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It is well known that intracellular signaling from chloroplast to nucleus plays a vital
role in stress responses to survive environmental perturbations. The chloroplasts were
proposed as sensors to heat stress since components of the photosynthetic apparatus
housed in the chloroplast are the major targets of thermal damage in plants. Thus,
communicating subcellular perturbations to the nucleus is critical during exposure to
extreme environmental conditions such as heat stress. By coordinating expression of
stress specific nuclear genes essential for adaptive responses to hostile environment,
plants optimize different cell functions and activate acclimation responses through
retrograde signaling pathways. The efficient communication between plastids and
the nucleus is highly required for such diverse metabolic and biosynthetic functions
during adaptation processes to environmental stresses. In recent years, several putative
retrograde signals released from plastids that regulate nuclear genes have been
identified and signaling pathways have been proposed. In this review, we provide an
update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen
species (ROS) and organellar gene expression (OGE) in the context of heat stress
responses and address their roles in retrograde regulation of heat-responsive gene
expression, systemic acquired acclimation, and cellular coordination in plants.

Keywords: chloroplast, retrograde signaling, heat stress responses, plastid signal molecules, reactive oxygen
species (ROS)

INTRODUCTION

Taking into account the presence of genes encoding organellar proteins in different cellular
compartments of the plant cell, intracellular communication is critical for regulation and
coordination of a variety of physiological processes, including responses to biotic and
abiotic stresses. By definition, retrograde signaling is a communication pathway whereby the
transcriptional activities in the nucleus are regulated in part by signals derived from plastids and
mitochondria. According to existing literatures, two categories can be largely classified in respect
to retrograde signaling, including developmental control of organelle biogenesis, and operational
control to adjust and acclimate to environmental stresses (Pogson et al., 2008). In general, the
chloroplasts in plants and algae are assumed to be the descendants of the ancient photosynthetic
bacteria. As an semi-autonomous organelle, the chloroplast maintains a similar circular genome
and transcription and translation machinery like its evolutionary precursor (Watson and Surzycki,
1983; Sugiura et al., 1998). Because the components of the complex energetic reactions linked to
photosynthesis are encoded by organelle and nuclear genomes, gene expression in these separate
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compartments require the existence of sophisticated regulatory
mechanisms that ensure adequate synthesis of proteins
functioning in common photosynthetic complexes. The tightly
coordinated gene expression in both nucleus and chloroplast is
required for the correct stoichiometric subunit composition of
these complexes. It is generally accepted that anterograde signals
originating from the nucleus and retrograde signals emerging
from the chloroplast orchestrate this intracellular coordination
(Woodson and Chory, 2008).

Historically, the first report describing the retrograde
signaling was based on two barley chloroplast ribosome-
deficient mutants, the barley (Hordeum vulgare) albostrians,
whose defects in plastid functions result in downregulation
of nuclear-encoded plastid proteins (Bradbeer et al., 1979).
Since, this revolutionary discovery, the intensive studies have
been focusing on the function of retrograde signaling in
plastid development by coordinating chlorophyll biosynthesis
with the expression of nuclear genes that encode plastid-
localized chlorophyll-binding proteins using young seedlings
of mustard, Arabidopsis, pea, or barley with lincomycin,
chloramphenicol, or streptomycin, the inhibitors of plastid
protein synthesis (Oelmuller et al., 1986; Susek et al., 1993;
Yoshida et al., 1998; Sullivan and Gray, 1999). The gun
(genome uncoupled) mutants where the communication between
the chloroplast and the nucleus has been disrupted are very
helpful in deciphering the retrograde signaling phenomenon
(Woodson and Chory, 2008; Barajas-Lopez et al., 2013;
Chi et al., 2013). The mutant seedlings express nuclear-
encoded photosynthetic genes (PhANG) despite defective
chloroplast physiology or inhibited biogenesis (Susek et al.,
1993). According to restrictions in defined steps in tetrapyrrole
biosynthesis, identification of the gun2, gun3, gun4, and gun5
mutants provided evidence that accumulation of the chlorophyll
intermediate Mg-protoporphyrin IX (Mg-Proto IX) is involved
in initiation of retrograde signaling whereas the gun1 mutant
results from mutation in a gene encoding a chloroplast-localized
pentatricopeptide repeat-containing protein (PPR; Susek et al.,
1993; Mochizuki et al., 2001; Larkin et al., 2003; Strand et al.,
2003; Koussevitzky et al., 2007).

The involvement of the key enzymes of the tetrapyrrole
biosynthesis pathway in the gun phenotype led to numerous
studies on tetrapyrroles, especially Mg-protoporphyrin IX
(Mg-ProtoIX), as putative retrograde signals. Large changes
in nuclear gene expression have been triggered by stress-
induced perturbations of tetrapyrrole biosynthesis and specific
accumulation of the chlorophyll biosynthetic intermediate Mg-
ProtoIX and its methylester (Mg-ProtoIX-ME) have been shown
to coincide with these changes in nuclear gene expression
(Johanningmeier and Howell, 1984; Kropat et al., 1997, 2000;
Strand et al., 2003; Alawady and Grimm, 2005; Pontier et al.,
2007; von Gromoff et al., 2008). By taking advantage of the
fluorescent properties of tetrapyrroles, Mg-ProtoIX could be
visualized to accumulate both in the chloroplasts and the
cytosol under stress conditions using confocal laser scanning
spectroscopy (Ankele et al., 2007), suggesting a possibility
that the signaling metabolite Mg-ProtoIX is exported from
the chloroplast to the cytosol, thus to transmit the plastid

signal to nucleus. However, the role of Mg-ProtoIX/Mg-ProtoIX-
ME as a plastid signal was subsequently questioned because
no correlation between the accumulation of Mg-ProtoIX and
retrograde signaling was observed in two different studies
(Mochizuki et al., 2008; Moulin et al., 2008). Given that
Mg-ProtoIX is phototoxic, its accumulation within cytosol
might induce problematic effects on cellular homeostasis. Thus,
the identity of retrograde signals remains worthy of further
investigation. Interestingly, a recent report identified heme
as a strong candidate for mediating chloroplast-to-nucleus
signaling (Woodson et al., 2011). Two plastid-derived isoprenoid
derivatives, methylerythritol cyclodiphosphate, and β-cyclocitral,
were reported to function as retrograde signal molecules although
their receptor(s) or sites of action in the nucleus remain largely
unknown (Ramel et al., 2012; Xiao et al., 2012). Importantly, as an
intermediate of the methylerythritol phosphate (MEP) pathway,
methylerythritol cyclodiphosphate accumulates in response to
abiotic stresses (Xiao et al., 2012). Similarly, β-Cyclocitral, a
volatile apocarotenoid derived from β-carotene, accumulates in
response to singlet oxygen (1O2) and light stresses and regulates
nuclear gene expression (Ramel et al., 2012, 2013). Moreover,
1O2-induced signaling and feedback was proposed to mediate the
impact of tetrapyrrole biosynthesis on nuclear gene expression
(Schlicke et al., 2014). These findings indicate that the nature of
retrograde signaling remains largely undefined.

