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Incessant rise in ambient temperature is threatening sustainability of maize productions,

worldwide. Breeding heat resilient synthetics/hybrids is the most economical tool while

lack of knowledge of gene action controlling heat and yield relevant traits in maize

is hampering progress in this regard. The current study, therefore, was conducted

using analyses of generation mean and variance, and narrow sense heritability (h2n)

and genetic advance as percent of mean (GAM%). Initially, one hundred inbred lines

were evaluated for cell membrane thermo-stability and grain yield per plant on mean

day/night temperatures of 36.6◦C/22.1◦C in non-stressed (NS) and 42.7◦C/25.7◦C in

heat-stressed (HS) conditions. From these, one tolerant (ZL-11271) and one susceptible

(R-2304-2) genotypes were crossed to develop six basic generations, being evaluated

on mean day/night temperatures of 36.1◦C/22.8◦C (NS) and 42.3◦C/25.9◦C (HS)

in factorial randomized complete block design with three replications. Non-allelic

additive-dominance genetic effects were recorded for most traits in both conditions

except transpiration rate, being controlled by additive epistatic effects in NS regime.

Dissection of genetic variance into additive (D), dominance (H), environment (E) and

interaction (F) components revealed significance of only DE variances in HS condition

than DE, DFE and DHE variances in NS regime which hinted at the potential role of

environments in breeding maize for high temperature tolerance. Additive variance was

high for majority of traits in both environments except ear length in NS condition where

dominance was at large. Higher magnitudes of 2σ h2n and GAM% for cell membraneD,

thermo-stability, transpiration rate, leaf firing, ear length, kernels per ear and grain

yield per plant in both regimes implied that simple selections might be sufficient for

further improvement of these traits. Low-to-moderate GAM% for leaf temperature and

100-grain weight in both conditions revealed greater influence of genotype-environment

interactions, indicating ineffective direct selection and advocating for further progeny

testing. In conclusion, pyramiding of heritable genes imparting heat tolerance in maize

is achievable through any conventional breeding strategy and generating plant material

with lowest cellular injury and leaf firing, and higher transpiration rate, ear length, kernels

per ear and grain yield per plant.
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INTRODUCTION

Climate change and agriculture are interlinked and affect each
other (Hoffmann, 2013). Global warming, being the major
cause of climate change, is increasing the concentrations
of atmospheric greenhouse gases (GHGs) which slowly but
gradually are heating up earth’s temperature (Treut et al.,
2007; IPCC, 2014). Increase in temperature beyond optimum
may cause shifting of agricultural lands and shortening of
cropping periods (Porter, 2005). Heat stress is a worldwide
agricultural issue that can induce anatomical, biochemical and
morpho-physiological alterations in crop plants resulting in
heavy production losses (Wahid et al., 2007). It affects plant
development right from germination till final harvest. Short term
effects of high temperature stress may either be cellular injury or
cell death due to increased ion leakage caused by denaturation
of membrane proteins or increased fluidity of membrane lipids.
However, long term impact may be decrease in size of cells,
tissues and organs, thus, hampering plant growth (Schöffl et al.,
1998; Savchenko et al., 2002).

Being a member of C4 plant kingdom, high temperature
has both favorable and unfavorable effects on maize crop.
Optimum day (25–32◦C) and night (16.7–23.3◦C) temperatures
for maize plant lead to enhanced photosynthetic rate than
respiration resulting in rapid plant growth. However, plant
growth affected severely when optimum temperature decreases to
5◦C or increases beyond 32◦C (Steven et al., 2002). Detrimental
effects of heat stress include malfunctioning of reproductive
organs (desiccation of silk and pollen grains, reduced pollen
germination, increased flower abortion, fertilization failure and
shrunken seeds), photosynthetic acclimation and disrupting
other physiological processes directly and changing the pattern
of plant development indirectly (Sinsawat et al., 2004; Kim et al.,
2007; Ristic et al., 2009). Once pollination is accomplished,
then developing kernels depend entirely on the source of
photosynthates. Rise in temperature beyond 30◦C impacts the
activity ofRubisco inmaize, which in turn reduces photosynthesis
and ultimately decreases grain filling period and grain size
(Steven et al., 2002). A temperature of 35◦C during pollination
and grain filling stages may reduce grain yield on a daily basis by
101 kg ha−1 (Smith, 1996). Likewise, an increase in mean daily
temperatures from 22 to 28◦C during the grain filling period
may cause 10–42% yield losses (Lobell and Burke, 2010; Rowhani
et al., 2011; Cairns et al., 2013).

Heat tolerance can be accomplished through genetic
management approach. Development of stress tolerant varieties
would be a cheap input technology that would play a vital role in
lessening the harmful impacts of abiotic stresses on agricultural
production (Saxena and O’Toole, 2002; Tester and Langridge,
2010). As heat tolerance is a quantitatively inherited trait and
is more prone to genotype-environment interactions, therefore
building resistance against it, is a complex task. Identification
of superior genetic resources and introgression of intended
genes in promising genotypes are the primary steps involved
in the development of any genetic management technology
(Chen et al., 2012). Prior to gene transfer, an understanding of
genetic effects involved in inheritance of various morphological

