarin; PON, Poncirus trifoliata cv Pomeroy; Flhorag1, Citrus reticulata cv Willowleaf mandarin + Poncirus trifoliata cv Pomeroy;
A. B. C. D, allele length (A represents the longest allele); 0, null allele. For three of these loci, allelic distortion was observed (∗). Corresponding P values for allelic distortion
are given.

observed for the nine diallelic SNPs. They revealed similar
intergeneric heterozygosity restitution and τ values than the ones
estimated on the same LGs with SSRs (Table 5). Intergeneric
heterozygosity varied between 86% in LGs 1 and 9 to 97% in LG
2. In accordance, the lower τ value (0.11) was inferred for LG2
and the higher (0.42) for LG1 and LG9.

Distribution of τ Variations of SSR and
SNP Loci Among the Different LGs
Loci belonging to the same linkage group (LG) tended to have
similar τ values with significant differences between LGs. LG1
(CiBE5055, MEST431, P1_16582061; τ = 0.47 ± 0.09); LG2
(mCrCIR02D09, MEST046, P2_19903193; τ = 0.09 ± 0.02);
LG3 (mCrCIR02G12, P3_16287238; τ = 0.21 ± 0.00);
LG4 (mCrCIR02D04b, mCrCIR03D12a, mCrCIR07D06,
P4_9505439; τ = 0.29 ± 0.03); LG5 (mCrCIR01F08a,
mCrCIR07E12, P5_20142568; τ = 0.36 ± 0.05); LG6
(mCrCIR02F12; P6_3130249; τ = 0.18 ± 0.04); LG7
(mCrCIR07E05; P7_15458045; τ = 0.34 ± 0.03); LG8
(mCrCIR02A09, mCrCIR07B05, mCrCIR02G02, P8_16631925;
τ = 0.15 ± 0.01); LG9 (mCrCIR02B07, P9_12062066;
τ = 0.40 ± 0.02. Therefore, we can consider that LG1 has
an intermediary inheritance while the other LGs had a
preferential disomic tendency highly marked for LG2 and
LG8.

Heterozygosity Transmission and
Gamete Diversity
Diploid gametes from this tetraploid intergeneric somatic hybrid
transmitted both intraspecific and intergeneric heterozygosity.
The intergeneric heterozygosity transmission rate was directly
linked with τ, and decreased linearly from 97 to 79% with
increasing τ values (Figure 2). When analyzing the multilocus
gametic structure over the 25 loci with complete allelic
differentiation between Citrus and Poncirus, we found five
diploid gametes (among the 58 analyzed) with complete
intergeneric heterozygosity (Supplementary Material 3).
The average intergeneric and intrageneric heterozygosity
transmission were, respectively, 90.3 and 4.1%. Intergeneric
recombinations were detected from multiloci pattern within
each LG (Supplementary Material 3), whose frequencies
(0.29, 0.09, 0.14, 0.24, 0.26, 0.10, 0.16, 0.14, 0.26 in LGs 1
to 9, respectively) were significantly related (R2 = 0.82) with
the τ average values by LGs. We compared the distribution
of dissimilarities between gametes considering all SSR alleles
(intraspecific and intergeneric diversity) or solely the intergeneric
origin of alleles (i.e., only two alleles considered: a poncirus
allele P and a mandarin allele M and therefore segregation
between PP, MM, and PM genotypes). Preferential pairing
and consecutive predominant intergeneric heterozygosity
transmission resulted in a relatively low intergeneric diversity
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FIGURE 1 | Example of deviance (G) for six observed SSR loci segregations in
the “Flhorag1” somatic hybrid gametes with inheritance models ranging from
τ = 0 (full disomic) to τ = 1 (full tetrasomic). Among the 16 analyzed SSRs
markers Mest431 and mCrCIR02D09 display, respectively, the higher (0.58)
and lower (0.07) τ values.

contribution and gamete genetic diversity seemed to be
mainly due to parental intraspecific diversity segregation
(Figure 3).