Plants have evolved complex signaling networks to sense and
respond to environmental stresses. It has been assumed that
chloroplasts act as a specific sensor of intra- and extracellular
stimuli and can integrate a multitude of intracellular signals and
pathways in order to sustain homeostasis at both the cellular and
organismal levels. With respect to chloroplast-nuclear signaling
in response to environmental stimuli, intensive studies have
been focusing on the initiation of signaling cascades in the
chloroplast and transcriptional changes in the nucleus. In the
past few years, a number of retrograde signaling pathways
were identified and/or proposed as stress-specific organelles-to-
nucleus retrograde signaling cascades. This review focuses on the
recent advancements in revealing the order of events that induce
the activation of the acclimation response to abiotic stresses.
Special attention was given to the retrograde regulatory networks
identified in studies on cellular responses to heat stress.

RETROGRADE SIGNALING PATHWAYS
IN HEAT STRESS RESPONSES

According to existing literatures, a temperature upshift, usually
10–15◦C above an optimum temperature for growth, is taken
as heat stress for photosynthetic processes in higher plants
(Wahid et al., 2007; Allakhverdiev et al., 2008). Considering that
components of the photosynthetic apparatus in the chloroplast
are susceptible targets of thermal damage in plants, the
chloroplasts were proposed as sensors to heat stress. It should be
noted that heat stress commonly causes severe thermal damages
to photosystem II (PSII), the most heat-sensitive photosynthetic
apparatus within the chloroplast thylakoid membrane protein
complexes involved in photosynthetic electron transfer and ATP
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synthesis (Berry and Bjorkman, 1980; Havaux, 1993; Sharkey,
2005; Wahid et al., 2007; Allakhverdiev et al., 2008). As
common indicators of heat stress-induced damages, chlorophyll
fluorescence, the ratio of variable fluorescence to maximum
fluorescence (Fv/Fm) and the base fluorescence (Fo), correlates
with disruptions of photochemical reactions in thylakoid lamellae
of chloroplasts (Yamada et al., 1996; Wise et al., 2004; Wahid
et al., 2007; Allakhverdiev et al., 2008). Particularly, heat stress
causes the dissociation of oxygen evolving complex (OEC) in
PSII, which further results in an imbalance in the electron flow
from OEC toward the acceptor side of PSII in the direction
of PSI reaction center (Havaux and Tardy, 1996; Klimov et al.,
1997; Wahid et al., 2007; Allakhverdiev et al., 2008). Moreover,
the reaction center-binding protein D1 of PSII was cleaved and
a manganese (Mn)-stabilizing 33-kDa proteins was dissociated
from PSII reaction center complex in spinach thylakoids upon
heat stress treatment (Yamane et al., 1997). In addition to
damages on OEC in PSII, heat stress also causes dramatic
reduction in the efficiency in carbon assimilation metabolism in
the stroma of chloroplast (Sharkey, 2005).

In the prokaryotic and eukaryotic kingdoms, the heat stress
response as a universal cellular response represents the first line
of inducible defense against imbalances in cellular homeostasis.
In higher plants, a rapid expression reprogramming of a set of
proteins known as heat shock proteins (HSPs) is considered to be
a marked activation of heat stress response (Kotak et al., 2007; von
Koskull-Doring et al., 2007). Based on the analysis of Arabidopsis
and crop plants genome-wide expression profiles, the transcripts
of the well-characterized HSPs increased dramatically, including
Hsp101, Hsp70s, and small HSPs, which are proposed to act as
molecular chaperones in protein quality control under heat stress
(Rizhsky et al., 2004; Busch et al., 2005; Lim et al., 2006; Schramm
et al., 2006; Larkindale and Vierling, 2008; Matsumoto et al., 2014;
Wang et al., 2014b; Frey et al., 2015).

In the unicellular green alga Chlamydomonas reinhardtii,
Mg-ProtoIX and Mg-ProtoIX-ME were previously shown to
transiently induce the expression of HEAT SHOCK PROTEIN
70A/B (HSP70A and HSP70B) encoding the cytosolic and
the plastid-localized proteins, respectively (Kropat et al., 1997,
2000). However, the light-induction of HSP70 is impaired
in the chlorophyll-deficient brs-1 mutant, indicating that the
accumulation of Mg-ProtoIX is essential for the light induction
of HSP70 (Hess et al., 1994). Using the four Chlamydomonas
reinhardtii mutants in the Mg-chelatase that catalyzes the
insertion of magnesium into protoporphyrin IX, the reduced
levels of Mg-tetrapyrroles but increased levels of soluble heme
were detected in the four mutants and the light-induction
of HSP70A was preserved, although Mg-ProtoIX has been
implicated in this induction (von Gromoff et al., 2008). More
importantly, HSP70A was activated by feeding Hemin to algae
cultures in the dark and this induction was mediated by the same
plastid response element (PRE) in the HSP70A promoter that
has also been shown to mediate induction by Mg-ProtoIX and
light. Such communication likely involves both Hemin and Mg-
ProtoIX, respectively, indicating that these signals converge on
the same pathway (von Gromoff et al., 2008). Studies focused on
the induction specificity of these two tetrapyrroles demonstrated

that neither Proto, nor Pchlide or Chlide was able to induce
the nuclear genes (Kropat et al., 1997). A model was derived
according to accumulated literature (Beck, 2001, 2005): MgProto
and/or MgProtoMe, produced in the plastid become(s) accessible
on the cytoplasmic side of the chloroplast after light activation
of the HSP70 genes within the chloroplast or its envelope. In
cytoplasm or nucleus, putative factor(s) may recognize these
tetrapyrroles, either regulating expression of the nuclear HSP70
genes directly or stimulating a signaling cascade that enters the
nucleus.

Given that the tetrapyrroles Mg-ProtoIX and heme have been
implicated in the retrograde control of nuclear gene expression
in Chlamydomonas reinhardtii, the intensive studies have been
focusing on genome-wide transcriptional profiling to explore
the global impact of these tetrapyrroles on regulation of gene
expression and the scope of the response. Upon feeding with Mg-
ProtoIX and heme, almost 1,000 genes were shown to be changed
transiently but significantly (Voss et al., 2011). Most of these
genes encoded enzymes of the tricarboxylic acid cycle, heme-
binding proteins, stress-response proteins, as well as proteins
involved in protein folding and degradation whereas only a few
genes were involved in photosynthetic processes. More than
50% of the latter class of genes was also regulated by heat
shock. Significantly, 51% of the 982 tetrapyrrole-regulated genes
were also activated in response to heat stress, indicating that
both tetrapyrroles function as secondary messengers for adaptive
physiological responses affecting the entire cell and not only
organellar proteins.