and physiological parameters controlling heat tolerance in the
genetic material, being researched, is necessary to divert efforts
in that direction and to formulate effective selection criteria
to accomplish this goal. Literature pertaining to gene action
controlling important plant traits of maize under heat stress
is scanty. In maize, both additive and dominance gene actions
control inheritance pattern of leaf temperature (Hussain et al.,
2009), cell membrane thermo-stability (Saleem et al., 2015),
leaf firing (Kaur et al., 2010), ear length (Ahmed et al., 2000),
kernels per ear (Muraya et al., 2006), 100-grain weight (Wu,
1987) and grain yield per plant (Iqbal et al., 2007). However for
transpiration, non-additive genetic effects are more crucial in
comparison to additive gene action (Akbar et al., 2009). A few
researchers also reported contrasting genetic effects for these
traits (Tabassum and Saleem, 2005; Kumar and Sharma, 2007;
Kanagarasu et al., 2010). Various biometrical techniques could
be used for appraising gene action. Among these, generation
mean analysis (GMA) is the most widely used which provides
information not only on presence or absence of epistasis, but
also determines both additive and dominance variances and
effects (Singh and Narayanan, 1993). The present research work,
therefore, was undertaken to assess the genotypic variation
for heat tolerance in maize, identifying two most contrasting
genotypes for developing plant material in order to assess genetic
effects involved in inheritance of various metric traits in basic six
generations (P1, P2, F1, F2, BC1, and BC2) under heat-stressed
and non-stressed environments.

MATERIALS AND METHODS

In order to explore the potential and genetics of heat tolerance in
maize, research works were conducted during spring (February-
April) and autumn (July-October) seasons of 2012–2015 in
Pakistan at the experimental sites of Department of Plant
Breeding and Genetics, University of Agriculture, Faisalabad
(31.43◦ N, 73.06◦ E) and Plant Physiology Section, AARI,
Faisalabad (31.25◦ N, 73.09◦ E).

Experiment 1: Screening for Identification
of Parents
During February 2012, one hundred maize inbred lines
collected from various sources (Table 2) were sown in two sets,
concurrently. Layout design used was alpha lattice (10× 10) with
10 blocks, each comprising a total of 10 entries. Randomization
in all the three replications was done using ALPHA software
(Barreto et al., 1991). Row-to-row and plant-to-plant distances
maintained were 75 and 25 cm, respectively using manual seed
dibblers @ two seeds per hole which were thinned to one
healthy seedling preceding 7 days after germination. The plot size
measured for each entry was 2.81 m2, accommodating a total
of fifteen plants in a single replication. All the recommended
cultural practices comprising irrigations, fertilizers, insecticides
were applied as and when required for both the treatments
(Arain, 2013). Out of the two experimental sets, one was raised
completely inside the tunnel (heat-stressed) while the other in
open field (non-stressed) conditions. The set of inbred lines sown
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TABLE 1 | Temperature prior to the initiation of reproductive phase upto

physiological maturity of maize crop (months of April and May).

Temperature (◦C) Screening trials 2013 Evaluation trials 2015

Non- Heat- Non- Heat-

stressed stressed stressed stressed

Minimum Range 14.0–30.8 24.2–31.4 15.6–32.2 18.3–34.3

Mean 22.1 25.7 22.8 25.9

Maximum Range 28.5–46.1 36.8–50.7 25.2–45.5 31.6–50.4

Mean 36.6 42.7 36.1 42.3

in the tunnel was exposed to high temperature stress by covering
it with plastic sheet just prior to the onset of reproductive period
upto the crop maturity (whole months of April and May). For
recording the observations on different parameters, ten guarded
plants were selected in a replication of each set. The humidity
inside the plastic tunnel was controlled by exhaust fans to avoid
any possible disease outbreak. The temperature recorded in non-
stressed (NS) and heat-stressed (HS) environments is given in
Table 1.

Appraisal of Plant Traits
Cell membrane thermo-stability (%) and grain yield per plant
(g) were measured in screening phase, while, leaf temperature
(◦C), transpiration rate (µg cm−2 S−1), cell membrane thermo-
stability (%), leaf firing (%), ear length (cm), kernels per ear, 100-
grain weight (g), and grain yield per plant (g) were appraised in
evaluation phase of experiment.

Cell membrane thermo-stability (CMT) was measured from
non-stressed and heat-stressed experiments using the procedure
of Sullivan (1972). With a punch machine, round leaf discs
of 0.75 cm in diameter were made after removing completely
expanded uppermost leaves. In two sets of 50ml glass tubes, 10
leaf discs were taken and washed slowly with de-ionized distilled
water by changing it three times to remove surface adhered
electrolytes. Then glass tubes were filled up to 10ml of distilled
water in order to submerge the washed leaf discs. Of the two sets,
one set of test tube was placed in a water bath at 45◦C for 1 h. Both
sets were then exposed to 22◦C temperature in an air conditioned
room for an overnight. Very next day, electrical conductivity of
each test tube sample was recorded with the help of LF 538 EC
meter after shaking it well. To kill the leaf tissues, both sets of test
tube samples were autoclaved at 121◦C temperature for 15min
at 15 Ibs pressure, which were allowed overnight to cool down
at 22◦C temperature. Subsequently, electrical conductivity was
recorded for second time. Under stress, the extent of membrane
integrity permits a measure of membrane stability to electrolyte
leakage. Relative cell injury percentage (RCI%), an appraisal of
cell membrane thermo-stability was worked out by using 1st and
2nd electrical conductivity readings. T and C indicate electrical
conductivity (EC) of heat-stressed and non-stressed sets of test
tube, and subscripts 1 and 2 refer to 1st and 2nd EC readings,
respectively.

