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SaNa-1A is a novel cytoplasmic male sterility (CMS) line in Brassica napus derived

from progenies of somatic hybrids between B.napus and Sinapis alba, and SaNa-1B

is the corresponding maintainer line. In this study, phenotypic differences of floral organs

between CMS and the maintainer lines were observed. By microscope observation in

different anther developmental stages of two lines, we found the anther development

in SaNa-1A was abnormal since the tetrad stage, and microspore development was

ceased during the uninucleate stage. Transcriptomic sequencing for floral buds of sterile

and fertile plants were conducted to elucidate gene expression and regulation caused by

the alien chromosome and cytoplasm from S. alba. Clean tags obtained were assembled

into 195,568 unigenes, and 7811 unigenes distributed in the metabolic and protein

synthesis pathways were identified with significant expression differences between two

libraries. We also observed that genes participating in carbon metabolism, tricarboxylic

acid cycle, oxidative phosphorylation, oxidation–reduction system, pentatricopeptide

repeat, and anther development were downregulated in the sterile line. Some of them

are candidates for researches on the sterility mechanism in the CMS material, fertility

restoration, and improvement of economic traits in the maintainer line. Further research

on the tags with expressional specificity in the fertile line would be helpful to explore

desirable agronomic traits from wild species of rapeseed.

Keywords: Brassica napus, cytoplasmic male sterility (CMS), somatic hybridization, morphological structure,

transcriptomic analysis

BACKGROUND

Heterosis is important to improve rapeseed yield, and cytoplasmic male sterility (CMS), as one
of the ideal systems for pollination control, has significantly contributed to increase rapeseed
production. According to the origin of the cytoplasm, CMS in rapeseed was classified into two types
(Yamagishi and Bhat, 2014). The first type was derived frommutation or intergeneric hybridization
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during natural reproduction, including pol CMS, Shan2ACMS,
and napCMS. To date, 70% of the rapeseed hybrids in China were
bred using CMS lines as a pollination control system, of which
pol CMS and Shan2A CMS were extensively used (Shen et al.,
2008). The second type was obtained by nucleus substitution or
mitochondrial gene recombination during wide hybridization or
protoplast fusion between different species, including Ogura/kos
CMS and tour CMS (Leino et al., 2003). As reported, CMS is
a maternally inherited trait resulting from the interaction of a
mitochondrial CMS gene and a nuclear fertility restoring (Rf )
gene (Yamagishi and Bhat, 2014). For instance, the mitochondrial
genome of pol CMS contains a causal gene named orf224, a
chimeric gene located at upstream of and co-transcribed with the
atp6 gene. In the presence of Rf gene, processing of orf224/atp6
is affected and the transcripts are specifically altered (L’Homme
and Brown, 1993).

Somatic hybridization can effectively create new CMS lines
by potential mitochondrial genome recombination between
two parent lines. The recombination results in new open
reading frames and forms chimeric genes, which affect the
function of mitochondria and finally lead to the formation
of CMS (Hanson and Bentolila, 2004; Carlsson et al., 2008).
Previous studies reported that the mitochondrial structure of
kos CMS and tour-Stiewe CMS bred from somatic hybrids
differed from that of the CMS lines (kos and tour CMS)
derived from the natural mutation of radish and mustard
(Dieterich et al., 2003; Oshima et al., 2010). A sterile
line (SaNa-1A) containing 38 chromosomes was previously
selected from the BC3 progenies of Brassica napus–Sinapis
alba somatic hybrids, using B. napus cv. “Yangyou6” as
recurrent parent (Wang et al., 2005). The corresponding
maintainer line (SaNa-1B), which could ensure sterility by
hybridization with the CMS line, was selected by crossing
SaNa-1A with different varieties of B. napus (Zheng et al.,
2012).

Next-generation sequencing (NGS), including RNA-seq and
digital gene expression (DGE), has been extensively applied in
transcriptomic studies on plants. Platforms, such as Illumina
HiSeq2500, Ion Torrent, and Roche 454 GS FLX+, ensure more
proficient research on transcriptomes and genomes than DGEs
and microarrays by improving the sequencing efficiency and
reducing the costs (Liu et al., 2013; Wu et al., 2016). Recently,
NGS has also been used in analyzing plant mitochondria
genomes and gene expression in CMS lines. An et al. (2014)
created the NIL line of pol CMS and analyzed the gene expression
differences between floral buds of the sterile and fertile lines
using RNA-seq. They identified that energy deficiency controlled
by orf224/atp6 led to the down regulation of genes regulating
anther development, thus resulting in failure of sporogenous
cell differentiation and pollen abortion (An et al., 2014). Yan
et al. (2013) compared the gene expression differences between

Abbreviations: CMS, Cytoplasmic male sterility; COG, Clusters of orthologous

groups; DGE, Digital gene expression; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; NGS, Next-generation sequencing;

PB, Phosphate buffer; PPR, Pentatricopeptide repeat; qRT-PCR, Quantitative

reverse transcription polymerase chain reaction; TCA, Tricarboxylic acid; TFs,

Transcription factors; TPM, Transcripts per million.

the young bud (<2 mm) of Nsa CMS and its restorer line
NR1 using DGE analysis, and 11 differentially expressed genes
(DEGs) uniquely expressed in the restorer line were related to the
synthesis of pollen wall, including chalcone synthase gene, β-1,3-
glucanase gene, and glycosyl hydrolase gene. Of these DEGs, 40%
were annotated with catalytic activity, 4.4% were annotated with
transporter activity, and 2.2% were annotated with antioxidant
activity (Yan et al., 2013).