DISCUSSION

Intermediate Inheritance With a
Preferential Disomic Trend Detected in
the C. reticulata + P. trifoliata (Flhorag1)
Intergeneric Tetraploid Somatic Hybrid
All 16 SSR and 9 SNP markers studied displayed intermediate
inheritance with a preferential disomic tendency. The gamete
proportions explained by random meiotic chromosome
association (τ) ranged from 7 to 58%, and for all markers
preferential pairing occurred between chromosomes derived
from the same parent (i.e., WLM or PON). Such intermediate
inheritance with a disomic tendency was also described
for a doubled-diploid “Mexican lime” (Rouiss et al., 2018)
belonging to C. x aurantiifolia (Christm.) Swingle, a species of
interspecific origin (C. micrantha Wester x C. medica L.; Nicolosi
et al., 2000; Curk et al., 2016; Wu et al., 2018). The levels of
preferential pairing revealed for “Flhorag1” and the doubled-
diploid “Mexican lime” are much higher than that observed
for (i) an interspecific somatic hybrid (C. reticulata + C.
lemon) within the Citrus genus, where random tetrasomic
inheritance (τ = 1) could only be rejected for 8 out of 17
markers, with τ ranging from 0.24 to 0.95 (Kamiri, et al. 2011),
and (ii) a doubled-diploid clementine displaying tetrasomic
segregation for five chromosomes, intermediate segregation with
a tetrasomic tendency for three chromosomes and intermediate
segregation with a disomic tendency for only one chromosome

(Aleza et al., 2016a). Preferential pairing variations between
tetraploid citrus reveal different levels of divergence between
their constitutive genomes.

Cytogenetic study of meiosis behavior is another approach to
analyze chromosome affinity in polyploids. Indeed, tetravalent
formation testifies for chromosome homology between parents
while they should be precluded in wide allotetraploids (assuming
the absence of large structural variation). Few cytogenetic
studies were performed in tetraploid somatic hybrids and most
concerned interspecific hybrids within the Citrus genus. Del
Bosco et al. (1999) were the first to report the microsporogenesis
in a Citrus interspecific tetraploid somatic hybrid between
“Valencia” sweet orange and “Femminello” lemon. They observed
frequent tetravalents. One of these tetravalents by meiotic cell
was related to a reciprocal translocation in sweet-orange but
the additional tetravalents were considered as a consequence
of intergenomic pairing. Similar observation for frequent
tetravalents were reported for “Hamlin” sweet orange+ “Rough”
Lemon and “Key” lime + “Valencia” sweet orange (Chen et al.,
2004) and “Willow leaf” mandarin + “Eureka” lemon (Kamiri
et al., 2011). For the last somatic hybrid, this cytogenetic
observation was associated with preferential tetrasomic
inheritance of molecular markers. However, as previously
mentioned, reciprocal or inverted translocations can result in
tetravalent formation even in diploid parents as observed in
“Valencia” sweet orange (Del Bosco et al., 1999) or Mexican
lime (Rouiss et al., 2018). Therefore, cytogenetic observations
should be associated with marker segregation analysis for a
full understanding of tetraploid meiosis behavior. In the case
of mandarin + poncirus somatic hybrids, the predominant
preferential pairing between homologous chromosomes inferred
in “Flhorag1” from molecular marker segregation data is in
agreement with the previous cytogenetic study conducted in an
intergeneric citrus somatic hybrid between “Cleopatra” mandarin
and “Argentine” poncirus (unpublished results mentioned in
Chen et al., 2004). Indeed, they observed a high percentage of
bivalents, suggesting low chromosome homology between the
fusion parents.

Recent whole nuclear genome resequencing data revealed an
important differentiation of Poncirus trifoliata from the Citrus
species clade (Wu et al., 2018). This genomic differentiation
level is in line with the preferential disomic inheritance observed
for our C. reticulata + P. trifoliata intergeneric somatic hybrid.
Interestingly, our finding that preferential pairing was not
complete (i.e., inheritance is not fully disomic and intergeneric
recombinations are observed in our study), indicated that the
remaining homology is still enough to allow Citrus and Poncirus
chromosome pairing, and helps understand the long-known
intergeneric sexual compatibility at the diploid level (Cameron
and Garber, 1968). Moreover, comparative studies of Citrus and
Poncirus genetic maps revealed a high level of synteny and
collinearity of markers. From unsaturated maps, Chen et al.
(2008) observed only a few inversions between shared loci.
Bernet et al. (2010) reported high collinearity between Fortune
“mandarin” and Poncirus trifoliata. More recently, the availability
of reference whole genome sequence allowed to compare genetic
and physical maps and globally confirmed the good conservation
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of marker order between P. trifoliata and “Sunki” mandarin
(Curtolo et al., 2018) and P. trifoliata and sweet orange (Huang
et al., 2018).