The chloroplast in plants and algae maintains a circular
genome and transcription and translation machinery similar to
that of its evolutionary precursor, the descendants of the ancient
photosynthetic bacteria (Sugiura et al., 1998). Accordingly, the
majority of chloroplast proteins encoded in the nucleus are
imported into the chloroplasts after biosynthesis in the cytoplasm
(Jarvis, 2008). The existence of an organellar gene expression
(OGE)-dependent retrograde signal pathway was first suggested
more than 30 years ago (Bradbeer et al., 1979). Subsequently,
numerous studies found that treatments with inhibitors of OGE,
such as chloramphenicol, lincomycin, or erythromycin severely
inhibited the expression of nuclear genes for photosynthesis-
related proteins during early stages of plastid development
(Oelmuller et al., 1986; Susek et al., 1993; Yoshida et al., 1998;
Sullivan and Gray, 1999). One of working modules for the OGE-
dependent retrograde signal pathway is that a plastid-localized
pentatricopeptide repeat (PPR) protein, encoded by GUN1,
integrates the signal cascades triggered by the aberrant plastid
functions before the integrated signal is transmitted into the
nucleus by a regulatory mechanism involving the transcription
factor ABA INSENSITIVE4 (ABI4; Koussevitzky et al., 2007).
It has been proposed that a disruption on protein synthesis in
the chloroplast could give rise to a signal or that the affected
plastids keep away from the stage at which they could send
the appropriate signal while the identity of the components
of the signaling cascade and, in particular, the primary target
genes and transcriptional factors (TFs) mediating this response
remain largely unknown (Kleine et al., 2009). A recent report
revealed that the chloroplast translational capacity is a critical
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factor in generating the retrograde signal (s) to activate the heat-
responsive expressions of the heat stress transcription factor
HsfA2 and its target genes (Yu et al., 2012). In the study
described above, the chloroplast ribosomal protein S1 (RPS1) was
identified as a heat-responsive protein, functioning as a subunit
protein of the plastid ribosome in synthesis of photosynthetic
proteins in Arabidopsis. In general, mutations of RPS1 causes
the translational defects in chloroplasts repress the nuclear heat-
responsive gene expression upon heat treatments, revealing a
novel regulatory mechanism whereby plant cells trigger heat-
responsive activation of the nuclear gene expression to keep
accordance with the current status of chloroplasts under heat
stress.

Accumulated evidence has also shed light on the effect
of chloroplast–mitochondria signaling interactions on stress
responses. The tight communication between chloroplasts and
mitochondria is required for balancing the activities of the
two energy organelles under normal growth conditions or in
adaptation to environmental stresses (Woodson and Chory, 2008;
Blanco et al., 2014; Ng et al., 2014; Allahverdiyeva et al., 2015;
Bobik and Burch-Smith, 2015; Gollan et al., 2015; Van Akent and
Van Breusegem, 2015). It has been proposed that the metabolite
exchange between the organelles via translocators located on
envelope membranes of chloroplasts and mitochondria acts as
an important channel of communication, which contributes to
their central roles in energy capture and utilization (Blanco
et al., 2014; Bobik and Burch-Smith, 2015). As for the intra-
mitochondrial stress response, energy-dissipating components
modulate the retrograde signaling pathways from mitochondria,
which controls the cellular adaptation processes under stress
conditions (Ng et al., 2014; Rurek, 2014). In Arabidopsis,
AOX1a isoform is induced by heat stress (Elhafez et al.,
2006) and seems to be also regulated by chloroplasts upon
highlight treatment (Finnegan et al., 1997; Blanco et al., 2014).
Recent studies suggest that AOX1a functions in optimizing
photosynthesis by sustaining the chloroplastic redox state and
regulating cellular redox homeostasis when electron transport
through the COX pathway is disturbed at complex III (Pu
et al., 2015; Vishwakarma et al., 2015). Interestingly, ABI4
was shown to regulate the responsive expression of both Lhcb
and AOX1A genes, suggesting that ABI4 acts as a critical
molecular link for coordinating the communication between
chloroplasts and mitochondria (Koussevitzky et al., 2007; Giraud
et al., 2009). A recent report suggests that the nuclear localized
cyclin-dependent kinase E1 (CDKE1), a prerequisite for AOX
induction, acts as a central nuclear component integrating
mitochondrial and plastid retrograde signals, which could
modulate energy metabolism under stress (Blanco et al., 2014).
The mitochondrial retrograde signaling and auxin signaling are
reported to be reciprocally regulated in balancing growth and
environmental stresses (Ivanova et al., 2014) and a membrane-
bound NAC transcription factor, ANAC017, was identified to
mediate mitochondrial retrograde signaling by genetic screening
regulators of alternative oxidase1a mutants in Arabidopsis (Ng
et al., 2013). It has been known that mitochondria of plant cells
modulate the cytosolic Ca2+ level by changing the potential at the
inner mitochondrial membrane, functioning in the retrograde

regulation of expression of heat-responsive genes (Pyatrikas et al.,
2014; Rikhvanov et al., 2014). However, delineating these stress-
interacting networks between chloroplasts and mitochondria
involving the perception and integration of stress stimuli is
important and most of network components remain largely
unexplored.

Based on an update on recent findings related to plastid-to-
nucleus metabolic signals in plants, it has been suggested that
the metabolic reprogramming under a variety of environmental
stresses relates to the functional alteration of essential cell
compartments, such as chloroplasts (Estavillo et al., 2011, 2013;
Xiao et al., 2012, 2013; Chi et al., 2015). Plastid retrograde
signals could be generated from various sources, including the
tetrapyrrole pathway, the level of ROS, or the related metabolic
processes in the plastids as described in Table 1. Particularly,
ROS among all these signals are thought to play a key role in
modulating initial signal cascades in higher plants. Recently, new
plastid metabolic signals within chloroplasts have been identified
in Arabidopsis (Estavillo et al., 2013; Xiao et al., 2013; Chi et al.,
2015), emphasizing the role of plastids in abiotic-stress sensing
and signaling in a retrograde way.