In the present study, we aim to compare the morphological
and cytological differences between the CMS line and its
maintainer line to better understand the mechanism of abortion
in the CMS line. Subsequently, RNA-seq analysis was conducted
on the floral bud of two rapeseed lines at the abortion stage
in accordance with the cytological result. This work could be
the basis for molecular dissection of the CMS mechanism in
SaNa-1A.

MATERIALS AND METHODS

Plant Materials
The novel CMS line (SaNa-1A) generated from progenies of
somatic hybrids between B. napus and S. alba and the maintainer
line (SaNa-1B) were used in this study. Plant materials were
cultivated in the experimental fields of Jiangsu Institute of
Agricultural Science in the Lixiahe District (Yangzhou, Jiangsu
Province). Different sizes of sterile and fertile anthers were fixed
for morphological analysis, aiming to acknowledge the abortion
stage. In accordance with the abortion stage (tetrad stage), floral
buds (0.6–1.3mm in length) were collected and frozen at 80◦C
prior to semithin sections and RNA-seq.

Semithin Sections and Light Microscopy
Different sizes of sterile and fertile anthers were fixed in 2.5%
glutaraldehyde. After 24 h, the fixative solution was replaced
with a fresh solution. After 1 day, the anther was washed three
times with phosphate buffer (PB; pH 7.2; 15min for each wash)
and postfixed with 1% osmium tetroxide for 4 h. The postfixed
tissue was again washed three times with PB. The anther was
dehydrated with a graded ethanol series (50, 70, 80, 90, 95, and
100%) for 15min each, infiltrated with acetone, and embedded
in 812 resin. Semithin sections (1 µm) were cut from the
polymerized blocks and stained with 1% toluidine blue for 3min
for light microscope observations (Olympus CX51).

RNA Extraction and Illumina/Solexa
Sequencing
Total RNA from buds (0.6–1.3mm in length, at abortion stage)
of four sterile and fertile individual plants was extracted using
RNAiso Plus (Takara, China) in accordance with the protocol
of the manufacturer (Wang et al., 2014). The quality of total
RNA was analyzed using the Agilent 2100 BioAnalyzer with
threshold values of RIN ≥ 8 and 28S:18S RNA≥ 1.5:1. Then,
RNA (0.1–4µg) was precisely quantified using the QUBIT RNA
Assay Kit. mRNA was purified with oligo(dT) and fragmented
into 120–210 bp. cDNA was synthesized using the SuperScript
II Kit (Invitrogen), following end-filling and adding A in the
3′-end. After ligation with the Illumina paired-end adapter,
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cDNAs were purified twice with AMPure XP Beads (Beckman) to
eliminate redundant adapters and amplified with PCR. Finally, a
gel purification procedure was conducted to select the fragments
ranging from 300 to 350 bp to produce the paired-end library.
Fragment size was controlled by the High-Sensitivity ChIP Kit,
and the precise concentration of each library was tested with the
KAPA qPCR Kit. A 10µL library (2 nM) was fixed onto cBot and
sequenced with Illumina HiSeq 2000.

Processing of Sequencing Tags and Gene
Expression Annotation
According to Cox et al. (2010), clean reads were obtained
by filtering the adapter sequences and low-quality
sequences in the raw data using the FASTX toolkit
(http://hannonlab.cshl.edu/fastx_toolkit), which were then
assembled into contigs by the Velvet and Oases software
(Zerbino and Birney, 2008). Afterwards, the clean reads were
mapped onto the unigenes using Bowtie (Langmead et al.,
2009). Function of unigenes was annotated by BLASTX searches
against the NR, Swiss-Prot, and COG databases (E < 1e−5).
The GO annotations for them were determined using Blast2GO
(Conesa et al., 2005), which were then submitted to WEGO
for the classification graph (Ye et al., 2006; An et al., 2014).
For GO enrichment analysis, a corrected p ≤ 0.05 was chosen
as the threshold value. The GO term (p ≤ 0.05) is defined as
significantly enriched terms of DEGs. Pathway annotations
of differential gene expression were conducted to understand
gene function through BLASTX of the KEGG database. The
raw reads were deposited in the NCBI Short Read Archive with
the accession number SRP075203. The assembled unigenes are
shown in Additional File 1.

