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MANY BUT LIMITED USEFUL DATA FROM OMICS ANALYSIS OF
CROP RESPONSES TO DROUGHT

Crop production relies heavily on rainfall during the growing season, especially in developing
countries. Drought, due largely to the effects of soil water deficit, is the most serious abiotic stress
limiting crop production, accounting for ∼70% potential yield loss worldwide (Salekdeh et al.,
2009). Therefore, a major goal for global agriculture is to develop drought-tolerant crops. To this
end, a fully understanding of physiological, biochemical, and gene regulatory networks relating to
drought tolerance in plants is essential (Valliyodan and Nguyen, 2006). In this aspect, tremendous
advances have been made over the past decade. Particularly, morphological, physiological traits,
and biochemical changes that are relevant for drought tolerance have been well documented
(e.g., Feller and Vaseva, 2014; Lynch et al., 2014; Simova-Stoilova et al., 2016). Various omics
approaches, including genomics, transcriptomics, proteomics, and metabolomics, as well as the
combinations of them—systems biology, have been used to elucidate the complex mechanisms of
drought stress responses in crops (Shanker et al., 2014; Budak et al., 2015). However, the systematic
mechanism of drought responses in crops and its application in drought tolerance improvement
remain largely unclear, because of limited systematic biology data available from field experiments
and genotype× environment interaction in complex, often unknown ways.

A search in PubMed (Oct 29, 2016) for original, omics articles on drought responses in major
crops showed that proteomics, transcriptomics studies were muchmore thanmetabolomics studies
(Figure 1A), and laboratory-based studies were overwhelming compared with those conducted
in field (Supplementary Table 1). In all 151 original articles, only 11 reports on cotton, wheat,
rice and maize were involved in field trials. Despite large amounts of biological information have
been obtained from laboratory-grown seedlings, the results do not really reflect the performance
of those in the field conditions, where the expression of drought tolerance trait of crops is most
likely dependent on the interaction (abiotic and biotic) of genotype × environment. In other
words, field assays are necessary to conclude results, and are closer to real conditions than the
laboratory-studies. So, there is an urgent need to enhance omics analysis of crop responses to
drought under the field, drought conditions. This is very valuable for crop improvement in the
context of a changing climate and an increasing world population.

Since proteins are directly involved in plant stress responses, proteomic studies can eventually
contribute to dissect the possible relationships between protein changes and plant stress tolerance.
To date, numerous drought responsive-proteins have been identified with proteomic approaches
in crops (Mousavi et al., 2016), which provide a wealth of data to elucidate the mechanisms of
drought tolerance at the proteome level. However, proteomic analysis of crop plants under the
drought field conditions is still scarce. Recently, we discussed the methodological defects in crop
stress proteomics (Wu and Wang, 2016). Here, we take proteomic analysis as an example, aiming
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FIGURE 1 | A brief summary of omics analyses, especially proteomic analyses of drought responses in major crops. (A) Original article numbers retrieved

in the PubMed on proteomics, transcriptomics and metabolomics analyses. Search date: Oct 29, 2016. Keywords: drought, “crop name,” “omics method” (e.g.,

drought, wheat, proteomics/proteome). (B) Two examples of comparison between field and pot studies to find out common responsive proteins under drought.

Common proteins share the same Gi number in NCBI database.

to critically analyze the experimental defects, and drought
treatments in current crop proteomic analysis and propose the
necessities of proteomic dissection of drought stress responses in
crops under the field conditions. The discussion is expected to be
applicable in transcriptomics and metabolomics research. While
the focus is especially on drought stress, this discussion may also
provide a reference to other abiotic stresses in crops.

DROUGHT TREATMENTS USED IN
CURRENT CROP PROTEOMIC RESEARCH

In 74 original articles published over 2002–2016 in PubMed
on proteomic analysis of drought responses in key crops, such
as wheat, rice, maize, and soybean (Figure 1A), the stress
treatments under the type of drought are generally classified
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into three groups: osmotic stress in laboratory or greenhouse,
drought in controlled environments (e.g., pots in greenhouse),
and drought in field conditions (Supplementary Table 1). Among
74 reports, only three are involved in field trials, mainly focused
on organ/tissue (such as ovary and spikelet) of adult plants
(Supplementary Table 1). Remarkably, a substantial portion
of the studies are using osmotic stress mimicking drought
stress usually with the leaves and/or roots of laboratory-grown
seedlings as experimental materials and lack of real, drought
stress in the field conditions (e.g., Hu et al., 2009, 2015), which
may limit reproducibility and comparisons with other and/or
future studies using field-grown crop plants. Though there are
great differences (mainly in condition control) among field, pot,
and laboratory studies, we compared and found out a limited
number of common protein markers which are involved in
the same metabolic pathways in response to drought stress
(Figure 1B). Moreover, most stress treatments did not consider
the mechanisms of drought responses (adaptation, damage,
and recovery) in crops, which is a major concern about the
experimental design in these proteomic analyses (Gilbert and
Medina, 2016; Lyon et al., 2016). Because of the significant
differences between osmotic stress and drought, using osmotic
stress to mimic field drought is the widespread occurrence of
methodological defect, thereby undermining the reproducibility
and interpretation of the results from this fast-growing body
of literature. Therefore, many studies do little to advance
knowledge, except to add some species to the list of stress
responsive proteins found previously, let alone their applications
in the development of tailing crops for higher drought tolerance
and yield potential.

One major cause of lack of field experiments is perhaps no
fields available, which is a real, objective constraint on most
research groups in the plant proteomics community. Hopefully,
this problem can be solved through the cooperation between the
scientists of plant proteomics with the research units involved
in crop breeding. Another cause may be that adult plants are
usually big, with long growth cycles, and difficult to culture
in laboratories, whereas laboratory-grown seedlings are easily
obtained for a “rapid” research driven by proteomic method
toward the discovery of differentially abundant stress proteins.