ROS AS RETROGRADE SIGNALS IN
HEAT STRESS RESPONSES

As an unavoidable consequence of aerobic metabolism, plants
permanently produce a variety of reactive oxygen species (ROS)
such as hydrogen peroxide (H2O2), superoxide, hydroxyl radicals
(·OH), and 1O2. It is well known that the chloroplast is a major
producer of ROS during photosynthesis and contains a large
array of ROS-scavenging mechanisms (Asada, 2006). A variety
of abiotic stresses inhibit the excitation energy transfer in the
PSII antenna complex and the electron transport in the PSII
reaction center in algae and higher plants and the limitation
in the excitation energy transfer and the electron transport is
accompanied with the formation of ROS (Suzuki et al., 2012).
ROS such as 1O2 is formed by the excitation energy transfer,
whereas superoxide anion radical (O·−2 ), H2O2 and ·OH are
formed by the electron transport (Pospisil and Prasad, 2014).
ROS are proposed to diffuse away from their sites of production
and consequently elicit a different set of signaling events under
a wide range of biotic and abiotic stress conditions (Neill et al.,
2002; Mittler et al., 2004; Miller et al., 2008; Suzuki et al.,
2012). A variety of operational retrograde signaling pathways
are thought to be triggered by ROS and photosynthesis redox
imbalance during stress conditions and play an important role in
the acclimation of plants (Pogson et al., 2008; Galvez-Valdivieso
and Mullineaux, 2010; Suzuki et al., 2012). On the other hand,
the current redox-status of chloroplasts, which correlates with
the imbalance of ROS accumulation caused by abiotic stresses,
may be transmitted by monitoring the state of the plastoquinone,
ascorbate, and glutathione pools (Foyer et al., 2009; Suzuki
et al., 2012; Foyer and Noctor, 2013; Petrov et al., 2015). In
addition to chloroplasts, several other heat stress-dependent
ROS production sites have been described. It has been suggested
that the respiratory burst oxidase homolog D (RBOHD), acting
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TABLE 1 | The reported signal molecules involved in plastid-to-nucleus retrograde pathways.

Plant system Related abiotic stresses and physiological
processes

Reference

Signal molecules

Mg-ProtoIX
Mg-ProtoIX-ME

Arabidopsis Expression of nuclear-encoded photosynthetic
genes (PhANG)

Strand et al., 2003

Heme Arabidopsis Expression of nuclear-encoded PhANG Woodson et al., 2011

Mg-ProtoIX
Mg-ProtoIX-ME

Chlamydomonas reinhardtii Induction of HSP70 expression Hess et al., 1994; Kropat et al., 1997

Hemin Chlamydomonas reinhardtii Induction of HSP70 expression von Gromoff et al., 2008

MEcPP Arabidopsis Oxidative stress Xiao et al., 2012

β-Cyclocitral Arabidopsis Singlet oxygen (1O2) and light stress Ramel et al., 2012

Methylerythritol
cyclodiphosphate

Arabidopsis Singlet oxygen (1O2) and light stress Ramel et al., 2012

Reactive oxygen
species (ROS)

Hydrogen peroxide
Superoxide radicals

Nicotiana tabacum Heat stress Vacca et al., 2006; Wang et al., 2006

Hydrogen peroxide Arabidopsis Heat stress and oxidative stress Nishizawa et al., 2006

Tomato Heat stress Banzet et al., 1998

Rice Heat stress and oxidative stress Lee et al., 2000

Singlet oxygen
Hydroxyl radicals

Spinach Heat stress Yamashita et al., 2008

Singlet oxygen Arabidopsis Heat stress Lin et al., 2014

Singlet oxygen Arabidopsis Oxidative stress Wagner et al., 2004

Nitric oxide (NO) Arabidopsis Heat stress Wang L. et al., 2014

PAP Arabidopsis High light and drought stresses Estavillo et al., 2011

as a ROS-generating NADPH oxidase in the plasma membrane,
could function in the oxidative burst occurring during heat
stress (Suzuki et al., 2011). The accumulation of H2O2 can be
inhibited by an inhibitor of the enzyme NADPH oxidase in
Arabidopsis and tobacco cell cultures, suggesting that RBOHD
has a central role in heat stress signaling and thermotolerance
(Larkindale et al., 2005; Volkov et al., 2006; Koenigshofer et al.,
2008; Miller et al., 2009). It was reported that an impaired
mitochondrial metabolism seems to be responsible for oxidative
bursts occurring in tobacco cells undergoing heat-induced
programmed cell death (PCD), suggesting that production of
ROS during heat stress can also occur in mitochondria (Vacca
et al., 2004; Valenti et al., 2007). Recent studies suggest that
AOX1A plays a significant role in regulating ROS generation
when electron transport is disrupted through the COX pathway
(Vishwakarma et al., 2015). It was reported that the protonophore
CCCP-induced depolarization of the mitochondrial membrane
inhibited ROS generation upon heat treatments, suggesting that
heat stress-induced mitochondrial membrane hyperpolarization
causes the increased ROS production in plant cells (Fedyaeva
et al., 2014). As a mitochondrial inner membrane protein,
uncoupling protein one (UCP1) is able to uncouple the
electrochemical gradient from adenosine-5′-triphosphate
(ATP) synthesis, dissipating energy as heat. Overexpressing a
plant UCP1 ortholog in the mitochondrial inner membrane
triggered increased uncoupling respiration and inhibited ROS
accumulation under abiotic stresses (Barreto et al., 2014). As a
key phospholipid in mitochondrial membranes, cardiolipin (CL)

is involved in maintaining the functional integrity and dynamics
of mitochondria. The mutations of CARDIOLIPIN SYNTHASE
(CLS) caused defects in mitochondrial morphogenesis and stress
response to heat treatments in Arabidopsis, which has revealed
a novel regulatory mechanism in adaptation to environmental
stresses in plants (Pan et al., 2014). According to the plant
mitochondrial literatures, a prominent theme is likely to link
mitochondrial composition to environmental stress responses
(Miller et al., 2008; Mittler et al., 2011; Jacoby et al., 2012; Suzuki
et al., 2012; Noctor et al., 2014; Van Akent and Van Breusegem,
2015; You and Chan, 2015). Particularly, peroxisomes are
another site of ROS generation under conditions that increase
photorespiration, such as stomatal closure (Vanderauwera et al.,
2011).

As the organelles in which photosynthesis occurs, chloroplasts
are extremely susceptible to heat stress (Yamada et al., 1996;
Wise et al., 2004; Wahid et al., 2007; Allakhverdiev et al., 2008).
Several lines of evidence suggest that different environmental
stresses, including also high temperature, can result in oxidative
bursts of superoxide and/or hydrogen peroxide in plants (Foyer
et al., 1997; Dat et al., 1998; Vallelian-Bindschedler et al., 1998).
Exposure to high temperature stress can lead to the increased
accumulation of ROS in PSI, PSII as well as in the Calvin–
Benson cycle, which cause irreversible oxidative damage to cells
(Asada, 2006; Suzuki et al., 2012). ROS that are produced in
chloroplasts can function as plastid signals to inform the nucleus
to activate the expression of genes encoding antioxidant enzyme
and to adjust the stress-responsive machinery for more efficient
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adaptation to environmental stresses. Under high temperature
conditions, tobacco cells produce large amounts of ROS, which
are a prerequisite for triggering PCD signaling cascades since
application of the antioxidants ascorbate or superoxide dismutase
(SOD) to the cultures supports cell survival (Vacca et al., 2006).
Upon heat stress treatment, hydrogen peroxide accumulated in
the leaves of tobacco (Nicotiana tabacum) defective in ndhC–
ndhK–ndhJ (Delta ndhCKJ), suggesting the function of the
NAD(P) H dehydrogenase-dependent pathway in suppressing
the accumulation of ROS in chloroplasts (Wang et al., 2006).
These results also indicate that the cyclic photophosphorylation
via the NDH pathway might play an important role in
regulation of CO2 assimilation under heat-stressed condition,
thus optimizing the photosynthetic electron transport and
reducing the generation of ROS. Under moderate heat treatment
conditions, cleavage of the reaction center-binding D1 protein of
photosystem II was observed in spinach thylakoid membranes
(Yamashita et al., 2008). In accordance with this, 1O2 and ·OH
were detected in spinach PSII membranes, suggesting that the
ROS are generated by heat-induced inactivation of a water-
oxidizing manganese complex and through lipid peroxidation. In
Arabidopsis, following heat treatment, the chlorophyll synthase
mutant (chlg-1) accumulated a substantial level of chlorophyllide
a, which resulted in a surge of phototoxic singlet oxygen,
suggesting that chlorophyll synthase acts in maintenance of ROS
homeostasis in response to heat stress (Lin et al., 2014).