Analysis of DEGs
After filtering the low-quality data, all the tags were aligned
to the unigenes. Similar to credibility interval approaches
reported for the analysis of SAGE data (Vêncio et al., 2003),
we employed IDEG6 (Romualdi et al., 2003) to identify mRNAs
showing statistically significant differences based on their relative
abundance (as reflected by the total count of individual sequence
reads) between the two libraries. The general chi-square test was
conducted, as it has been proven to be one of the most efficient
tests. Finally, genes with p ≤ 0.01 and fold change ≥ 2 or ≤ 0.5
were marked significantly different between the two libraries.

qRT-PCR Analysis of DEGs
The DGE results were verified by real-time qRT-PCR analysis,
using the same RNA samples for library construction. Two
developing stages of buds (∼2mm in length, at tetrad stage;
3–5mm in length, at or after uninucleate stage) were chosen for
expression validation. First-strand cDNA was synthesized using
the Revert Aid First Strand cDNA Synthesis Kit (Thermo, USA)
from 1200 ng total RNA. Gene-specific primers were designed
for the selected unigene sequences (Additional File 2). Reactions
were conducted with the SYBR PrimeScriptTM RT-PCR Kit
(TaKaRa, China) in the Bio-Rad CFX96 instrument. The PCR
cycling was denatured using a program of 95◦C for 10 s and
40 cycles of 95◦C for 5 s and 55◦C for 30 s. Three biological

replicates for each sample and three technical replicates were
conducted, and the relative expression level was calculated using
the 2−11Ct method. Then, B. napus actin was used to normalize
gene expression.

RESULTS

Phenotypic Characterization of Fertile and
Sterile Floral Buds
The flower organ in rapeseed comprises the sepal, petal, stamen,
and pistil. The male reproductive organ in normally developed
rapeseed flower has four stamens longer than the other two
stamens. Each stamen comprises the filament and anther, which
are located at the top of each flower (Figure 1B). However, sterile
flowers were visually smaller than fertile flowers, and wrinkles
were clearly observed on sterile petals. During the developmental
process, the anthers and filaments in sterile flowers were shorter
than that in fertile flowers from the tetrad stage. The sterile
anthers produced only a few or no pollen, but the pistil was
normal (Figure 1A).

Anther development in the fertile and sterile lines were
cytologically observed in different developmental stages to
determine the abortion stage of the sterile line. At the PMC
stage, primary parietal cells were differentiated into the anther
epidermis, endothecium, middle wall layers, and tapetum after
periclinal division and surrounded the microspore mother cells,
which were in the middle of each pollensac (Figure 2B1). At
the tetrad stage, PMC cells were separated and formed tetrads
after meiosis and were surrounded with callose. The middle
wall layers disappeared gradually, and the tapetum cells were
abundant with cytoplasm (Figure 2B2). At the uninucleate stage,
the microspores were mostly occupied with central vacuole,
with the nucleus squeezed to the edge, and tapetum cells
started to degrade (Figure 2B3). Afterward, the microspores
were differentiated into pollen grains, which were released after
the breakdown of pollen sac wall (Figures 2B4,B5). Compared
with the maintainer line, tapetum cells in the sterile line were
observed with vacuolation during the microsporocyte and tetrad
stages (Figures 2A1,A2), although they could form pollensac.
In the uninucleate stage, tapetum cells were dissolved and
moved to the center of the pollensac, and the cytoplasm
was condensed and located at the center of microspores
released from the tetrad (Figure 2A3). After the late uninucleate
stage, microspores failed to separate and no mature pollen
was formed, which were degraded together with tapetum
cells (Figures 2A4,A5). The main reason for sterility was the
obstacle in the degradation of tapetum cells, which hindered
the necessary nutrition that microspores needed. We observed
that the abortion of this sterile line occurred during the tetrad
stage.

Transcriptome Sequencing and Assembly
After removing low-quality tags in the raw data, 36,539,702
and 43,903,006 clean tags were obtained in the sterile and
fertile lines, respectively (Additional File 3). A total of
195,568 unigenes (1326.8 bp on average) were obtained from
clean data (average length = 96 bp) by de novo assembly
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FIGURE 1 | Phenotypic characterization of fertile and sterile floral buds. (A) Phenotype of sterile floral buds and (B) phenotype of fertile floral buds. Sp,

sporogenous cell; PMC, pollen mother cell; Td, tetrad stage; early Uni, early uninuclear stage; late Uni, late uninuclear stage; MP, mature pollen.

FIGURE 2 | Comparison of sterile (A1–A5) and fertile (B1–B5) anther development with toluidine blue O staining. Bar = 10 µm for all of the stages. Ep,

epidermis; En, endothecium; ML, middle layer; T, tapetum; Ms, microspore; MP, mature pollen.

with the Velvet and Oases software (Additional File 4).
Considering the N50 value and average length, we select
k-mer= 51 for de novo assembly. Meanwhile, 184,146 unigenes
(94.2%) were equal to or greater than 200 bp and 109,168
unigenes (55.8%) were equal to or greater than 1000 bp
(Table 1).