Drought-prone environments are diverse, along with the
biotic and abiotic stresses that affect crop yield under drought
conditions. In general, only field trials allow for conclusive
data on drought tolerance of target crops, as well as the
value of any genes and the associated pathways for drought
tolerance. However, field experiments need more replicates due
to changeable environment conditions. Studies under controlled
conditions (chamber, greenhouse) give valuable information that
can be used to improve and reduce further field experiments
(for instance reducing the number of genotypes/cultivars, or even
doing a target search of proteins of interest). So, both laboratory
experiments and field experiments should be complementary,
therefore effort should be addressed in both ways. Besides,
considering the importance of root traits, e.g., architecture and
plasticity, for crop adaptation to water-deficit environments,
proteomic analysis of field-grown roots will advance the
knowledge of drought responses in crops.

ENHANCING EXPERIMENTAL DESIGN OF
PROTEOMIC ANALYSIS OF CROPS UNDER
THE FIELD, DROUGHT CONDITIONS

Proteomic dissection of drought responses in crops is usually
initiated by detection of differentially abundant proteins after
comparison between stressed and control plants. The relevant
information on proteomics analysis has been established in the
author guideline in Frontiers in Plant Science (Section: Plant
Proteomics). In general, the proposed experimental designs for
crop phenotyping (e.g., Campos et al., 2004; Cattivelli et al., 2008;
Salekdeh et al., 2009) provide a good reference for proteomic
analysis of drought responses in crops. Here, we only focus on
several special requirements in proteomic analysis of crops grown
under the field, drought conditions.

First of all, the experimental design should follow the

mechanisms of drought adaptation in crops. Importantly,
drought treatments should consider the level of drought
intensity, speed of stress development, and duration specified

by the hypothesized mechanism (Gilbert and Medina 2016). In
some omic analyses, unfortunately, seedlings were just exposed
to a series of “drought” stress with few or several physiological
measures related to drought responses (Cattivelli et al., 2008),

and then protein or mRNA abundance changes were measured,
having no underlying biological reasons. In general, a field

experiment should match the degree of manipulation of soil
water deficit, stress, and damage to the nature of the mechanism
being tested. For proteomic analysis, crops grown under
controlled and field environments are subjected to reproducible
drought treatment at specific developmental stages. A well-
watered control is needed to monitor for evaluation of losses
in growth and yield potential associated with drought tolerance.
Comparison of performance in these contrasting environments
provides the critical data required to drought tolerance in target

crops.
Second, it is important to control stress level and timing

for accurate evaluation of drought tolerance of target crops.

Moreover, the detection of genotype × stress level interactions
will provide essential evidence of the presence (and absence) of
unique, adaptive mechanisms among genotypes. For the analysis
of such interactions, relatively severe stress levels, more severe

than those experienced in the target population of environments,
are often imposed (Cattivelli et al., 2008). Besides, it should be
considered that the different crop developmental stages show
different sensitivity to drought. For example, maize is particularly
susceptible to drought during its 2- to 3-week flowering period.
A drought stress imposed at flowering may result in the widely
variance of entries in time to silk, thus the most “tolerant” may
simply be those that flower earlier than the mean.

Third, special attention should be paid to sampling in omics
analysis. Compared to physiological and biochemical analyses,
smaller amount of samples is needed for protein extraction
and subsequent proteomics analysis, especially with sensitive
detection approach. Thus, it is critical to take samples from
representative plants in the community in the fields. The
performance of the crop community under the field, drought
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conditions, plus physiological, and biochemical measurements of
individual plants, can be used for the selection of representative
plants. Depending on the source of target crops and research
aim, the tissue samples from individual plants can be pooled or
separated for use in omics analysis. For example, for phenotyping
a crop mutant population to screen drought tolerant plants,
samples from individual plants should be separately sampled and
analyzed. Furthermore, the biological replicates should be at least
three times to obtain proteomic data of confidence, which could
never be replaced with technical replicates. Since proteomics is
a statistics-based experimental science, biological replicates are
vital for the enhanced confidence of proteomics data. In practice,
random sampling of representative plants at different field spots
can represent independent biological replicates.

Finally, experimental design should control within-replica
variability. Particularly critical is the establishment of uniform
stands to ensure evenness of drought level per plant. The level
and timing of drought stress should be controlled in a manner
relevant to target environment conditions (Campos et al., 2004;
Cattivelli et al., 2008). To reduce the signal-to-noise ratio in
field conditions, uniform plots with low spatial variability in soil
properties are required. Additionally, the application of nutrients
and the control of weeds/pests should be carried out precisely and
uniformly. The use of rain shelters and supplementary irrigation
can help to control the stress conditions and improve the quality
of field experiments. Besides, owing to the variability in field
environments, trial designs need to be conducted at multiple sites
over multiple years to adequately replicate the results (Nuccio
et al., 2015).

CONCLUDING REMARKS

Omics has proved to be a powerful technique for discovery of
proteins and pathways that may be used to improve drought

tolerance and productivity of crops in water-limited conditions.
However, a wealth of biological information related to crop
drought tolerance has not been translated from laboratory to
field. Thus, scientists in plant omics community should make
greater efforts to investigate drought responses of crops in
field conditions, because such studies prove more valuable than
laboratory-only studies. In addition, sincemolecularmechanisms
underlying drought tolerant trait are complex and involve several
levels of regulation, such as gene regulation, post-translational
modifications, and protein interactions, the integration of omics
approaches will enhance the quality and meaning of the derived
biological information and get more valuable results for the
development of drought-tolerant crops. The discussed concerns
here may also apply to omics analysis of other abiotic stresses in
crops.
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