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Reactive oxygen species (ROS) are well-described by-products of cellular metabolic
activities, acting as signaling molecules and regulating the redox state of proteins.
Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and
their redox state affects structural and biochemical capacities of many proteins. While
thiol redox regulation has been largely studied in several cell compartments like in the
plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent
works have revealed that proteins with oxidizable thiols are important for the regulation
of many nuclear functions, including gene expression, transcription, epigenetics, and
chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific
isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different
nuclear subcompartments, further supporting that thiol-dependent systems are active
in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field,
taking examples of redox regulated nuclear proteins and focusing on major thiol redox
systems acting in the nucleus.
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INTRODUCTION

Oxygen is one of the most important molecules for aerobic organisms. It is necessary
for cell metabolism, but it also generates reactive oxygen species (ROS) as by-products of
oxidoreduction pathways. ROS include free radical species like superoxides (O•−2 ), hydroxyl
radicals (OH•), or nitric oxide (NO•), and non-radical species like hydrogen peroxide
(H2O2) and peroxynitrite (ONOO−) (Sies et al., 2017). In plants, major sources of ROS
are photosynthetic and respiratory chains in chloroplasts and mitochondria. ROS are also
generated by plasma membrane NADPH oxidases and peroxisomal xanthine oxidases. Oxidative
eustress is playing important signaling functions by inducing post-translational modifications
(PTM) and by regulating protein redox state. ROS can also trigger oxidative distress
which can damage the cell (Foyer and Noctor, 2016; Choudhury et al., 2017). Plant cells
display a large panel of ROS scavenging enzymes like catalases, peroxidases, and superoxide
dismutases. They also generate compounds that reverse ROS-induced oxidations. Among
these compounds are antioxidant molecules like glutathione and ascorbate, which both play
important roles as cofactors for thiol reduction enzymes like peroxidases and reductases
(Noctor, 2017; Rahantaniaina et al., 2017). Glutathione and ascorbate are themselves reduced by
glutathione reductases (GRs) and dehydroascorbate reductases (DHARs). Thioredoxins (TRXs)
and glutaredoxins (GRXs) are key thiol reduction enzymes. They act as reducing power
of metabolic enzymes and ROS scavenging systems but they also regulate thiol-based post-
transcriptional redox modifications in proteins (Meyer et al., 2012). Oxidized TRXs are generally
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reduced by NADPH-dependent thioredoxin reductases (NTRs),
whereas the reduction of GRXs is dependent on glutathione.
Due to their multifunctional thiol reduction capacities, TRXs
and GRXs have been involved in many metabolic functions,
controlling plant developmental programs and acting as key
signaling molecules in response to abiotic and biotic stresses
(Meyer et al., 2009; Rouhier et al., 2015). In this mini-review,
we aim to give an updated overview of nuclear thiol-based ROS
signaling in plants.

ROS AND Cys Ox-PTMs IN THE
NUCLEUS

Some data suggest that ROS are actively generated in the nucleus
(Ashtamker et al., 2007), but they principally accumulate in
the nucleus through transfer from other cell compartments.
Genetically encoded fluorescent H2O2 sensors (e.g., HyPer) have
consistently shown that cytosolic H2O2 freely diffuses in the
nucleus through nuclear pores (Møller et al., 2007; Rodrigues
et al., 2017). It is also transferred from the chloroplasts to the
nucleus under pathogen and high light (HL) conditions (Caplan
et al., 2015; Exposito-Rodriguez et al., 2017).