Functional Annotation
For functional annotation, the 195,568 unigenes were subjected
to BLASTX searches against the sequences in the Swiss-
Prot, non-redundant protein sequences in the National Center
for Biotechnology Information (NCBI; NR), and Clusters of
Orthologous Groups (COG) databases (E ≤ 1e−5). A total
of 122,380 (62.6%), 186,245 (95.2%), and 70,315 (36.0%)
unigenes were annotated in the Swiss-Prot, NR, and COG
databases, respectively. Meanwhile, 68,429 unigenes (35.0%)
were well annotated in all of the databases and 186,752
unigenes (95.5%) were identified with annotation at least in
one databases (Figure 3). In the COG database, these unigenes

were classified into 24 functional groups, including general
function prediction only (23.61% of unigenes), posttranslational
modification, protein turnover, chaperones (9.4% of unigenes),
and nuclear structure (0.04% of unigenes) (Figure 4). All
the unigenes were displayed by searching GO database and
classified into three hierarchies, cellular location, molecular
function, and biological process. Of the 45 GO groups,
unigenes were mainly classified in cell and cell part (33.90%
of unigenes), binding (48.37% of unigenes), and metabolic
process (33.99% of unigenes). Only a few unigenes were
classified into virion, locomotion, and viral reproduction
(Figure 5).

Differential Gene Expression between
Sterile and Fertile Buds
The expression abundance of tag-mapped genes was analyzed
by counting the number of transcripts per million (TPM). We
noted that unigenes in the fertile and sterile buds showed high
expression levels in several basic bioprocesses. For example,
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TABLE 1 | Statistic of assembly length (by Velvet and Oases software,

k-mer = 51).

Length Number of transcripts Percent (%)

≥200 184,146 94.2

≥300 169,210 86.5

≥400 159,008 81.3

≥500 150,398 76.9

≥600 142,080 72.6

≥700 133,893 68.5

≥800 125,651 64.2

≥900 117,243 59.9

≥1000 109,168 55.8

≥1500 70,525 36.1

≥2000 41,073 21.0

FIGURE 3 | Unigenes annotated with the public databases. The numbers

of annotated unigenes were signified in the different regions.

unigene304 (TPM = 663.76 in Fer and TPM = 1517.84 in Ste)
encodes ribulose bisphosphate carboxylase that participates in
energy production and conversion; unigene24 (TPM = 610.47
in Fer and TPM = 496.96 in Ste) encodes ubiquitin, which
functions in cellular processes and signaling; and unigene78636,
which is involved in RNA transport, showed high expression
levels in fertile and sterile buds. With the threshold p ≤

0.01 and fold change ≥2 or ≤0.5, 7811 unigenes (3.92%)
were identified with expression differences between sterile and
fertile lines, of which 1736 unigenes were upregulated and
6.075 unigenes were downregulated in the sterile line compared
with the fertile line (Table 2 and Additional File 5). These
DEGs with at least two-fold differences in the two libraries
are shown in Figure 6. The red and green dots represented
transcripts higher or lower in abundance for more than two-
fold in the sterile library, respectively. The blue dots represented
transcripts that differed less than two-fold between the two
libraries, which were arbitrarily designated as “no difference in
expression.”

Pathway Analysis and GO Annotation of
DEGs
Different genes cooperate to achieve their biological functions.
Pathway-based analysis helps in further understanding
the biological functions of DEGs. The upregulated and
downregulated unigenes were submitted to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Automatics
Annotation Server and classified using the single-directional best
hit method (Kanehisa et al., 2008). Most of the upregulated
unigenes functioned as transcription factors (TFs). By
contrast, a large number of the downregulated unigenes
functioned as lipid biosynthesis proteins, chaperones and
folding catalysts, protein kinases, prenyltransferases, peptidases,
ubiquitin systems, translation factors, and TFs (Table 3).
GO annotation of DEGs revealed that, compared with the
fertile line, the upregulated unigenes in the sterile line mainly
functioned in the binding, cellular process, cell, and cell
part. In addition, downregulated unigenes mainly functioned
in the catalytic activity, binding, and metabolic process
(Figure 7).

GO enrichment analysis of functional significance was
conducted to reveal significantly enriched GO terms
of DEGs. The GO term with p ≤ 0.05 was defined as
significantly enriched GO term of DEGs. For molecular
function, significantly enriched GO terms of DEGs included
catalytic activity, ATP binding, oxidoreductase activity,
transferase activity (transferring phosphorus-containing
groups), and zinc ion binding (Additional File 6). For
enriched biological processes, 10 GO terms of DEGs
were available, which participated in the oxidation–
reduction process, pollen development, transmembrane
transport, carbohydrate metabolic process, cellular
metabolic process, lipid metabolic process, fatty acid
biosynthetic process, response to oxidative stress, cell wall
modification, and cellular lipid metabolic process (Additional
File 7).