RCI% = [1− {1− (T1/T2)}/{1− (C1/C2)}]× 100

Leaf temperature (LT) was recorded between 13.00 and 15.00 h
by using infrared thermometer (Raytek, Model Raynger R©

3i). Transpiration rate (TR) was recorded with the help of
porometer (Li Cor Steady State, Model Li 1600) which was
adjusted to existing environmental conditions with prevailed
temperature and light quantum using null gain adjustment
(NGA) procedure. Leaf firing (LF) was worked out by scoring
plant leaves showing heat burnt symptoms for each entry
while percent leaf firing (LF%) was estimated by dividing no.
of plants with leaf firing symptoms with total no. of plants
multiplied by 100 (Bai, 2003). Ears length from the selected
plants was measured in cm with the help of measuring tape
(Stanley Fat, Model 33-725). For determining kernels per
ear, kernels harvested from each ear of each selected plant
were counted separately and averaged thereafter. For 100-
grain weight (HGW), three samples each comprising randomly
selected 100 grains from produce of each selected plant were
weighed in grams with the help of an electronic balance
(Adam, Model NBL 12001e). Average was worked out for
each entry. Grain yield per plant (GYPP) was recorded in
grams by weighing total produce (grains) of selected plants
of each entry using an electronic balance (Adam, Model
NBL 12001e). Average was computed for each entry for
further use. Observations on physiological parameters like leaf
temperature, cell membrane thermo-stability and transpiration
rate were recorded from fully expanded upper most three leaves
before the onset of reproductive stage while morphological
traits such as ear length, kernels per ear, 100-grain weight
and grain yield per plant were measured on plant basis
at physiological plant maturity. Leaf firing was recorded
30 days after heat stress. Data measured for each trait in
a replication was averaged before utilization in statistical
analyses.

Screening of genotypes was based on parameters like cell
membrane thermo-stability (%) and grain yield per plant
(g). Accessions with lowest CMT (%) and highest GYPP (g)
were regarded as heat tolerant and vice versa. Cell membrane
thermo-stability, an important and reliable measure of heat
tolerance, has been largely used in assorting genotypes for
this purpose (Ristic et al., 1998; Chen et al., 2014). It is
negatively associated with yield as heat tolerant genotypes are
more stable and yield greater in comparison to heat susceptible
accessions (Azhar et al., 2009). Therefore, in order to keep the
selection criteria simple and effective, these two characters were
measured. Selection of the parents was done keeping in view
the actual performances of genotypes for CMT and GYPP in
non-stressed and heat stressed conditions. Assessment based
on absolute performances under contrasting environments has
been used previously by various researchers for the identification
of tolerant and susceptible genotypes (Azhar et al., 2005;
Akhter et al., 2007; Iqbal et al., 2011). The recorded data were
subjected to statistical analysis of variance technique to find
out significant differences among the inbred lines (Steel et al.,
1997). One way and two way variance analyses and scatter
plots were generated for both non-stressed and heat stressed
environments using MINITAB version 16.1.1 (Minitab., 2010)
software.
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Experiment 2 and 3: Development of
Breeding Populations
Two genotypes, No. 89 (ZL-11271) and No. 5 (R-2304-2)
were selected based on distinctiveness in responses to high
temperature stress. Inbred line ZL-11271 was designated as
heat tolerant parent (P1) with minimum relative cell injury
percentage (RCI %) and maximum grain yield per plant (GYPP)
while R-2304-2 as heat susceptible parent (P2) with highest
RCI (%) and lowest GYPP under both non-stressed and heat-
stressed conditions. These two most contrasting genotypes were
used for further development of genetic material. Falconer
(1952) suggested that a parent or a trait measured under two
environments will be considered as two instead of one. During
July 2013, both tolerant and susceptible parents were sown under
normal field conditions and crosses were attempted to obtain
filial generation one (F1)or hybrid (ZL-11271 × R-2304-2) seed.
One hundred F1 plants along with parents (P1, P2) were raised
in field during the months of February and July, 2014. Fifty
F1 plants were advanced by selfing to filial generation two (F2)
while the other fifty F1 plants (twenty-five each) were crossed
by pollinating with ZL-11271 (P1) and R-2304-2 (P2) to develop
backcrosses, BC1 (F1× ZL-11271) and BC2 (F1× R-2304-2)
generations, respectively.

Experiment 4: Evaluation of Genetic
Material
During February 2015, two sets each comprising same six
basic generations (P1, P2, F1, F2, BC1, and BC2) were
planted simultaneously in a plastic tunnel (heat-stressed) and
normal field (non-stressed) conditions in a factorial randomized
complete block design with three replications. Experimental
methodologies followed were same as in screening experiment.
Thirty plants were planted each for parents, F1 and sixty for back
crosses while three hundred for F2 generation in a replication.
For the purpose of recording the observations in each replication,
randomly guarded 20 plants from non-segregating (P1, P2, and
F1) populations while 30 plants from BC1, BC2, and 60 plants
from F2 generations were selected each from non-stressed and
heat-stressed treatments. Temperature data recorded is given in
Table 2.

BIOMETRICAL ANALYSES

Observations recorded on various morphological and
physiological parameters were utilized in nested randomized
complete block design (NRCBD) for the purpose of statistical
analyses to ignore or minimize replication effects in evaluating
heterogeneous segregating (BC1, BC2, and F2) breeding material
(Snedecor and Cochran, 1989). Generation mean and variance
components were analyzed in a computer program supplied by
Dr. H.S. Pooni, University of Birmingham using SAS R© 9.4 (SAS,
2014) Software and significance testing was done using t-test.
The coefficients used for dissecting sum of squares (SS) of six
basic generations were generated by using procedure of Little
and Hills (1978).

SS = (6ciYi)
2/r6ci

2

Where,

SS= Sum of squares of comparison
6 = Summation
Ci = Comparison coefficients
Yi = Generation totals
r= No. of replications

Generation Mean Analysis (GMA)
It was performed using Mather and Jinks (1982) procedure.

Y = m+ α[d]+ β[h]+ α2[i]+ 2αβ[j]+ β2[l]

Where,

Y=Mean of one generation
m=Mean of all generation
d= Sum of additive effects
h= Sum of dominance effects
i= Sum of additive× additive interaction (complementary)
j= Sum of additive× dominance
1= Sum of dominance× dominance interaction (duplicate).
α2, 2αβ and β2 are the coefficients of genetic parameters.