The chemical characteristics of the sulfur atom make Cys
and Met residues major sites of oxidation within proteins
(Davies, 2005). Depending on their pKa and on the pH of
the medium, thiol residues are deprotonated into a thiolate
residue (R-S−) which is prone to oxidation. This is leading to
successive oxidations to sulfenic (R-SOH), sulfinic (R-SO2H),
and sulfonic (R-SO3H) acids (Davies, 2005). Thiol groups
can also form a disulfide bridge (S-S) or react with reactive
nitrogen species (RNS) or oxidized glutathione (GSSG) resulting
in S-nitrosylation (R-SNO) or S-glutathionylation (R-S-SG).
Depending on their nature, most of these thiol modifications
can be reversed by dedicated thiol reduction systems (TRX,
GRX, and GSNO Reductase) which exhibit disulfide bond,
deglutathionylation or denitrosylation activities (Figure 1). Thiol
modifications can alter the structure and/or the activity of many
proteins like transcription factors, MAP kinases, and chromatin
modification proteins (see below). Proteomic approaches aiming
to identify oxidized thiol targets have been developed in
plants. Hundreds of nuclear candidate proteins were found
sulfenylated, nitrosylated, or glutathionylated (Supplementary
Table 1; Zaffagnini et al., 2012, 2016; Morisse et al., 2014;
Waszczak et al., 2014; Chaki et al., 2015; Pérez-Pérez et al.,
2017). These approaches also revealed the complexity of the thiol
redox modification networks in plants (Pérez-Pérez et al., 2017).
However, among all these candidates, redox regulation has been
validated only in a few cases (see below).

THIOL REDOX SYSTEMS IN THE
NUCLEUS

Glutathione
Plants exhibit a large panel of thiol reduction systems (Meyer
et al., 2012). Among them is glutathione, a low molecular weight

thiol-containing tripeptide (γ-glutamyl-cysteinyl-glycine).
Glutathione biosynthesis is performed in chloroplasts and in the
cytosol but is found in almost all cell compartments, including
the nucleus. Nuclear pores are generally assumed to allow
unrestricted bidirectional diffusion of glutathione across the
nuclear envelope. Therefore, nuclear glutathione translocation
to the nucleus can be passive. Glutathione quantification
at the subcellular level is technically challenging due to its
highly dynamic compartmentation (Delorme-Hinoux et al.,
2016). Thiol-specific dyes and genetically encoded probes such
as reduction-oxidation-sensitive green fluorescent proteins
(roGFPs) have consistently detected glutathione in the nucleus.
Immunocytochemistry (ICC) coupled to electronic microscopy
were also used to address its location at a subcompartment level
(Zechmann et al., 2008; Zechmann and Müller, 2010). This
study found glutathione uniformly spread in the nucleoplasm,
without distinction between euchromatin and heterochromatin.
In Arabidopsis thaliana, a glutathione reductase (GR1) is found
in the nucleus, suggesting that oxidized glutathione (GSSG) is
actively reduced in the nucleus (Delorme-Hinoux et al., 2016).

The functions of glutathione in the nucleus are still
poorly understood. Thiol-labeling experiments using the 5-
chloromethylfluorescein diacetate (CMFDA) dye and glutathione
redox state measured by roGFP, suggest that a redox cycle is
occurring during the cell cycle progression and is critical for
cell cycle progression (Diaz Vivancos et al., 2010; Vivancos
et al., 2010; de Simone et al., 2017). Consistently, sustained mild
oxidation observed in ascorbate mutants also restricts nuclear
functions and impairs progression through the cell cycle (de
Simone et al., 2017). More than acting as a general redox buffer,
glutathione could also provide reducing moiety for anti-oxidant
enzymes like GRXs (i.e., GRXC1, GRXC2, GRXS17, GRXS13,
and ROXY1/2/4) and Glutathione S-Transferases (i.e., GSTF5-
10, GSTU19/20, and GSTT19/20), several of them having been
identified in the nucleus (Rouhier et al., 2015; Palm et al., 2016).

Consistent levels of ascorbate have also been found in the
nucleus but little evidence for its nuclear functions has been
described (Zechmann et al., 2011; Considine and Foyer, 2014; de
Simone et al., 2017; Zechmann, 2017).