Genes Related to Pollen Development
The development of pollen is a fundamental and complex
process in flowering plants. Pollen is essential for propagation
and evolution. As a model plant, Arabidopsis thaliana has
been well investigated for this bioprocess. Therefore, all of the
unigenes identified in this study were annotated to the TAIR
database. Unigenes annotated to 15 genes regulating pollen
development (from AG to MS2) were analysized (Higginson
et al., 2003; Koizuka et al., 2003; Yang et al., 2003, 2005). One
gene encoding tapetum determinant 1 (BnTPD1, unigene40544)
was significantly upregulated in the sterile line than in the fertile
line (log2ratio = 2.128). We determined that 13 unigenes were
downregulated in the sterile line, including BnAG (unigene560,
log2ratio = −5.517), BnNZZ/SPL (unigene15428, log2ratio
= −1.951), BnEMS1 (unigene4387, log2ratio = −2.569),
BnSERK1 (unigene11458, log2ratio = −2.206), BnDYT1
(unigene31429, log2ratio = −3.135), BnMYB99 (unigene2438,
log2ratio = −7.081), and BnMYB26 (unigene14326, log2ratio =

−2.147). These genes mainly participated in the formation and
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FIGURE 4 | COG functional classification. All of the unigenes aligned in the COG database were sorted into 24 clusters.

FIGURE 5 | Classification of GO annotations. The x-axis indicates the subcategories; the left y-axis indicates the percentage of a subcategory of genes in that

category; and the right y-axis indicates the number of unigenes in a subcategory.
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differentiation of tapetum. Moreover, BnTDF1 (unigene5833,
log2ratio = −5.56), BnAMS (unigene472, log2ratio = −6.74),
BnMYB103 (unigene25542, log2ratio = −6.639), BnMS1
(unigene17214, log2ratio = −5.98), BnMS2 (unigene1036,
log2ratio = −8.279), and BnA6 (unigene90, log2ratio =

8.251) relate to the functional regulation of tapetum at the
later developmental stage, such as degradation of callose and
formation of pollen wall. We also identified unigenes with
no significant expressional difference, and several other genes
were unidentified in the sterile and fertile lines (Additional
File 8).

Genes Involved in Carbon Metabolism
Accumulation of starch is necessary for the development
of microspore. In other words, abundance of starch is an
important characteristic of fertile pollen. Genes participated
in carbon metabolism were differentially expressed between
fertile and sterile lines. Altered expression of numerous genes
involved in pentose and glucuronate interconversions, starch
and sucrose metabolism, and amino sugar and nucleotide
sugar metabolism were observed (Additional File 5). With
regard to pentose and glucuronate interconversions, 13
genes were significantly downregulated, including 6 genes
encoding aldehyde dehydrogenase (unigene242, unigene1535,
unigene2791, unigene5839, unigene7055, and unigene7131), 4
genes encoding pectinesterase family protein (unigene7776,
unigene8408, unigene17104, and unigene25928), and 3
genes encoding pectate lyase family protein (unigene13148,
unigene15151, and unigene31020). Moreover, 9 genes
related to starch and sucrose metabolism were significantly
downregulated, including 5 genes encoding pfkB-type
carbohydrate kinase family protein (unigene981, unigene2366,
unigene4077, unigene16521, and unigene20485), 1 gene
encoding beta-glucosidase (unigene4620), 2 genes encoding
glycosyl hydrolase (unigene13516 and unigene17104), and
1 gene encoding cell wall invertase (unigene13728). Of
the genes mentioned above, unigene8408, unigene17104
and unigene13148 were not identified in sterile line. Two
genes participating in amino sugar and nucleotide sugar
metabolism were downregulated, encoding mannose-6-
phosphate isomerase (unigene25396, log2ratio = −2.859) and
6-phosphofructokinase (unigene28654, log2ratio = −2.907),
respectively.

DEGs Involved in Citrate Cycle
[Tricarboxylic Acid (TCA) Cycle] and
Oxidative Phosphorylation
The mitochondria is an important site for numerous metabolic
pathways, including the TCA cycle, respiratory electron transfer,
and ATP synthesis (Barrientos, 2003; Reichert and Neupert,
2004; Logan, 2006). The recombination and rearrangement
of mitochondrial genomes could cause dysfunction and
lead to CMS. Flower phenotypic variation or defection
in pollen formation are presumed as secondary effects of
mitochondrial mutation, and the primary defect may be a
reduction in the efficiency of respiration or the impairment

TABLE 2 | Differentially expressed transcripts in sterile and fertile buds.