Although inheritance was consistently intermediate between
disomic and tetrasomic for all markers, there was considerable
variation in the degree of preferential pairing. Such variation
among loci is common, and has for example been observed in
autotetraploid Pacific oysters (Curole and Hedgecock, 2005) and
sugarcane (Jannoo et al., 2004). Variation among markers could
merely reflect stochasticity, but also true differences in homology
for different parts of the genome. Significant differences of the
τ values were observed between LGs. LG1 displayed the higher
value of random association (close to 50%) while the other LGs
had a preferential disomic tendency. Disomy was very high for
LG2 and LG8 with more than 85% of preferential chromosome
pairing. Although an analysis of more markers would be needed

to confirm the pattern, our results suggest that the divergence
between “Willow leaf” mandarin and “Pomeroy” poncirus varies
between chromosomes.

Double Reduction Rates and
Heterozygosity Transmission
Gametes resulting from double reduction have been detected in
five loci. Double reduction implies multivalent formation and
a crossover between the considered locus and its centromere
with further adjacent segregation (Haynes and Douches, 1993).
It results in increased homozygosity and its maximum frequency
(1/6) is reached in case of systematic quadrivalent formation at
meiosis (Stift et al., 2008). Our progeny sample size was not
enough for accurate estimation of the double reduction rate
but highlighted the possibility of tetravalent formation in the
intergeneric somatic hybrid.

TABLE 4 | Fitting the inheritance model and intraparental and interparental heterozygosity rates on the segregation of 16 SSR loci in the “Flhorag1” diploid gametes.

SSR LG WLM PON Pref Pairing Best model % Heterozygosity

β τ LRT p value Intra-specific Inter-generic

CiBE5055 1 BC AA BC/AA – 0.41 5.79 8.04E−03 5% 86%

MEST431 1 AA BB AA/BB – 0.58 4.41 1.78E−02 0% 79%

mCrCIR02D09 2 AB CC AB/CC 0.07 0.07 20.03 4.00E−06 2% 95%

MEST46 2 BB AA AA/BB – 0.1 32.04 7.56E−09 0% 97%

mCrCIR02G12 3 CC AB CC/AB 0.05 0.21 12.74 1.79E−04 5% 90%

mCrCIR02D04b 4 AA BC AA/BC – 0.31 8.39 1.89E−03 2% 90%

mCrCIR03D12a 4 AA BC AA/BC 0.04 0.23 11.42 3.64E−04 5% 90%

mCrCIR07D06 4 AB CC AB/CC – 0.31 8.39 1.89E−03 0% 90%

mCrCIR01F08a 5 BB AA AA/BB – 0.41 11.45 3.57E-04 0% 86%

mCrCIR07E12 5 AC BB AC/BB – 0.36 7.01 4.06E-03 9% 88%

mCrCIR02F12 6 AB C0 AB/C0 – 0.21 11.73 3.07E-04 7% 93%

mCrCIR07E05 7 BB AA AA/BB – 0.36 13.86 9.90E-05 0% 88%

mCrCIR02A09 8 CC AB CC/AB 0.03 0.14 14.19 8.20E-05 2% 93%

mCrCIR07B05 8 BB AA AA/BB – 0.16 27.26 8.88E-08 0% 95%

mCrCIR02G02 8 AB CD AB/CD – 0.16 13.79 1.02E-04 5% 95%

mCrCIR02B07 9 AC BB AC/BB 0.07 0.38 6.34 5.89E-03 5% 83%

Comparisons of fit were performed between the tetrasomic null model and the best fitting intermediate model. LRT values were evaluated as described in the Materials
and methods and were significant at the indicated level. WLM, Citrus reticulata cv Willowleaf mandarin; PON, Poncirus trifoliata cv Pomeroy; A. B. C. D, allele length (A
represents the longest allele); 0, null allele.

TABLE 5 | Fitting the inheritance model and intergeneric heterozygosity rates on the segregation of nine centromeric SNP loci in the “Flhorag1” diploid gametes.

Parental Genotypes Diploid Gametes Allelic Distortion p value τ Intergeneric Heterozygosity

Genotypes

LG WLM PON Flhorag1 AA AB BB

P1_16582061 1 AA BB AABB 5 50 3 0.71 0.42 86%

P2_19903193 2 AA BB AABB 1 56 1 1.00 0.11 97%

P3_16287238 3 AA BB AABB 3 54 1 0.71 0.21 93%

P4_9505439 4 AA BB AABB 4 52 2 0.71 0.31 90%

P5_20142568 5 AA BB AABB 2 52 4 0.71 0.31 90%

P6_3130249 6 AA BB AABB 2 55 1 0.85 0.16 95%

P7_15458045 7 AA BB AABB 2 52 4 0.71 0.31 90%

P8_16631925 8 AA BB AABB 1 55 2 0.85 0.16 95%

P9_12062066 9 AA BB AABB 5 50 3 0.71 0.42 86%
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FIGURE 2 | Correlation between the intergeneric heterozygosity transmission
rate and the τ value for the 16 SSR and 9 SNP markers.