Thiols Reductases in the Nucleus
Thioredoxins (TRXs) and Glutaredoxins (GRXs) are major
classes of thiols reductases. Plants harbor a complex TRX and
GRX network (Meyer et al., 2012). Among the 40 TRXs and
50 GRXs isoforms were found in Arabidopsis, at least 4–8
of them have been assigned to the nucleus, although often
in association with a cytosolic localization (Delorme-Hinoux
et al., 2016). Moreover, NTR isoforms were also found in the
nucleus, where they reduce TRXh, TRXo1, and Nucleoredoxin
1 (NRX1) (Serrato et al., 2001; Serrato and Cejudo, 2003; Marty
et al., 2009; Marchal et al., 2014). Some thiol reductases are
constitutively located in the nucleus, but others were found to
shuttle between the cytosol and nucleus. In tomato subjected
to heat stress, the predominant cytosolic GRXS17 was found
to relocate in the nucleus (Wu et al., 2012). In wheat and
Chlamydomonas, TRXh isoforms accumulate in the nucleus
upon oxidative or genotoxic stress (Serrato and Cejudo, 2003;
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FIGURE 1 | H2O2-induced thiol modifications and scavenging activities in the nucleus. H2O2 accumulating in the nucleus can be detoxified by a NTR/TRX/PRX
system. While many other H2O2 detoxification enzymes are active in plants (e.g., catalases and ascorbate peroxidases), their presence in the nucleus is not
demonstrated yet. They are not represented here. H2O2 can oxidize thiol residues in protein. Sulfenic acid reacts with GSH, NO or with adjacent thiol residues.
Putative nuclear proteins prone to S-glutathionylated, S-nitrosylated, or disulfide bonds formation have been identified by proteomic and biochemical approaches
(see Supplementary Table 1; Delorme-Hinoux et al., 2016; Pérez-Pérez et al., 2017). S-glutathionylated, S-nitrosylated, or intra/intermolecular disulfide bonds can be
reduced by NTR/TRX, GR/GSH/GRX, or GSNOR. NTR, NADPH-dependent thioredoxin reductase; TRX, thioredoxin; GR, glutathione reductase; GRX, glutaredoxin;
PRX, peroxiredoxin; GSNOR, S-nitrosoglutathione reductase; GSH, glutathione; NO, nitric oxide; H2O2, hydrogen peroxide.

Sarkar et al., 2005). Little is known about the subnuclear
localization of these respective proteins. This is due to the
low resolution of localization techniques like ICC and GFP-
fusion coupled with confocal microscopy analyses. In most
cases, these proteins are detected in the nucleoplasm, without
distinction between heterochromatin and euchromatin, and are
apparently excluded from the nucleolus. Recently, ICC analyses
have detected NRX1 and NTRA in the nucleolar cavity, but
the functional significance of this localization is still unknown
(Marchal et al., 2014). Major thiol redox components found in the
nucleus are presented in Figure 2. ROS scavenging enzymes and

thiol-containing target proteins are shown as well. Most of these
components have been recently reviewed by Delorme-Hinoux
et al. (2016) and will not be further discussed here.

The nucleolus, a nuclear subcompartment responsible for
rRNA biosynthesis, might also be subjected to redox regulation
(Saez-Vasquez and Medina, 2009). Significant accumulation
of H2O2 has been detected in the nucleolus in tobacco cell
suspension subjected to elicitor treatments (Ashtamker et al.,
2007). Intriguingly, the nucleolus also accumulates high amounts
of iron, which might provide substrates for ROS generation
by Fenton reactions (Roschzttardtz et al., 2011). In addition,
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FIGURE 2 | Major thiol redox components found in the nucleus. Thiol reduction systems, thiol-containing target proteins were represented as well as ROS
scavenging enzymes. Proteins which were only found in proteomic data (according to Montrichard et al., 2009; Waszczak et al., 2014; Delorme-Hinoux et al., 2016;
Palm et al., 2016; Montacié et al., 2017; Pérez-Pérez et al., 2017) but not further validated in the nucleus were represented in italic. NTR, NADPH-dependent
thioredoxin reductase; TRX, thioredoxin; GR, glutathione reductase; GRX, glutaredoxin; PRX, peroxiredoxin; PDI, protein disulfide isomerase; GST, glutathione
S-transferase; APX, ascorbate peroxidase; DHAR, dehydroascorbate reductase; Ran-GTPase, Ran-guanosine triphosphatase; PCNA, proliferating cell nuclear
antigen; GAPDH-C, glyceraldehyde 3-phosphate dehydrogenase-C; RTL1, RNAse III-like 1; TGA, TGA-transcription factor; NF-YC11, nuclear factor-YC11; GSH,
glutathione; NO, nitric oxide; H2O2, hydrogen peroxide.

glutathione and several isoforms of PRXs, DHARs, APXs, TRXs,
and GRX-like proteins were enriched in this compartment
(Zechmann et al., 2008; Zechmann and Müller, 2010; Palm
et al., 2016; Montacié et al., 2017). Whether redox activities are
occurring in the nucleolus will need further investigations.