Class Number Percentage (%)

Total transcripts 195,568 100

Expressed in Fer 193,171 98.77

Expressed in Ste 184,945 94.57

Expressed in both 182,548 93.34

Expressed only in Fer 10,623 5.43

Expressed only in Ste 2,397 1.23

Differentially expressed transcripts (p ≤ 0.01 and

ratio ≥2 or ≤0.5)

Total 7811

Up 1736

Down 6075

of other mitochondrial functions. We determined that six
unigenes participating in the TCA cycle were significantly
downregulated, with expressions increased by 3.43–53.47-folds
in Fer, such as unigene12291 encoding a subunit of aconitate
hydratase, unigene5423 encoding a subunit of citrate synthase,
unigene232 encoding phosphoenolpyruvate carboxylase 2,
unigene2462 encoding peroxisomal nad-malate dehydrogenase
1, unigene579 encoding 2-oxoglutarate dehydrogenase E1
component, and unigene40435 encoding the subunit B2 of
ATP citrate lyase (Additional File 5). Citrate synthase, as a
key enzyme of the TCA cycle, functions in the formation of
citrate using acetyl-CoA and oxaloacetic acid as substrate. We
also identified 11 DEGs related to the electron transport chain
and oxidative phosphorylation, which were downregulated in
the sterile line compared with the fertile line. For instance,
four genes (unigene1243, unigene5691, unigene46531, and
unigene31126) encoding subunits of ATPase, three genes
(unigene7780, unigene56318, and unigene27486) encoding
subunits of pyrophosphorylase, unigene26033 encoding
subunits of cytochrome oxidase, unigene15953 and unigene952
encoding NADH dehydrogenase, and unigene1560 encoding
subunit of ubiquinol oxidase were included (Additional
File 9).

Genes Involved in Oxidoreductase Activity
In the present study, oxidoreductase activity is one of the
most enriched GO terms. A total of 145 DEGs were involved
in oxidoreductase activity, including 36 members acting on
the aldehyde or oxo group of donors, with NAD or NADP
as acceptor. For instance, fatty acyl-CoA reductase (alcohol-
forming)/oxidoreductase (unigene1036 and unigene7520),
also called male sterility 2 (MS2), acting on the CH–CH
group of donors, with NAD or NADP as acceptor, was
more abundant in the fertile line. Other DEGs were 3-
chloroallyl aldehyde dehydrogenase/aldehyde dehydrogenase
(unigene1535, unigene5839, and unigene7055), aldehyde
oxidase (unigene3230, log2ratio = −2.686), NAD or NADH
binding/catalytic/glyceraldehyde-3-phosphate dehydrogenase
(unigene1766, log2ratio = −1.898), cytosolic factor family
protein (unigene12736 and unigene27821), and several unnamed
oxidoreductase members (Additional File 5).
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FIGURE 6 | Differentially expressed unigenes and corresponding genes in the Ste and Fer lines. Red dots represent the upregulated transcripts in the sterile

library, green dots denote the downregulated transcripts in the sterile library, and blue dots indicate the transcripts that did not change significantly. The parameters

“p ≤ 0.01” and “fold change ≥2 or ≤0.5” were used as the threshold to evaluate the significance of gene expression difference.

Differentially Expressed Pentatricopeptide
Repeat (PPR) Proteins
Proteins encoding the PPR motif are predicted as site-specific,
RNA-binding adaptor proteins that mediate the interactions
between RNA substrates and relative enzymes (Lurin et al.,
2004; Stern et al., 2004; Shikanai, 2006). PPR proteins play
important role in plant mitochondrial biogenesis (Wen et al.,
2003). Most of the cloned restorer genes encode mitochondria-
targeted PPR proteins (Brown et al., 2003; Desloire et al.,
2003; Kazama and Toriyama, 2003; Koizuka et al., 2003;
Akagi et al., 2004; Wang et al., 2006). In this study, 12
genes encoding PPR proteins (unigene1911, unigene16513,
unigene16881, unigene17672, unigene20560, unigene21040,
unigene23771, unigene27924, unigene28403, unigene40662,
unigene42447, and unigene44799) were downregulated and one
gene (unigene57904) was upregulated (Additional File 5). These
PPR proteins were candidates for analyzing the link between
nuclear and mitochondrial gene expression.

Confirmation of DEGs by Quantitative
Reverse Transcription Polymerase Chain
Reaction (qRT-PCR)
We randomly selected 16 genes for qRT-PCR assays to
confirm the reliability of the Illumina/Solexa sequencing
technology. The corresponding primers are listed in Additional
File 2. The results showed that the expression of 14 genes
were consistent between qRT-PCR and RNA-seq analyses
(Figure 8). In qRT-PCR, unigene39076 and unigene36457
showed no difference in the fertile and sterile buds, whereas
RNA-Seq analysis indicated a significant difference. The

inconsistency between qRT-PCR and RNA-seq analyses
of certain genes can be likely attributable to the fact that
RNA-seq was more sensitive in the detection of low-
abundance transcripts and small expressional changes than
qRT-PCR.

DISCUSSION

Some considerable differences from the morphology of floral
organs between sterile and fertile lines were observed. And
by comparing different anther developmental stages between
the two lines through microscope observation, we found that
anther development in SaNa-1A was abnormal since the tetrad
stage, and the development of microspores ceased during the
uninucleate stage.