Means and variances of parents (P1, P2), BC1, BC2, F1 and
F2 generations used in the analyses were calculated from
individual plant data pooled over replications. A weighted
least square analysis was also performed on generation
means beginning with simplest model using parameter
m only. Further models of increasing complexity (md,
mdh, etc.) were fitted. The best fit model was selected
when estimate of χ2 was non-significant with all significant
parameters.

Generation Variance Analysis (GVA)
Components of a genetic variance may either be additive (D),
a heritable-fixable, dominance (H), a heritable-non-fixable and
epistatic (E) which is non-heritable.

Additive variance(D) = 4σ2F2 − 2(σ2 BC1 + σ2BC2)

Dominance variance(H) = 4σ2F2 − 1/2σ2D − σ2E

Environmental variance(E) = 1/3(σ2P1 + σ2P2 + σ2F1)

Interaction (F) = σ2BC1 − σ2BC2

Where,

F1 = Filial generation one
F2 = Filial generation two
BC1 = Backcross to P1
BC2 = Backcross to P2

A weighted least square analysis of variances was also performed
(Mather and Jinks, 1982). Models incorporating E, (D and E),
(D, H, and E), (D, F, and E), (D, H, F, and E) were tried. The
best fit model was selected when χ2 was non-significant with all
significant parameters.
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TABLE 2 | List of maize inbred lines evaluated in non-stressed and heat-stressed environments.

IL Name Source IL Name Source IL Name Source

1 F-128 MRS 34 Q-66 UAF 67 Y-54 MMRI

2 F-187 MRS 35 Q-67 UAF 68 Y-81 MMRI

3 F101-7-2-6 MRS 36 N-18 UAF 69 Y-91 MMRI

4 F-160 MRS 37 N-48-94 UAF 70 Y-101 MMRI

5 R-2304-2 MRS 38 PB-77 UAF 71 Y-52 MMRI

6 F-110 MRS 39 PB-7-1 UAF 72 Y-93 MMRI

7 F-189 MRS 40 52-B4 UAF 73 Y-42 MMRI

8 F-122 MRS 41 53-AP1 UAF 74 Y-36 MMRI

9 F-153 MRS 42 53-P4 UAF 75 Y-9 MMRI

10 F-164 MRS 43 82-P1 UAF 76 Y-15 MMRI

11 F-163 MRS 44 20-P2-1 UAF 77 Y-26 MMRI

12 F-107 MRS 45 L5-1 UAF 78 Y-21 MMRI

13 OH-8 UAF 46 L7-2 UAF 79 Y-18 MMRI

14 OH-28 UAF 47 70-NO2-2 UAF 80 Y-11 MMRI

15 OH-33-1 UAF 48 150-P1 UAF 81 Y-41 MMRI

16 OH-41 UAF 49 150-P2-1 UAF 82 Y-63 MMRI

17 OH-54-3A UAF 50 HY-7 UAF 83 Y-113 MMRI

18 W-64-SP UAF 51 IC-654 UAF 84 Y-83 MMRI

19 W-64-TMS UAF 52 JY-1 UAF 85 Y-53 MMRI

20 WM-13-RA UAF 53 UM-2 UAF 86 Y-89 MMRI

21 WF-9 UAF 54 Q-88 UAF 87 VL-106 CIMMYT

22 WFTMS UAF 55 A-427-2 UAF 88 ZL-11376 CIMMYT

23 W-187-R UAF 56 A-495 UAF 89 ZL-11271 CIMMYT

24 W-10 UAF 57 A-509 UAF 90 VL-1012835 CIMMYT

25 WA-3748 UAF 58 A-521-1 UAF 91 VL-1032 CIMMYT

26 W-82-3 UAF 59 M-14 UAF 92 VL-1033 CIMMYT

27 K-55-TMS UAF 60 A50-2 UAF 93 VL-108496 CIMMYT

28 G.P.F-9 UAF 61 A-239 UAF 94 VL0512386 CIMMYT

29 USSR-40 UAF 62 A-545 UAF 95 VL-109084 CIMMYT

30 USSR-150 UAF 63 A-556 UAF 96 VL-1029 CIMMYT

31 B-34 UAF 64 A-638 UAF 97 VL-0512420 CIMMYT

32 B-34-2B UAF 65 AES-204 UAF 98 ZL111008 CIMMYT

33 B-42 UAF 66 Antigua-1 UAF 99 VL107657 CIMMYT

100 ZL-111040 CIMMYT

IL, Inbred line; MRS, Maize Research Station, Faisalabad, Pakistan; MMRI, Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan; CIMMYT, International Maize and Wheat

Improvement Center, Mexico.

Narrow Sense Heritability (h2n) and Genetic
Advance (GA)
Estimates of narrow sense heritability for F2 generation
of all traits recorded under non-stressed and heat-stressed
conditions were calculated (Warner, 1952). Likewise, narrow
sense heritability estimates for F∞ generation were also
computed (Mather and Jinks, 1982).

h2nF2 = 0.5D/σ2F2

h2nF∞ = D/(D+ E)

Where,

D= Additive variance
E= Environmental variance

σ2F2 = Phenotypic variances

Genetic advance as percent of mean (GAM%) was determined
from genetic advance (GA) expressed as percentage of population
mean (Allard, 1960) for all the characters under study. Expected
genetic advance in next generation was calculated using the
procedure of Falconer and Mackay (1996).

GA = K× σp × h2n

Where,

K= Selection differential, being 2.06 at 5% selection intensity
σp = Phenotypic standard deviation of base population
h2n = Narrow sense heritability of the character under

selection
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TABLE 3 | Means squares of cell membrane thermo-stability and grain

yield per plant under non-stressed and heat-stressed environments.