Unlike plastid gene expression (PGE)-dependent signals, the
ROS-dependent retrograde signaling pathways are thought to be
primarily acting in adaptation to environmental stresses rather
than genome coordination (Woodson and Chory, 2008). Among
a variety of ROS-dependent retrograde signaling pathways, most
of studies are focusing on the singlet oxygen pathway, which
is independent of Mg-ProtoIX and GUN1-mediated signaling
(Suzuki et al., 2012). Unlike H2O2, 1O2 is a highly reactive
radical that is involved in signaling pathway leading to cell
death or to acclimation (Wagner et al., 2004). Using the
conditional flu mutants that accumulate protochlorophyllide, a
potent photosensitizer and generate large amounts of 1O2 during
dark adaptation and upon re-exposure to light, the singlet oxygen
signaling pathway has been extensively studied in Arabidopsis
(Meskauskiene et al., 2001; op den Camp et al., 2003; Apel and
Hirt, 2004; Wagner et al., 2004; Laloi et al., 2007; Lee et al.,
2007). Importantly, the accumulated 1O2 in the flu chloroplasts
correlates with the induction of stress responses, including
dramatic alterations in nuclear gene expression and enhanced
biosynthesis of the stress hormones, SA, Et, and JA (op den
Camp et al., 2003). Moreover, these 1O2-induced changes were
regulated by the chloroplastic proteins EXECUTER1 (EX1) and
EXECUTER 2 (EX2) through a distinct pathway (Wagner et al.,
2004; Lee et al., 2007; Kim et al., 2012). Interestingly, D1 protein
has been identified as a primary target of 1O2 and seems to act as
a major scavenger of 1O2 because of being close to the site of 1O2
formation in the RC of PSII (Vass and Cser, 2009). D1 protein is
well known for its high turnover rate, which has been attributed
to the rapid degradation of the oxidized D1 protein after its
interaction with 1O2 and its replacement by newly synthesized D1
polypeptides (Aro et al., 1993; Lindahl et al., 2000). In addition to

the D1 protein, β-carotene, plastoquinol, and α-tocopherol have
also been identified as scavenger of 1O2 and protect PSII against
photo-oxidative damage (Telfer et al., 1994; Kruk and Trebst,
2007). Given that the half-life of 1O2 is very short (200 ns), it is
unlikely to escape from the plastid compartment and transmit to
nucleus. Thus, more stable second messengers derived from 1O2
within the plastid are assumed to activate a signaling pathway in
controlling the expression of nuclear genes. As one of the main
1O2 quenchers in chloroplasts, β-carotene can be oxidized by 1O2
to produce β-cyclocitral that was found to be involved in singlet
oxygen-dependent retrograde signaling (Ramel et al., 2012).

As the most stable ROS, H2O2 serves as a signaling molecule
that plays a crucial role in environmental stress responses
(Mittler et al., 2011; Suzuki et al., 2012). To survive under heat
stress conditions, plants undergo a process of stress acclimation
in which HSP expression is promptly activated by specific
heat shock transcription factors (HSFs) binding the conserved
sequence of the heat shock elements (HSEs) in the promoters
of heat-responsive genes (Nover et al., 1996; Scharf et al.,
1998; Kotak et al., 2007). As a universal cellular response to
a shift up in temperature, the HSF–HSP network is a highly
conserved molecular mechanism, representing the first line of
inducible defense against imbalances in cellular homeostasis
in the prokaryotic and eukaryotic kingdoms. Several lines of
evidence support that the heat-responsive expression of HSP and
chaperones can be induced by oxidative stress in plants, which
can provide a protective function against oxidative stress. In
tomato and rice, H2O2 induced the expression of mitochondrial
HSP22 and chloroplastic HSP26, respectively (Banzet et al., 1998;
Lee et al., 2000). In cyanobacteria and Arabidopsis, high light and
H2O2, respectively, induced activation of some chaperones, HSP,
and HSFs at mRNA levels (Desikan et al., 2001; Hihara et al.,
2001). To dissect particular stress responses that are relative to
H2O2 signals, various types of model systems including mutants
and transgenic plants altered in the ROS levels are applied to
investigate the signaling networks. Using genome-wide analysis
of the Arabidopsis catalase deficient mutant, a series of genes
encoding specific small HSPs, several transcription factors and
candidate regulatory proteins were found to be regulated by
H2O2 (Vandenabeele et al., 2004; Vanderauwera et al., 2005).
Subsequently, H2O2 was reported to play a major signaling
role in the activation of HSFs during the early phase of heat
stress (Volkov et al., 2006). In Class A Hsfs, HsfA2 is highly
inducible at the transcriptional level in response to heat stress
and the treatments with H2O2 and ozone (Nishizawa et al.,
2006). Intensive studies suggest a critical role of the mitogen-
activated protein kinase (MAPK) in H2O2-mediated expression
of Hsfs, including HsfA2 under heat stress (Kovtun et al., 2000;
Link et al., 2002; Sangwan et al., 2002; Kotak et al., 2007;
Saidi et al., 2011). According to existing literatures, it has been
assumed that H2O2 is likely to diffuse freely across the chloroplast
envelope to trigger a cytosolic MAPK cascade as a signal (Apel
and Hirt, 2004). Significantly, treatments with ascorbate or
DPI inhibited the heat-induced expression levels, suggesting
that H2O2 acts as an essential component in the heat stress
signaling pathway. Interestingly, heat shock promoter element
(HSE) protein-binding complex of high molecular weight rapidly
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(15 min) formed in extracts of heat-stressed or H2O2-treated
cells, indicating that oxidative stress affects gene expression via
HSF activation. As described above, ROS act as molecular signals
to activate downstream pathways, resulting in protective effects.
So far, several redox-sensitive TFs have been identified since their
activities rely on redox changes (Tron et al., 2002; Heine et al.,
2004; Shaikhali et al., 2008, 2012). Notably, the heat shock factor
HSFA4a can act as a sensor of ROS and function upstream of
ZAT12 and APX1, two genes with an HSE in their promoters,
suggesting that HSFA4a plays an key role in the ROS-mediated
heat stress responses (Miller and Mittler, 2006).