REDOX-REGULATED NUCLEAR
FUNCTIONS

Transcriptomic Control by ROS
Reactive oxygen species causes drastic changes in nuclear gene
expression (Gadjev et al., 2006; Willems et al., 2016; Shaikhali
and Wingsle, 2017). Oxidative stress affects many pathways
involved in RNA processing, including splicing, polyadenylation,
exporting, and editing. It is also involved in RNA degradation
and protein translation (Van Ruyskensvelde et al., 2018). Under
High-light (HL) conditions, ROS originated in chloroplasts are
associated with chloroplast-to-nucleus (retrograde) signaling.

Among the molecules involved in the retrograde signaling
(Suzuki et al., 2012; Vogel et al., 2014; Dietz et al., 2016), singlet
oxygen (1O2) induces expression of subsets of 1O2-responsive
genes and enhances tolerance to HL and to other abiotic and
biotic stress (Wagner et al., 2004; Carmody et al., 2016). H2O2
originating by dismutation of superoxide in the chloroplast
has also been recently shown to be involved in retrograde
signaling upon HL exposure (Exposito-Rodriguez et al., 2017).
Another retrograde signaling was suggested to involve a redox
regulation of the chloroplastic cyclophilin Cyp20.3, leading to
stimulation of Cys synthesis, accumulation of non-protein thiols
and activation of defense gene expression (Dominguez-Solis
et al., 2008; Park et al., 2013). Presumably, ROS generated in other
cell compartments (mitochondria, peroxisomes, and apoplast)
can also exert similar retrograde signaling (Noctor and Foyer,
2016; Rodríguez-Serrano et al., 2016).

Photorespiration produces H2O2 in peroxisomes. In this
compartment, catalases play an important role in removing
H2O2. The cat2 mutant inactivated in the major peroxisomal
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catalase accumulates a high level of peroxisomal H2O2 and
impacts nuclear gene expression extensively, rapidly inducing
subsets of stress and hormonal response genes (Queval et al.,
2007). In this case, regulation of gene expression involves
glutathione signaling also, as the transcriptomic response is
partly abolished in a glutathione-defective (cad2) cat2 cad2
double mutant (Han et al., 2013a,b). A signaling role of
glutathione on nuclear gene expression was also suggested
by transcriptomic data in genetically or pharmacologically
manipulated glutathione backgrounds (Xiang and Oliver, 1998;
Ball et al., 2004; Schnaubelt et al., 2015). Other transcriptomic
analyses also showed involvement of thiol reduction systems
in modulating nuclear gene expression (Bashandy et al., 2009;
Martins et al., unpublished data). Whether these actors are
directly involved in gene expression needs further investigations.

Redox Regulation of Transcription
Factors
A likely impact of ROS on nuclear gene expression relies on
the regulation of redox-sensitive transcription factors (Considine
and Foyer, 2014; Dietz, 2014; Rouhier et al., 2015; Waszczak et al.,
2015). In most cases, redox regulation induces conformation
changes in transcription factors or associated proteins. Such
modifications can occur in the cytosol and trigger nuclear
translocation, e.g., by uncovering of a nuclear localization
sequence (NLS). A well-documented example is the thiol redox-
dependent nuclear translocation of the glycolytic enzyme Glucose
6-Phosphate Dehydrogenase C (GAPDH-C) which impacts
both its metabolic activity and its moonlighting function as
a transcriptional activator of glycolytic genes (Holtgrefe et al.,
2008; Vescovi et al., 2013; Zaffagnini et al., 2013; Testard et al.,
2016; Zhang et al., 2017). The HL- and H2O2-dependent nuclear
translocation of Heat-Shock Factors (HSFA1D and HSFA8) is
also dependent on specific Cys residues (Miller and Mittler,
2006; Jung et al., 2013; Giesguth et al., 2015; Dickinson et al.,
2018). The pathogen-induced Salicylic Acid (SA)-dependent
transcriptional response is mediated by redox-dependent nuclear
translocation of NON-EXPRESSOR OF PR GENES1 (NPR1). In
this particular case, NPR1 is kept in the cytosol in a disulfide-
bound oligomeric homocomplex. Upon pathogen attack, SA
induces TRXh5 expression which counteracts NPR1 oligomer
formation by reducing NPR1 disulfides. Moreover, through its
denitrosylase activity, TRXh5 also suppresses the stimulatory
effect of Cys156 S-nitrosylation on formation of disulfide-linked
NPR1 oligomer (Tada et al., 2008; Kneeshaw et al., 2014). NPR1 is
translocated in the nucleus where it promotes PR gene expression
through interaction with TGA transcription factors such as
TGA1 (Després et al., 2003; Mou et al., 2003; Tada et al., 2008;
Kneeshaw et al., 2014).