Parameters DF Cell membrane

thermo-stability (%)

Grain yield per

plant (g)

ONE WAY ANALYSIS OF VARIANCE

Genotypes NS 99 600.68** 470.62**

HS 99 442.50** 243.99**

Error NS 198 1.883 35.200

HS 198 1.702 1.322

TWO WAY ANALYSIS OF VARIANCE

Genotypes (G) 99 1035.20** 609.30**

Temperature (T) 1 8233.10** 81739.5**

G × T 99 7.990** 105.300**

Error 398 1.790 20.200

DF, Degrees of freedom; NS, Non-stressed; HS, Heat-stressed.

**Significant at P ≤ 0.01.

RESULTS

Variance Analyses and Selection of Parents
One way analysis of variance revealed statistically significant
differences (P ≤ 0.01) among one hundred genotypes for
cell membrane thermo-stability and grain yield per plant in
non-stressed (NS) and heat-stressed (HS) conditions (Table 3).
Likewise, two way variance analyses also suggested significant
differences (P ≤ 0.01) among genotypes and temperature
treatments under which the experiments were conducted for
both cell membrane thermo-stability and grain yield per plant.
Significant (P ≤ 0.01) interaction of genotype-temperature (G
× T) suggested the existence of distinct responses among maize
inbred lines for cell membrane thermo-stability and grain yield
per plant under both the environments (Table 3).

For selecting desired parents, scatter plots were generated
by plotting mean estimates of genotypes for cell membrane
thermo-stability on X-axis and grain yield per plant on Y-axis
both under non-stressed and heat-stressed conditions. The graph
of non-stressed regime (Figure 1) for cell membrane thermo-
stability displayed only one genotype falling below 30% and
one above 90% on extreme scales, however, varied numbers
of genotypes were found among other scales with the highest
number between scales of 50–60%. For grain yield per plant,
least numbers of genotypes were recorded between extreme scales
of 35 g to 45 g and 85 g to 95 g in comparison to other scales
where distribution of genotypes was almost similar. Genotypes
89 and 5 were recorded at extreme scales of lowest to highest
for cell membrane thermo-stability and highest to lowest for
grain yield per plant, respectively in non-stressed conditions. The
scatter plot exhibiting genotypic cell membrane thermo-stability
in heat-stressed conditions (Figure 2) indicated that inbred lines
89 and 53 fall close to the lowest scale of 26% while inbred
lines 58, 98 and 5 were found near to highest scale of 76%.
Maximum genotypes fall in between 36 and 46% scale followed
by 46 and 56% scale for cell membrane thermo-stability. Least
numbers of genotypes were recorded for lowest scale of 17–27 g
and higher scale of 77–87 g, however, more than 75 percent
genotypes appeared between scales of 37–57 g regarding grain

yield per plant. Similar to non-stressed conditions, genotypes 89
(ZL-11271) and 5 (R-2304-2) were recorded on extreme scales of
cell membrane thermo-stability and grain yield per plant in heat-
stressed conditions, therefore, selected for developing breeding
material to conduct genetic studies of heat tolerance in maize.

Both these parents were used to develop six basic generations
which were investigated for various traits both in non-stressed
and heat-stressed environments. Significant differences (P ≤

0.01) among generations, parents (P1 vs. P2) and backcrosses
(BC1 vs. BC2) were observed in leaf temperature, cell membrane
thermo-stability, transpiration rate, leaf firing, ear length, kernels
per ear, 100-grain weight and grain yield per plant in both non-
stressed and heat-stressed conditions (Table 4). Non-significant
interaction of P’s vs. F1 was observed in leaf temperature in
heat-stressed and transpiration rate in non-stressed conditions.
Regarding back crosses and F2 population interaction (BC’s
vs. F2), non-significant estimates were recorded only for leaf
temperature and 100-grain weight in non-stressed and heat-
stressed conditions while for transpiration rate only under non-
stressed regime. Among all traits studied, the interaction of P’s, F1
vs. BC’s, F2 was non-significant only for transpiration rate in non-
stressed and ear length in heat-stressed conditions suggesting
genetic similarity in population for both these characters.

Genetic Effects
Non-allelic epistatic digenic effects were found crucial in the
inheritance of all traits under the contrasting conditions, except
transpiration rate in non-stressed conditions, being under the
control of additive gene action predominantly (Table 5). Both
additive and dominance gene actions were reported with positive
epistatic [j] and [l] interactions for leaf temperature under non-
stressed while negative [j] and [l] for grain yield per plant
under both non-stressed and heat-stressed conditions. Duplicate
epistatic [-ve l] digenic effects were ascertained critical in
the inheritance of leaf temperature under heat stress and for
100-grain weight under both the conditions. Epistatic additive
[-ve d and i] and dominance [-ve h and +ve j] genetic effects
were vital for cell membrane thermo-stability in distinctive
temperature regimes. Complementary additive genetic effects
control the inheritance pattern of transpiration rate under non-
stressed conditions in comparison to heat-stressed regime where
the additional dominance component was also involved. Under
the contrasting temperature environments, both leaf firing and
ear length were found under the influence of complementary
additive with dominance genetic effects. For kernels per ear,
digenic complementary gene action was recorded in non-stressed
regime while both duplicate and complementary genetic effects
were found imperative in heat-stressed environments.

Genetic Variance Components
Estimates of variance components revealed greater extent and
commonness of additiveness [D] in traits under study except
for ear length where dominance [H] component was slightly
higher under non-stressed regime (Table 6). Magnitudes of other
prevailing environmental [E] and interaction [F] variances were
lower than respective additive and dominance variances.
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FIGURE 1 | Scatter plot of mean genotypic values for cell membrane thermo-stability (%) against grain yield per plant (g) in non-stressed conditions.

FIGURE 2 | Scatter plot of mean genotypic values for cell membrane thermo-stability (%) against grain yield per plant (g) in heat-stressed conditions.