To function as a signaling molecule on a cellular level, H2O2
has to be able to cross the inner and outer envelopes of the
chloroplast and other membranes, yet its polar nature might
limit its capacity to diffuse through hydrophobic membranes
unassisted. In this context, the question arises as to what
extent H2O2 is able to diffuse out of the compartments
where it is generated. H2O2 can be released from isolated
chloroplasts immediately (<1 min) upon illumination, as shown
by an increase in resorufin fluorescence and detection of
electron paramagnetic resonance signals from H2O2-derived
hydroxyl radicals (Mubarakshina et al., 2010). H2O2 is thought
to be able to diffuse through membranes, possibly through
aquaporins (Henzler and Steudle, 2000; Bienert et al., 2007;
Bienert and Chaumont, 2014), suggesting that channel-mediated
membrane transport allows the fine adjustment of H2O2 levels
in the cytoplasm, intracellular organelles, the apoplast, and the
extracellular space, which are essential for it to function as
a signal molecule. Using fluorescent probe Amplex red which
forms fluorescent products in the reaction with H2O2, the
increased production of hydrogen peroxide under high light
conditions was observed within the thylakoid membrane, rather
than outside the membranes (Borisova et al., 2012). Actually,
only a small proportion of chloroplast H2O2 may cross the
chloroplast envelope and directly propagate a cytosolic signal to
the nucleus (Mubarakshina and Ivanov, 2010; Borisova et al.,
2012). Alternatively, the redox state of cellular compounds like
glutathione and ascorbate could be changed by H2O2 as an
oxidant. Furthermore, H2O2 could affect the reduction state of
the quinone pools in chloroplasts, thereby serving as a signal
molecule (Pogson et al., 2008).

Although intensive studies have focused on hydrogen
peroxide as a signaling molecule, a clear demonstration of
this process is still missing from the literature. Generally,
chloroplast is thought to be a major producer of ROS during
photosynthesis under heat stress and contains a large array
of ROS-scavenging mechanisms whereas ROS production also
occurs in mitochondria. Accumulated evidence suggests that
H2O2 and Ca2+ function as second messengers to activate
the heat-responsive expression of genes with HSEs in their
promoters, such as HSFs, HSPs, and cytosolic ascorbate
peroxidase (APX), as described in Figure 1. Under heat stress,
the maintenance of ROS homeostasis depends on redox enzymes
and metabolites, including SOD and the ascorbate–glutathione
(ASC–GSH) cycle, functioning in different cell compartments.
Notably, heat stress induces activation of a NADPH oxidase
(respiratory burst oxidase homolog RBOH) in the plasma

membrane via an increased membrane fluidity and/or via a
consequent increase in cytosolic levels of Ca2+ controlled by a
Ca2+ permeable channel (CNGC). In turn, Ca2+ influx activates
RBOH by promoting its phosphorylation, leading to the increase
of ROS (Figure 1).

To date, there is no general agreement on the H2O2
production rate and concentration in different compartments
of the cell (Veljovic-Jovanovic et al., 2002; Queval et al., 2008).
Moreover, the molecular mechanisms of H2O2 diffusion through,
however, is still under debate and the necessity for aquaporins
for H2O2 movement in vivo is yet to be determined (Foyer and
Noctor, 2005, 2013; Pogson et al., 2008; Mittler et al., 2011).

POSSIBLE CYTOSOLIC COMPONENTS
MEDIATING PLASTID-TO-NUCLEUS
SIGNALING IN RESPONSE TO HEAT
STRESS

How retrograde signals are perceived in the cytosol and
communicated to the nucleus remains largely unknown. Due
to its importance, much research effort has been expended
to understand how plants integrate these retrograde signals
via a signaling network, which involves second messenger
molecules as well as signal-sensing proteins in the cytosol.
Thus, we both discuss recent advances in the intermediate
signaling components such as calcium ions (Ca2+), HSP90
associated complex and PTM between the nucleus and the
plastid as well as sensing and signaling cascades in regulation
of plant resistance to environmental stresses, particularly to heat
stress.

(i) Ca2+, Calmodulin, and
Calmodulin-Binding Protein Kinase
Intracellular changes in Ca2+ in response to different biotic
and abiotic stimuli are detected by various sensor proteins in
the plant cell. It is a significant signature that heat shock can
trigger a transient increase in [Ca2+]cyt in the cytosol of plants
(Biyaseheva et al., 1993; Gong et al., 1998; Liu et al., 2003,
2006). Although the molecular mechanisms in regulation of
the heat-induced increase in [Ca2+]cyt in plant cells remain
largely unknown, it is known that the major sources of increased
cytosolic free Ca2+ are released from intracellular Ca2+ pools
and extracellular Ca2+ stores under heat stress. In Nicotiana
tabacum, it was observed that heat stress mobilizes cytosolic
Ca2+ from both intracellular and extracellular sources (Gong
et al., 1998). In Arabidopsis, phospholipase C (PLC)/inositol
1,4,5-trisphosphate (IP3) mediates the heat-induced increase
in [Ca2+]cyt (Liu et al., 2006; Zheng et al., 2012). In the
moss Physcomitrella patens, it was shown that heat is sensed
at the plasma membrane and causes a transient opening of
Ca2+-permeable channels possibly by modulating the membrane
fluidity (Saidi et al., 2009). Using reverse genetic analysis and
the whole-cell patch-clamp technique, CNGC6, a member of
CNGC family in Arabidopsis, was identified as a heat- and cAMP-
activated PM Ca2+-permeable channel that is involved in heat
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FIGURE 1 | Calcium and reactive oxygen species (ROS) homeostasis in response to heat stress. Schematic representation of the major generation sites of
ROS and transient calcium increase from different intracellular stores and the influx of extracellular calcium into the cell induced by the opening of cyclic nucleotide
gated channels (CNGC) in the plasma membrane in response to heat stress. Heat stress induces activation of calcium channels in ER membranes, leading to the
release of calcium in to the cytosol. Chloroplast is a major producer of ROS during photosynthesis under heat stress and contains a large array of ROS-scavenging
mechanisms. ROS production also occurs in mitochondria. Hydrogen peroxide (H2O2) and Ca2+ serve as second messengers involved in heat-responsive
activation of genes with heat shock elements in their promoters, such as heat shock transcription factors (HSFs), heat shock proteins (HSPs), and cytosolic
ascorbate peroxidase (APX ). Under heat stress, the maintenance of ROS homeostasis is involved in redox enzymes and metabolites, such as superoxide dismutase
(SOD) and the ascorbate–glutathione (ASC–GSH) cycle, functioning in different cell compartments. A NADPH oxidase (respiratory burst oxidase homolog RBOH) in
the plasma membrane becomes activated by heat stress via an increased membrane fluidity and/or via a consequent increase in cytosolic levels of Ca2+ controlled
by a Ca2+ permeable channel (CNGC). Ca2+ influx activates RBOH by promoting its phosphorylation, leading to the increase of ROS.

stress responses (Gao et al., 2012). Interestingly, nitric oxide
(NO) acts as a Ca2+ upstream signal in heat stress responses
(Wang L. et al., 2014). In a recent report, OsANN1 was identified
as a Ca2+-dependent phospholipid-binding protein, which is
involved in heat and drought stress responses by modulating
the levels of H2O2 and redox homeostasis (Qiao et al., 2015).
More than 40 putative calcium channels are predicted based
on the Arabidopsis genome and many of candidate channels
have a C-terminus with a putative calmodulin (CaM)-binding
domain, suggesting that CaMs are possible components involving
the ensuing steps of the heat stress responses (Ward et al.,
2009).