Indeed, other members of the TGA transcription factors are
likely redox regulated in the nucleus. Among the 10 TGA factors
found in Arabidopsis, several of them (i.e., TGA1, TGA2, TGA3,
TGA7, and Perianthia) interact with type III GRXs (ROXY1
and 2) and are involved in the development of petals, anthers
and microspores. Although the redox dependent control of
these TGA is not fully established, ROXY/TGA interactions

are occurring in the nucleus and affect TGA-regulated gene
expression (Xing et al., 2005; Xing and Zachgo, 2008; Li et al.,
2009, 2011; Murmu et al., 2010; reviewed by Dietz, 2014 and
Delorme-Hinoux et al., 2016).

R2R3-type MYB transcription factors from maize require
reducing conditions for DNA binding. Under non-reducing
conditions, Cys49 and Cys53 form a disulfide bond that prevents
the R2R3 MYB domain from binding DNA (Williams and
Grotewold, 1997; Heine et al., 2004). More recently, the structure
and the DNA binding activity of a AtMYB30 transcription
factor were shown to be influenced by S-nitrosylation
(Tavares et al., 2014).

AP2/ethylene response factor (ERF) is another class of
transcription factors which undergoes redox regulation (Welsch
et al., 2007; Shaikhali et al., 2008; Vogel et al., 2014). One of the
most striking examples was described for the Rap2.12-dependent
regulation of hypoxia response genes. Under aerobic conditions,
Rap2.12 is bound to the plasma membrane within an acyl-CoA
binding protein 1 or 2 (ACBP1/2) complex. In low oxygen,
Rap2.12 is released from the plasma membrane by a mechanism
involving a N-terminal Cys2 residue, and is translocated to the
nucleus where it activates hypoxia response genes (Gibbs et al.,
2011; Licausi et al., 2011; Licausi, 2013).

Comelli and Gonzalez (2007) also reported a redox regulation
of conserved Cys in the homeodomain (HD) DNA of plant class
III HD-Zip proteins. Here, DNA binding capacities are only
maintained when an intramolecular disulfide bond is reduced by
a thioredoxin (Comelli and Gonzalez, 2007). A Cys-dependent
redox regulation of the DNA binding activity of basic region
leucine zipper (bZIP) transcription factors has also been reported
(Shaikhali et al., 2012).

Finally, a subunit of the Nuclear Factor-Y (NF-Y)
transcription factor complex (NY-YC11) physically interacts
with the iron-sulfur cluster glutaredoxin GRXS17 in the nucleus.
It is not known yet if this interaction is redox-dependent
(Knuesting et al., 2015). In the cytosol and the nucleus, GRXS17
also interacts with and reduces BolA2, a factor involved in iron
metabolism (Couturier et al., 2014; Qin et al., 2015).

Epigenetic Regulation
Redox regulation of epigenetic processes has mostly been
addressed in mammals (García-Giménez et al., 2017), but this
field is poorly explored in plants (Delorme-Hinoux et al., 2016;
Shen et al., 2016). Nevertheless, due to the ubiquity of these
basic mechanisms in living organisms, it is likely that such
regulation occurs in plants as well. Different enzymes involved in
histone methylation are prone to redox regulation, affecting both
positive and negative histone marks (e.g., H3K4me2, H3K4me3,
H3K79me3, H3K27me2, and H3K9me2) (Chen et al., 2006; Zhou
et al., 2008, 2010; Niu et al., 2015). In mammals, nuclear histone
acetylation activities are redox sensitive, affecting chromatin
conformation and transcription (Ito et al., 2004; Ago et al.,
2008; Nott et al., 2008; Doyle and Fitzpatrick, 2010). During
brain development, neurotrophic factors induce S-nitrosylation
at conserved Cys of HDAC2 in neurons, resulting in changes
of histone modification and gene expression (Nott et al., 2008).
Upon cardiac hypertrophy, a ROS/TRX-dependent redox switch
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of key Cys residues affects nuclear trafficking of a class II HDAC
and subsequent gene expression (Ago et al., 2008). Within the
large family of HDAC identified in plants (Pandey et al., 2002),
members of the class I RPD-3 like HDAC (HDAC9, 19) have been
shown to be sensitive to oxidation (Liu et al., 2015; Mengel et al.,
2017), but the physiological significance of those modifications
is still poorly understood. NO-induced HDAC inhibition is
proposed to operate in plant stress response by facilitating the
stress-induced transcription of genes (Mengel et al., 2017).