Narrow Sense Heritability and Genetic
Advance
Narrow sense heritability of F2 population ranged 62.0% (kernels
per ear) to 92.0% (transpiration rate) in non-stressed and
68.6% (transpiration rate) to 89.0% (grain yield per plant) in
heat-stressed conditions (Table 6). The magnitudes of narrow
sense heritability for F∞ were higher than respective F2
population. For F∞ population, narrow sense heritability was
low for leaf temperature (88.8%) and high for leaf firing

(98.6%) in non-stressed conditions, however, in heat-stressed
regime, it was the lowest for transpiration rate (86.2%) and
highest for grain yield per plant (97.0%). Genetic advance as
percent of mean ranged 13.7% (100-grain weight) to 114.8%

(kernels per ear) and 8.8% (leaf temperature) to 196.4%

(kernels per ear) in non-stressed and heat-stressed conditions,

respectively. Genetic advance was low for leaf temperature in

heat-stressed condition. It was moderate for 100-grain weight

in both conditions while for leaf temperature in non-stressed
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TABLE 4 | Mean squares acquired from partitioned analysis of variance of eight plant traits for six basic generations tested under contrasting

environmental conditions.

Traits Generations P1 vs. P2 P’s vs. F1 BC1 vs. BC2 BC’s vs. F2 P’s,F1 vs. BC’s,F2 Error

DF 5 1 1 1 1 1 10

LT (◦C) NS 29.87** 129.0** 4.723** 3.103** 0.168N.S. 12.35** 0.136

HS 12.10** 51.74** 0.062N.S. 6.232** 0.005N.S. 2.435** 0.044

CMT (%) NS 1600.6** 5690.0** 973.7** 1062.9** 175.5** 100.6** 2.630

HS 943.5** 3887.7** 624.3** 166.8** 12.19** 26.55** 0.500

TR (µg cm−2 S−1) NS 3.208** 12.96** 0.002N.S. 3.039** 0.008N.S. 0.026N.S. 0.009

HS 3.930** 9.969** 4.043** 1.021** 1.292** 3.325** 0.019

LF (%) NS 65.03** 182.2** 84.04** 49.27** 5.572** 4.027** 0.095

HS 992.1** 3110.0** 1324.2** 166.9** 274.3** 85.55** 2.130

EL (cm) NS 15.97** 10.11** 64.34** 2.400** 2.077** 0.896** 0.033

HS 11.54** 9.077** 46.34** 1.050** 0.825** 0.397N.S. 0.087

KPE NS 26784.7** 76297.9** 33385.3** 18967.5** 5090.1** 182.9** 16.50

HS 31413.9** 85085.0** 43032.0** 20120.3** 8649.2** 183.0** 12.8

HGW (g) NS 9.129** 32.34** 1.850** 4.965** 0.023N.S. 6.468** 0.092

HS 11.84** 43.74** 1.534** 11.64** 0.184N.S. 2.084** 0.143

GYPP (g) NS 2192.9** 5298.8** 4162.3** 723.7** 35.99** 743.7** 1.990

HS 2643.5** 6642.9** 4740.1** 595.8** 59.67** 1179.0** 0.770

NS, Non-stressed; HS, Heat-stressed; DF, Degrees of freedom; NS, Non-significant; *,**significant at P ≤ 0.05, 0.01, respectively.

LT, Leaf temperature (◦C); CMT, Cell membrane thermo-stability (%); TR, Transpiration rate (µg cm-2 S-1 ); LF, Leaf firing (%); EL, Ear length (cm); KPE, Kernels per ear; HGW, 100-grain

weight (g); GYPP, Grain yield per plant (g).

TABLE 5 | Estimates of genetic effects and standard errors of best fitted models under contrasting conditions for various traits in a cross of Zea mays L.

Traits m ± SE [d] ± SE [h] ± SE [i] ± SE [j] ± SE [l] ± SE χ
2 (DF)

LT (◦C) NS 36.4±0.16** −4.6± 0.16** −7.3± 0.97** 3.1±0.53** 5.7± 1.09** 0.55(1)

HS 33.0±0.15** −2.9± 0.14** 2.8± 0.98** −3.0± 1.09** 2.62(2)

CMT (%) NS 87.7±1.50** −30.8± 0.22** −49.6± 1.68** −27.5±1.53** 5.0±1.41** 6.04(1)

HS 52.2±0.32** −25.5± 0.33** −17.5± 0.60** 15.2±1.53** 5.69(2)

TR (µ g cm−2 S−1) NS 1.8±0.04** 1.5± 0.01** 0.1±0.04∗ 1.42(3)

HS 3.1±0.35** 1.2± 0.11** 4.7± 0.47** 3.3±0.47** 2.22(2)

LF (%) NS 15.2±0.50** −5.5± 0.08** −12.6± 0.54** −6.1±0.51** 0.47(2)

HS 37.4±1.13** −18.9± 0.38** −30.8± 1.37** −6.1±1.23** 1.32(2)

EL (cm) NS 8.6±0.39** 1.3± 0.08** 9.8± 0.47** 4.2±0.40** 0.01(2)

HS 8.7±0.44** 1.2± 0.10** 7.9± 0.55** 3.1±0.46** 1.20(2)

KPE NS 104.8±4.27** 113.0± 0.98** 239.4± 5.11** 109.0±4.42** 9.5±4.00* 0.21(1)

HS 87.9±16.20** 118.8± 1.58** 684.2± 40.13** 261.7±16.11** −275.8± 25.10** 0.35(1)

HGW (g) NS 20.6±0.13** −2.3± 0.12** 5.2± 0.73** −4.3± 0.79** 1.77(2)

HS 20.0±0.15** −2.7± 0.14** 2.9± 0.83** −2.0± 0.88* 0.86(2)

GYPP (g) NS 65.5±0.51** 29.7± 0.51** 68.5± 4.66** −10.0±2.71** −22.9± 4.73** 3.80(1)

HS 51.4±0.82** 33.3± 0.82** 79.3± 6.23** −12.6±3.74** −30.6± 6.21** 3.65(1)

*,**Significant at P ≤ 0.05, 0.01, respectively.