Identification and characterization of CaM-modulated
proteins in relation to heat stress could prove to be essential for a
deeper understanding of the molecular mechanisms involved in
heat stress tolerance in plants. It is proposed that the Ca2+–CaM
complex activates multiple kinases and regulates the activity of
heat stress transcription factors in plants (Liu et al., 2003, 2005,
2008; Zhang et al., 2009). For instance, AtCaM3 regulates the
expression of HSPs by activating calcium/CaM-binding protein
kinase (CBK; Liu et al., 2008). These results suggest that CaM
may act as an integrator of different stress signaling pathways,
allowing plants to maintain homeostasis among different cellular
processes (Bokszczanin and Fragkostefanakis, 2013; Virdi
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et al., 2015). On the other hand, the activation of extensive
calcium-dependent protein kinase cascades could provide a
mechanism whereby a chloroplast-derived ROS signal would
merge into a regulatory network. The transiently increased levels
of cytosolic calcium can activate the ROS-producing enzyme
RBOHD through the activation of a calcium-dependent protein
kinases that phosphorylates RBOHD (Suzuki et al., 2011). The
RBOHD-derived ROS can trigger the ROS/redox signaling
network that would activate downstream pathways via the
important components involving heat stress responses such as
MBF1c, certain HSFs and MAPKs (Mittler et al., 2004; Miller
et al., 2009). The heat-induced accumulation of ROS and an
increase of the cytosolic Ca2+ concentration can be sensed by the
calmodulin CaM3, which leads to the MPK6-mediated activation
of vacuolar processing enzyme that regulates heat-induced PCD
(Li et al., 2012).

Not surprisingly, operational control of chloroplast retrograde
regulation of heat stress responses is initiated by a combination
of factors. In general, Ca2+ is a key player in heat stress signal
transduction pathways where transient, spiking or oscillatory
changes in cytosolic Ca2+ levels help to couple environmental
cues to appropriate cellular responses. Thus, understanding
whether and how much Ca2+ signaling contributes to defining
stimulus–response specificity has long been a challenge
(Monshausen, 2012). Although chloroplasts contain high
concentrations (i.e., 4–23 mM) of total Ca2+ (Brand and Becker,
1984; Evans et al., 1991), it is not clear that they have the capacity
to sequester Ca2+ or are involved in the generation of Ca2+

signals in response to environmental stresses. The challenge
is to design physiologically relevant strategies to define the
Ca2+-dependent functions of chloroplasts during heat stress
responses (Figure 1).

(ii) HSP90-Associated Complex
The 90-kDa HSP (HSP90) is an abundant, evolutionarily
conserved molecular chaperone in eukaryotic cells, functioning
in the folding and activation of proteins involved in signal
transduction, control of the cell cycle and disease resistance
(Krishna and Gloor, 2001; Sangster and Queitsch, 2005). In
Arabidopsis, this HSP90 family includes seven members. The
AtHsp90-1 through AtHsp90-4 proteins are classified into
the cytoplasmic subfamily, whereas the AtHsp90-5, AtHsp90-
6, and AtHsp90-7 proteins are predicted to be chaperones
functioning in plastid, mitochondria, and endoplasmic
reticulum, respectively (Krishna and Gloor, 2001). It has been
suggested that the environmentally sensitive HSP90 complex
may initiate signaling cascades in response to environmental
perturbations (Sangster and Queitsch, 2005). In a recent
proteomic study using an affinity column containing Mg-
ProtoIX covalently linked to an Affi-Gel matrix, ligands of the
putative signaling metabolite Mg-ProtoIX were identified as three
cytosolic heat shock 90-type proteins (HSP90), and interactions
between Mg-ProtoIX and were investigated (Kindgren et al.,
2011). To test whether the identified interaction between HSP90
and Mg-ProtoIX is biologically relevant, the transgenic lines with
repressed HSP90 levels were generated. Data based on theses
transgenic lines suggest that HSP90 proteins respond to the

Mg-ProtoIX signal, providing insight into better understanding
that how the tetrapyrrole-mediated plastid signal is recognized in
the cytosol and further transduced into the nucleus in regulation
of nuclear gene expression (Kindgren et al., 2012).

Interestingly, ROF1 (AtFKBP62), a peptidyl prolyl cis/trans
isomerase, was shown to be involved in long term acquired
thermotolerance by interacting with HSP90.1 and modulating
the heat shock transcription factor, HsfA2 (Meiri and Breiman,
2009). Importantly, heat treatments induce nuclear localization
of the ROF1-HSP90.1 complex, which depends on HsfA2 by
interacting with HSP90.1 but not with ROF1 (Meiri and Breiman,
2009). These results suggest a role for ROF1 as a cytosolic
component in mediating heat stress signal transduction and
functions in prolongation of thermotolerance by sustaining the
levels of small HSPs that are essential for survival at high
temperatures (Figure 2). Recently, a direct physical interaction
between cytosolic HSP90A/HSP70A and heat shock factor 1
was detected, but surprisingly this interaction persisted after the
onset of stress (Schmollinger et al., 2013). It has been accepted
that unlike other heat-shock proteins, HSP90 proteins appear
not to be involved in protein folding, HSP90 rather interacts
with proteins in the near native state and HSP90 is essential for
maintaining the activity of numerous signaling proteins (Young
et al., 2001; Sangster and Queitsch, 2005).