Subsequently, the transcriptome of fertile and sterile buds
in rapeseed were acquired using the Illumina sequencing. A
total of 195,568 unigenes were obtained, and 4% of them
(7811 unigenes) were identified with significant expression
differences, indicating that, although the bud development is
a complicated and polygenic process, expressional changes
in a small number of genes can alter the trait observably.
All the DEGs could be categorized into 35 classifications by
GO functional analysis, which were involved in biochemistry,
metabolism, growth, development and so on (Figure 7). For
enriched biological processes, ten GO terms of DEGs were
involved in oxidation–reduction process, pollen development,
transmembrane transport, carbohydrate metabolic process,
cellular metabolic process, lipid metabolic process, and so on
(Additional File 7). These DEGs would be candidates for further
research.
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TABLE 3 | KEGG annotation of DEG unigenes.

Pathway Total number of unigenes DEGs

Total Up Down

Metabolism; metabolism of terpenoids and polyketides; prenyltransferases [ko01006] 327 63 0 63

Metabolism; lipid metabolism; lipid biosynthesis proteins [ko01004] 678 85 0 85

Metabolism; glycan biosynthesis and metabolism; proteoglycans [ko00535] 13 1 0 1

Metabolism; glycan biosynthesis and metabolism; glycosyltransferases [ko01003] 1429 27 3 24

Metabolism; enzyme families; protein kinases [ko01001] 1496 70 1 69

Metabolism; enzyme families; peptidases [ko01002] 1895 61 7 54

Metabolism; enzyme families; cytochrome P450 [ko00199] 200 22 9 13

Metabolism; energy metabolism; photosynthesis proteins [ko00194] 503 5 1 4

Metabolism; amino acid metabolism; amino acid related enzymes [ko01007] 985 38 3 35

Genetic information processing; translation; translation factors [ko03012] 833 43 1 42

Genetic information processing; translation; ribosome biogenesis [ko03009] 1300 26 0 26

Genetic information processing; translation; ribosome [ko03011] 1491 18 1 17

Genetic information processing; transcription; transcription factors [ko03000] 1960 172 38 134

Genetic information processing; transcription; spliceosome [ko03041] 2149 29 1 28

Genetic information processing; replication and repair; DNA replication proteins [ko03032] 1090 13 1 12

Genetic information processing; replication and repair; DNA repair and recombination proteins [ko03400] 1586 22 10 12

Genetic information processing; replication and repair; chromosome [ko03036] 2817 64 2 62

Genetic information processing; folding, sorting and degradation; ubiquitin system [ko04121] 2003 44 1 43

Genetic information processing; folding, sorting and degradation; SNAREs [ko04131] 441 10 1 9

Genetic information processing; folding, sorting and degradation; proteasome [ko03051] 836 5 0 5

Genetic information processing; folding, sorting and degradation; chaperones and folding catalysts [ko03110] 1031 82 5 77

Environmental information processing; signaling molecules and interaction; ion channels [ko04040] 442 23 1 22

Environmental information processing; signaling molecules and interaction; GTP-binding proteins [ko04031] 598 13 3 10

Environmental information processing; signaling molecules and interaction; glycan binding proteins [ko04091] 84 14 0 14

Environmental information processing; signaling molecules and interaction; G protein-coupled receptors [ko04030] 101 2 1 1

Environmental information processing; signaling molecules and interaction; cellular antigens [ko04090] 64 3 0 3

Environmental information processing; signaling molecules and interaction; bacterial toxins [ko02042] 29 4 1 3

Environmental information processing; membrane transport; transporters [ko02000] 148 11 1 10

Environmental information processing; membrane transport; secretion system [ko02044] 299 7 0 7

Cellular processes; cell motility; cytoskeleton proteins [ko04812] 601 2 0 2

Pollen formation in flowering plants depends on the
differentiation and interaction of the reproductive cells named
microsporocytes and the somatic cells that form the tapetum.
The microsporocytes generate microspores, and the tapetum
cells support the nutrition for development of mature pollen
grains. A comparison of morphological structure during anther
development revealed that the tapetum in the sterile line
was vacuolated during the tetrad stage. Moreover, microspore
development was aberrant in the sterile line during the
uninucleate stage compared with the fertile line, resulting in
pollen abortion. The TPD1 gene is necessary for tapetum cell
specialization in the Arabidopsis anther (Yang et al., 2003).
In male sterile mutant tpd1, the precursors of tapetum cells
were differentiated and developed into microsporocytes instead
of tapetum. Ectopic overexpression of TPD1 in the wild-type
Arabidopsis carpel caused a significant increase in the number
of carpel cells. Furthermore, the activation of cell division in
the transgenic carpel by TPD1 overexpression was dependent
on EMS1/EXS (Yang et al., 2005). AtMYB103, as a member of
the R2R3 MYB family, is uniquely expressed in the tapetum and