NS, Non-stressed; HS, Heat-stressed; m, Mean; [d], Additive; [h], Dominance; [i], Additive-additive; [j], Additive-dominance; [l], Dominance-dominance; χ2, Chi-square; DF, Degrees

of freedom; LT, Leaf temperature (◦C); CMT, Cell membrane thermo-stability (%); TR, Transpiration rate (µg cm-2 S-1 ); LF, Leaf firing (%); EL, Ear length (cm); KPE, Kernels per ear; HGW,

100-grain weight (g); GYPP, Grain yield per plant (g).

environments. GAM% was high for cell membrane thermo-
stability, transpiration rate, leaf firing, ear length, kernels per ear
and grain yield per plant in both non-stressed and heat-stressed
regimes.

DISCUSSION

Plant breeding is the art of creating new genotypes suitable
for different environments. These environments may or may
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TABLE 6 | Variance components best fit models following weighted analysis, narrow sense heritability and genetic advance under contrasting conditions

in a cross of Zea mays L.

Traits [D] ± SE [H] ± SE [F] ± SE [E] ± SE χ
2 (d.f.) h2n (%) GAM%

F2 F∞

LT (◦C) NS 21.9± 2.61** −4.54±1.87* 2.22± 0.33** 10.0 (3) 78.4 88.8 14.0

HS 24.4± 2.75** 2.11± 0.31** 12.6 (4) 69.3 88.5 8.8

CMT (%) NS 209.0± 18.9** 3.58± 0.53** 8.95 (4) 76.9 97.5 41.7

HS 235.2± 22.2** 7.15± 1.06** 7.18 (4) 82.7 96.4 57.9

TR (µg cm−2 S−1) NS 0.01± 0.001** −0.004±0.001** 0.001± 0.0002** 11.3 (3) 92.0 95.7 110.1

HS 6.3± 0.81** 0.83± 0.12** 0.74 (4) 68.6 86.2 53.1

LF (%) NS 23.3± 2.16** 3.70±1.53* 0.42± 0.06** 1.55 (3) 89.8 98.0 56.7

HS 86.5± 10.1** 8.62± 1.27** 5.24 (4) 69.2 89.9 69.3

EL (cm) NS 0.07± 0.04 0.24± 0.06** 0.02± 0.002** 8.81 (3) 88.4 95.7 48.7

HS 13.8± 1.41** 0.76± 0.11** 4.02 (4) 73.2 92.9 34.0

KPE NS 1468.4± 146.4** 265.2±104.2** 62.4± 9.28** 4.28 (3) 62.0 93.0 114.8

HS 2494.4± 276.4** 203.3± 30.1** 6.81 (4) 80.0 90.0 196.4

HGW (g) NS 13.2± 1.51** 1.19± 0.18** 7.25 (4) 78.4 90.3 13.7

HS 15.7± 1.85** 1.59± 0.24** 3.59 (4) 75.7 89.3 15.5

GYPP (g) NS 822.3± 79.4** 249.9±48.2** 17.1± 2.55** 1.87 (3) 72.2 97.0 61.4

HS 1408.3± 131.4** 37.6± 5.60** 6.16 (4) 89.0 97.0 105.6

*,**Significant at P = 0.05, 0.01, respectively.

NS, Non-stressed; HS, Heat-stressed; D, Additive; H, Dominance; F, Additive-dominance; E, Environmental.

χ2, Chi-square; h2n , Narrow sense heritability (%); F2, Filial generation two; F∞, Filial infinity generation; GAM%, Genetic advance as percent of mean; LT, Leaf temperature (◦C); CMT,

Cell membrane thermo-stability (%); TR, Transpiration rate (µg cm-2 S-1 ); LF, Leaf firing (%); EL, Ear length (cm); KPE, Kernels per ear; HGW, 100-grain weight (g); GYPP, Grain yield per

plant (g).

not be favorable for developing these varieties. Heat stress,
which affects the crop production and its quality significantly,
may be one of those environments. Hence, breeding for high
temperature tolerance may be an effective tool for overcoming
current and future environmental effects produced by global
climatic changes.

In the current study, biplots for non-stressed and heat-stressed
conditions suggested that ZL-11271 and R-2304-2 were the most
contrasting genotypes with respect to heat tolerance among all
inbred lines. These graphs also revealed a negative association
between cell membrane thermo-stability and grain yield per plant
in maize under both the conditions (Kaur et al., 2010; Tsimba
et al., 2013). Mean estimates of cell membrane thermo-stability
for all the inbred lines in heat-stressed environment were lesser
in comparison to non-stressed conditions which may be due to
inhibition or reduced transpiration rate under normal conditions
(Akbar et al., 2009).