In addition to methylation and acetylation, mammalian
histone H3 has been shown to be glutathionylated on a
conserved and unique Cys residue (García-Giménez et al., 2014).
Histone H3 glutathionylation increases during cell proliferation
and decreases during aging. This produces structural changes
affecting nucleosome stability and leading to a more open
chromatin structure (García-Giménez et al., 2013, 2014, 2017; Xu
et al., 2014).

Small RNAs (siRNA and miRNA) are key regulators of gene
expression, involved in most developmental and stress response
processes in eukaryotic cells (Leisegang et al., 2017). Biogenesis
of small RNAs is orchestrated by DICER-LIKE (DCL) and
RNASE THREE-LIKE (RTL) endonucleases that process almost
every class of double-stranded RNA precursors. Charbonnel
et al. (2017) have recently demonstrated that members of DCL
and RTL families in Arabidopsis are glutathionylated on a
conserved Cys which affects their RNase III activity. R-S-SG of
RTL1 is reversed by type I GRXs, suggesting that small RNA
biogenesis and subsequent gene expression responses are under
the control of the cell redox environment (Charbonnel et al.,
2017). Indeed, the RNase activity of another member of the family
(RTL2) was previously shown to be regulated by its dimerization
state through an intermolecular disulfide bond (Comella et al.,
2008), showing that a redox switch might regulate small RNA
biogenesis.

Epigenetic regulation of gene expression is performed by DNA
methylation. Some key metabolic enzymes involved in DNA
methylation are suspected to be redox regulated. Among them
are enzymes of the S-Adenosyl Methionine (SAM) cycle which
provide precursors for DNA and histone methylation (Shen
et al., 2016). Other nuclear candidates are the DNA demethylases
Repressor of Silencing1 (ROS1) and Demeter-like (DME, DML2,
and DML3) enzymes which remove methylated bases from the
DNA backbone (Zhu, 2009). All these enzymes contain an iron-
sulfur (Fe-S) cluster which might be susceptible to oxidation by
ROS. Moreover, different members of the cytosolic Fe-S cluster
assembly machinery (i.e., MET18 and AE7) are involved in
DNA methylation, likely because they affect the nuclear DNA
demethylases Fe-S cluster metabolism (Luo et al., 2012; Duan
et al., 2015). Therefore, all these examples show an emerging link
between redox regulation and epigenetic regulation.

CONCLUSION AND PERSPECTIVES

Data supporting the role of redox regulation in nuclear functions
are rapidly increasing. ROS are key actors of this regulation,
influencing gene expression at multiple levels (transcription
and post-transcription), notably by modulating activities of
transcription regulators. While H2O2 has been detected in the
nucleus, little is known about ROS metabolism and dynamics
in this cell compartment. The recent discovery of a H2O2 flux
from the chloroplast to the nucleus opens new perspectives
to decipher the role of ROS in gene expression. In this way,
the identification of a redox regulation of key transcriptional
regulators (e.g., transcription factors, HDAC) will shed light on
the ways ROS are acting on gene expression. Key for these
questions are the proteomic approaches aiming to identify
nuclear PTM occurring on redox-sensitive residues, and the
structure biology techniques designed to visualize redox-based
modifications on protein structure (Waszczak et al., 2014; Parker
et al., 2015; Zaffagnini et al., 2016; Pérez-Pérez et al., 2017). While
those redox proteome approaches have identified hundreds of
nuclear proteins which could be prone to redox modifications,
biochemical and functional evidence is missing to support the
biological significance of these redox switches. This will be a
major challenge for future research in redox biology.
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