FIGURE 3 | Distribution of genetic dissimilarities between diploid gametes of
the Flhorag1 somatic hybrid based on intergeneric segregation (blue) and all
allele segregation (red).

The diploid gametes produced by tetraploid somatic
hybrids are highly heterozygous. Under tetrasomic inheritance,
they should transmit either intraparental or interparental
heterozygosity (Ollitrault et al., 2008), in contrast to strict
disomic inheritance, which leads to exclusive transmission
of interparental heterozygosity for wide interspecific somatic
hybrids. When inheritance is intermediate, as found in
the intergeneric Citrus-Poncirus Flhorag1 somatic hybrid,
transmission of intraspecific and intergeneric heterozygosity
depends on the degree of preferential chromosome pairing and
the double reduction rates in case of tetravalent formation.
As no double reduction is possible in centromeric areas,
they should display higher intergeneric restitution values.

Assuming preferential pairing between parental homologous
chromosomes, interparental heterozygosity transmission
decreases with increasing τ values. Therefore, it is logical
that the interparental heterozygosity transmission (in this
case intergeneric heterozygosity) observed in the intergeneric
Flhorag1 somatic hybrid (90%) was much higher than the 64.1%
observed for a C. reticulata + C. lemon interspecific somatic
hybrid (Kamiri et al., 2011). As a consequence of this high
level of intergeneric heterozygosity inheritance, the genetic
diversity of the gamete population results mainly from parental
intraspecific diversity segregation. However, these conclusions
for genetic markers should not be extrapolated for phenotypic
traits because phenotypic differentiation at the intergeneric level
is very high compared with the intra-poncirus or mandarin
variability.

Implications for Breeding
Citrus breeding is hampered by complex genome structures,
features of reproductive biology and the long juvenile
phase, but can take advantage of vegetative propagation
including apomictic seeds for rootstock multiplication,
allowing clonal propagation of elite genotypes whatever its
genome complexity (Ollitrault and Navarro, 2012). Therefore,
breeding strategies are generally based on one (or very few)
cycle of variability induction followed by direct selection
of cultivars or rootstock. In such context, it is essential to
optimize the transfer to the progenies, of the genetic gains
obtained by phenotypic selection at the parental level. In
case of Citrus-Poncirus intergeneric polyploid breeding,
most of the genetic value comes from the combination of
favorable traits from Citrus (tolerance to abiotic stresses
such as salinity, water deficit, calcareous soils) and Poncirus
(resistance/tolerance to diseases and pests such as tristeza
virus, Phytophthora, nematodes; cold tolerance). It is based
on dominant inheritance in highly intergeneric heterozygous
structures. For further breeding using these intergeneric
tetraploids as sexual parents (tetrazyg strategy; Grosser
and Gmitter, 2010), it is therefore essential to transmit a
large part of the parental intergeneric heterozygosity to
the progenies in order to prevent overall breakage of the
favorable complex multilocus genotypic structure selected at
the allotetraploid parental level. From this work, it appears
that the differentiation between C. reticulata and Poncirus
trifoliata genomes results in preferential homologous pairing and
predominantly intergeneric heterozygosity transmission. Most
of the value of the somatic hybrid should thus be transmitted
to its progeny. Moreover, the infrequent occurrence of non-
homologous chromosome pairing offers an opportunity for
intergeneric recombination, and the generation of novel allelic
combinations. Several Citrus × Poncirus diploid intergeneric
hybrids such as citrumello (C. paradisi × P. trifoliata),
citrange (C. sinensis × P. trifoliata), and citrandarin (C.
reticulata × P. trifoliata) proved their interest as rootstock and
are widely used worldwide. Taking advantage of spontaneous
chromosome doubling in nuclear cells, doubled diploid
lines were selected for most of them (Aleza et al., 2011).
If they display similar preferential disomic tendency than

Frontiers in Plant Science | www.frontiersin.org 9 November 2018 | Volume 9 | Article 1557

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01557 October 31, 2018 Time: 16:23 # 10

Kamiri et al. Tetraploid Intergeneric Citrus Hybrid Inheritance

the “Flhorag1” somatic hybrid, they should produce gametes
in which a very high proportion of the genome of the initial
diploid intergeneric hybrid has been transferred. Thus, the high
phenotypic value deeply selected at the diploid intergeneric
parent level should have a very marked positive impact on the
products of the “Tetrazyg” strategy when using these doubled-
diploid parents.
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