anther. In the transgenic line with downregulated AtMYB103,
the shape of the pollen was distorted, the content of the
cytoplasm was reduced or no cytoplasm could be observed, and
early degeneration of the tapetum occurred (Higginson et al.,
2003). Moreover, AMS acts as a master regulator coordinating
pollen wall development and sporopollenin biosynthesis in
Arabidopsis (Xu et al., 2014). In the present study, we observed
that the expression of BnAG, BnSPL/NZZ, BnEMS1, BnAG,
and BnDYT1 was significantly downregulated in the sterile
lines, which might cause abnormal tapetum development in
the sterile line. The observed downregulation of BnAMS,
BnMYB103, BnMS1, and BnMS2 in the sterile line could
directly block the synthesis of sporopollenin in the pollen wall.
It has been reported that nuclear-mitochondrial interaction
results in CMS in previous studies (Chase, 2007; Jing et al.,
2012). These genes were downregulated, which consequently
led to the cease of microspores development in the sterile
buds.

Rearrangements of mitochondria genome could alter
the expression of genes involved in respiration and ATP
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FIGURE 7 | GO annotations of DEGs. The x-axis indicates the subcategories; the left y-axis indicates the percentage of a subcategory of genes in that category;

and the right y-axis indicates the number of unigenes in a subcategory.

synthesis, affecting ATP formation and physiological processes
in mitochondria (Bergman et al., 2000). Depression in ATP
production or carbohydrate accumulation has been identified
by other researchers in “late stage” CMS flowers (Datta et al.,
2002). In this study, six DEGs involved in the TCA cycle
were downregulated in the sterile line. DEGs involved in
respiration/ATP synthesis and oxidoreductase activity were
also identified. And 11 DEGs were involved in the oxidative
phosphorylation pathway, which affects NADH dehydrogenase,
pyrophosphorylase, and ATP synthase, and these genes were
downregulated in the sterile line. Oxidoreductase activity was
one of the most enriched GO terms, whereas oxidative stress
during microsporogenesis was assumed to induce premature
abortion of tapetum cells because of programmed cell death
in CMS lines of sunflower and rice (Balk and Leaver, 2001;
Chinnery, 2003; Li et al., 2004). Expressional alternation
of numerous genes involved in pentose and glucuronate
interconversions, starch and sucrose metabolism, and amino
sugar and nucleotide sugar metabolism were also observed.
The nature of mitochondrial genes influencing the expression
of nuclear genes was unclear. Further investigations on them
will help illuminating the primary targets and downstream
components of CMS-associated mitochondrial signaling
pathways in the sterile line.

Nuclear genes are important to control the biosynthesis
and function of mitochondria (Andersson et al., 2003).
Approximately 10% of eukaryotic nuclear genes encode proteins
that are targeted to mitochondria following the synthesis of
cytosolic ribosomes (Fisk et al., 1999). The majority of PPR
proteins are targeted to plastid or mitochondria (Nakamura et al.,

2003), and many genetic and biochemical studies conclude that
PPRs directly bind to a specific RNA sequence and promote
anterograde regulation, such as posttranscriptional splicing,
processing, editing, or regulating mRNA stability (Kotera et al.,
2005; Schmitz-Linneweber et al., 2005; Okuda et al., 2006, 2007;
Hattori et al., 2007; de Longevialle et al., 2007). To date, 60%
of 450 PPR proteins in Arabidopsis were predicted to be related
to mitochondria. PPR motifs have been proposed to possess
binding properties to proteins and RNA (Small and Peeters,
2000; Williams and Barkan, 2003). Mutation of these genes in
humans is accompanied by cytochrome c oxidase deficiency
(Mootha et al., 2003; Shadel, 2004). PPR proteins are valuable
candidates for nuclear-encoded factors controlling distinct steps
of transcript maturation in mitochondria. Many of these PPR
proteins may be essential to the CMS systems, such as the Rf
gene encoding a member of the PPR (Yamagishi and Bhat, 2014).
PPR proteins have also been reported as targets of different
miRNAs (Rhoades et al., 2002; Sunkar and Zhu, 2004). In this
study, 13 PPR proteins showed differential expression between
two rapeseed lines, including 1 upregulated PPR protein and
12 downregulated PPR proteins in the sterile line. These PPR
proteins are candidates for analyzing the link between nuclear
and mitochondrial gene expression.

CONCLUSIONS

In this study, we compared the transcriptome data between
floral buds of the sterile and fertile lines in rapeseed using
high-throughput transcriptomic sequencing. A total of 7811
genes were identified with expression differences between the 2
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FIGURE 8 | qRT-PCR verification of differentially expressed unigenes. S denotes the sterile sample and F denotes the fertile sample.

rapeseed lines, of which 1736 genes were upregulated and 6075
genes were downregulated in the CMS line compared with the
maintainer line. GO-based and pathway-based analyses indicate
that these DEGs were related to diverse molecular functions. The
results provide a basis for future research on the CMSmechanism
in SaNa-1A, fertility restoration, and improvement of agronomic
traits. We should focus on characterizing the functions of these
candidate genes.
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