Generation mean and variance analyses provide information
concerning genetic effects comprising additive, dominance or
both additive and dominance alongwith non-allelic interactions.
Such information assists in determining an appropriate breeding
strategy for improving various metrical plant traits. Furthermore,
this technique is also useful in measuring variance components
and in assessing the nature of non-allelic interaction, which
depends upon positive or negative signs of two genetic
components viz., h and l. Cross combinations with either positive
or negative signs on h and l components indicates presence of
complementary epistasis while combinations with opposite signs

on h and l components reveals duplicate epistasis (Mather and
Jinks, 1982). Based on χ2 values, genetic models comprising
two, three, four and five parameters (additive, dominance and
epistatic interactions, i.e., additive-additive, additive-dominance,
dominance-dominance) were found best suited to all characters
under both environments. Involvement of non-allelic gene
interaction in all traits corroborated the existence of potential
variation for further exploitation (Iqbal et al., 2015). Both
additive-dominance genetic effects were recorded for all traits
under both conditions except transpiration rate under non-
stressed regime which was found under the influence of only
additive gene action. Negative [d] or decrease in leaf temperature,
cell membrane thermo-stability, leaf firing while the increase
in transpiration rate, ear length, kernels per ear and grain
yield per plant in non-stressed and heat-stressed regimes may
be used for developing heat resilient maize synthetics suitable
for both conditions. Likewise, negative [h] or decrease in cell
membrane thermo-stability and leaf firing while increase in
transpiration rate, ear length, kernels per ear, 100-grain weight
and grain yield per plant may be exploited for developing
heat tolerant maize hybrids suitable for normal and high
temperature conditions. Considering genetic and interaction
effects for transpiration rate, leaf firing, ear length, kernels per ear
and to some extent for cell membrane thermo-stability, simple
selections or hybridization followed by either bulk or pedigree
or single seed decent schemes of selection could be exercised.
For leaf temperature, 100-grain weight and grain yield per
plant, selections should be delayed till further appraisal in later
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generations to identify desirable recombinants. Both additive-
dominance genetic effects had been reported in inheritance of
leaf temperature (Hussain et al., 2009; Wattoo et al., 2013),
cell membrane thermo-stability (Saleem et al., 2015), leaf firing
(Kaur et al., 2010), ear length (Ahmed et al., 2000), kernels
per ear (Muraya et al., 2006), 100-grain weight (Kumar and
Gupta, 2004; Katna et al., 2005) and grain yield per plant (Aguiar
et al., 2003; Muraya et al., 2006) in maize under normal and
stress conditions. Non-additive genetic effects were crucial in
the inheritance of transpiration rate in heat-stressed and non-
stressed conditions (Akbar et al., 2009). Involvements of digenic
non-allelic interactions for all traits except transpiration rate
in non-stressed conditions recommended attempting multiple
cross combination and establishment of large segregating
plant populations for current genetic material. Further, inter-
mating among desirable recombinants followed by recurrent
selections would help in pooling fixable and heritable additive
genes, breakage of unwanted linkages, evolution of promising
transgressive segregants and exploitation of non-additive genetic
effects (Singh and Pawar, 1990).

Generation variance approach had been extensively utilized
by various researchers for dissecting total variability into
constituent components (Azizi et al., 2006; Iqbal et al., 2015).
The classification of phenotypic variance into respective genetic
and environmental components is not adequate for complete
knowledge of the genetic basis of any source material (Shen et al.,
2011). It requires further partitioning of genetic variance into
additive (D), dominance (H), environmental (E) and interaction
(F) elements which is possible only through generation variance
analysis. Genetic and environmental components can be
estimated from experiments comprising pure genetic materials
(parents, F1) and segregating populations (BC1, BC2, F2, and
so on). Under heat stress conditions, only D and E variances
were significant in contrast to DE, DFE and DHE components
under non-stressed conditions indicating the role of environment
in breeding maize for heat-stressed environments. Additive [D]
variance was in greater extent than respective interaction [F]
and environmental [E] components for all traits under both
regimes except for ear length in non-stressed conditions where
dominance [H] variance was at large. Higher magnitudes of
additive variance in heat-stressed conditions pointed out its
potential role in inheritance of plant traits which conferred heat
tolerance in maize. Higher estimates of narrow sense heritability
(F2 and F∞) and genetic advance further confirmed the role of
few major genes and related genetic effects and the possibility
of genetic progress of studied traits (Iqbal et al., 2015). Both
heritability and genetic advance constitute an important selection
criterion. Estimates of heritability and genetic advance can be
classified into low (<30%; <10%), moderate (30–60%; 10–20%)
and high (>60%; >20%), respectively (Johnson et al., 1955).

Consideration of both parameters at once is more supportive
in anticipating the gain under selection rather than giving due
importance to anyone. A character exhibiting high heritability
may not necessarily show high genetic advance and vice versa
(Johnson et al., 1955). Estimates of narrow sense heritability
for infinity generation were greater than its F2 generation of
current genetic material which further projected its scope for

genetic improvement of these characters through selections
due to least genotype-environment interactions, implying that
any plant breeder may perform his selections on the basis
of phenotypic expression of individual plants by using simple
selection procedures (Singh and Narayanan, 1993; Kant et al.,
2005). Concurrent study of heritability and genetic advance
(% of mean) for all traits suggested that only simple selection
might be enough for further improvement of characters such
as cell membrane thermo-stability, transpiration rate, leaf firing,
ear length, kernels per ear and grain yield per plant in both
conditions. High heritability but low to moderate genetic
advance (% of mean) for leaf temperature and 100-grain weight
revealed greater influence of environment in expression of
these characters. Immediate selection for such traits could be
misleading, therefore, required further progeny testing. Such
traits can be improved by crossing potential genotypes of
segregating population by means of recombinant breeding
approach (Samadia, 2005). The findings and suggestions made
in this manuscript belong to genetic material used herein.
Further, the estimates for genetic effects, variance components
and heritability could vary with methodology applied but are
valid only to research materials being investigated.

CONCLUSION

Results revealed that this study can be helpful to maize breeders
in developing heat-resilient lines through effective selections
by using reciprocal recurrent strategies for traits exhibiting
both additive-dominance genetic effects. Factors like low genetic
advance and polygenic nature of the trait may, however, limit
realized gain from selection, therefore, required progeny testing
to later generations. Testing of ZL-11271 and other potential
sources in different cross combinations could help in devising
broader and stronger concept of gene action controlling heat
tolerance in maize.
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