(iii) Transcription Factors
So far, very few cytosolic and nuclear components involved in
retrograde communication have been identified. The nuclear TF
ABI4 (ABA-INSENTIVE 4) belongs to the DREBA3 subgroup
of a large family of plant-specific transcription factors known
as AP2/EREBP (Sakuma et al., 2002). In a screen for ABA-
insensitive (abi) mutants, the isolation of ABI4 was the first
evidence linking this factor with ABA signaling (Finkelstein et al.,
1998). It has been proposed that ABI4 functions as a node of
convergence for multiple plastid retrograde signaling pathways
in response to GUN1-derived chloroplast signals (Koussevitzky
et al., 2007). Moreover, ABI4 binds to this CCAC motif, which
has been found to be enriched in promoters of genes that
are derepressed during lincomycin treatment in gun1 and abi4
seedlings (Koussevitzky et al., 2007). However, its mode of action
that relays the chloroplast signals through the cytosol to the
nucleus is not fully understood (Leon et al., 2013). Interestingly,
treatments with norflurazon and lincomycin induce the high-
level production of 1O2 that has been considered to be a
putative signal for the modulation of nuclear-encoded plastid
proteins (NEPPs) in response to these inhibitors. However, this
regulation is severely inhibited in the mutants of GUN1 and
ABI4, indicating that a disruption of tetrapyrrole synthesis may
result in localized ROS production or an altered redox state of
the plastid, which could mediate retrograde signaling (Moulin
et al., 2008). One of the challenging questions is how chloroplast
signals are transmitted to the nucleus through the cytosol. The
recent identification of PTM, a chloroplast envelope-bound plant
homeodomain (PHD) transcription factor with transmembrane
domains, potentially links ABI4 and retrograde chloroplast
signaling (Sun et al., 2011). Notably, PTM is processed by an
unidentified intramembrane peptidase and released from the
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FIGURE 2 | Overview of a proposed model for chloroplast retrograde regulation of heat stress responses. Thylakoid membranes are the primary
susceptible targets of thermal damage in plants. Heat stress induces disturbance on the photosynthetic machinery and defects in plastid gene expression (PGE),
leading to generation of ROS and accumulation of tetrapyrroles such as Mg-protoporphyrin IX (Mg-ProtoIX) and heme. The resulting ROS and disturbance of redox
homeostasis in chloroplasts could serve as retrograde signals to activate downstream signal cascades via GLKs, HY5, or ABI4 in the nucleus. Ca2+, sequestered
from chloroplasts under heat stress, via calmodulin activates calmodulin-binding protein kinase 3 (CBK3) and also activates protein kinase C (PKC), which via
phosphorylation regulates MAP kinase (MAPK). The stressed chloroplasts may sequester Mg-ProtoIX, that binds to HSP90, which can form a complex with ROF1
(AtFKBP62), a peptidyl prolyl cis/trans isomerase. The resulting ROF1-HSP90 complex mobilizes into the nucleus with the help of the heat stress transcription factor
HsfA2, which could allow them to drive the transcription of target genes such as HSPs required for establishing cellular heat tolerance. A possible retrograde
regulatory pathway has also been proposed under heat stress in which PTM, a chloroplast envelope-bound plant homeodomain transcription factor, is cleaved
during signaling transduction and the amino-terminal PTM is transferred into the nucleus, where histone modifications to the ABI4 promoter occur.

plastid envelope to the cytoplasm in response to treatments that
initiate retrograde signals such as norflurazon, lincomycin, and
high light. In turn, the processed PTM transmits into the nucleus,
where it directly activates the expression of ABI4. Consistence
with the role of PTM in retrograde signal transduction, the
expression of ABI4 is much reduced in the ptm mutant (Sun
et al., 2011). In a recent report, heat-responsive activation of

PTM was significantly inhibited in the mutant of plastid CASEIN
KINASE 2 (CK2), encoding a major Ser/Thr-specific enzyme
regulated by redox signals for protein phosphorylation in the
chloroplast stroma (Wang et al., 2014a). These results provide a
molecular basis for a chloroplast envelope-bound transcription
factor in retrograde chloroplast signaling and shed new light on
the mechanism whereby chloroplast signals are transmitted to
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the nucleus through the cytosol (Figure 2). Further experiments
focused on identification of the endopeptidase responsible for
PTM activation and environmental stimuli that regulate its
activity would yield important insight into how the physiological
state of the chloroplasts is communicated into the nucleus.

In addition, the transcription factors long hypocotyl 5 (HY5)
and Golden 2-like (GLK1/2) are suggested to participate in
retrograde signaling pathways and have been shown to respond
to plastid signals (Ruckle et al., 2007; Ruckle and Larkin, 2009;
Waters et al., 2009). HY5 is converted from a positive to a
negative regulator of photosynthesis-associated nuclear genes
(PhANG) in response to an unknown plastid signal (Ruckle et al.,
2007; Ruckle and Larkin, 2009), demonstrating a convergence
between plastid and light signaling networks. A recent study
reveals that HY5, together with HSP90 proteins, responds to
the tetrapyrrole-mediated plastid signal to control the expression
of PhANG during the response to oxidative stress, supporting
that Mg-ProtoIX, cytosolic HSP90, and HY5 are all part of
the same retrograde signaling pathway that is modified by
tetrapyrroles in response to environmental stresses (Kindgren
et al., 2012). As members of the GARP superfamily, the GLK
proteins are partially redundant and are required for normal
chloroplast development (Riechmann et al., 2000). The GLK
proteins regulate the expression of genes involved in chlorophyll
biosynthesis, light harvesting, and electron transport (Waters
et al., 2009). Based on the expression analysis of some retrograde
signaling marker genes in the glk1/glk2 double mutant, the GLK
proteins have been implicated in retrograde signaling, specifically
in the plastid protein import pathway (Kakizaki et al., 2009;
Waters et al., 2009).

Taken together, these findings described above show that
the remodeling of chloroplast retrograde signaling networks
by these transcription factors is a mechanism by which plants
integrate signals describing the functional and developmental
state of chloroplasts with signals triggered by a variety of
environmental stresses when coordinating the expression of
the nuclear and chloroplast genomes during plant adaptation
to stresses. These cytosolic mediators can perceive changes
of ROS/redox at cellular levels and thus activate rapid and
specific responses to environmental cues involving changes in
choloroplastic dynamics as well as ROS-dependent signaling
networks, although the mechanisms involved remain to be fully
established. Chloroplasts can therefore be regarded as a highly
important decision-making platform in the cell under heat stress,
where ROS and redox play a determining role (Figure 2).

CONCLUSION AND FUTURE
PERSPECTIVES

The chloroplasts act as sensors of environmental changes and
complex networks of plastid signals coordinate cellular activities

and function in stress responses to survive environmental
perturbations. Therefore, chloroplast retrograde regulation is
essential not only for coordinating the gene expression involving
photosynthetic processes in both the nucleus and in the
chloroplasts but also for mediating plant stress responses.
Compared with extensive studies on retrograde regulation of
drought and high light stress responses (Fernandez and Strand,
2008; Suzuki et al., 2012; Dietz, 2015; Nagahatenna et al., 2015),
our knowledge is very limited in respect to the chloroplast-
dependent regulatory mechanisms by which plants respond to
heat stress. It is generally accepted that the chloroplasts generates
multiple signals in response to a variety of environmental
stresses. To respond optimally to environmental stresses, the
retrograde signals derived from chloroplasts must transmit the
information to the nucleus by cytosolic second messengers or
distinct signal cascade pathways. Chloroplasts are metabolically
active organelles that used to be regarded as a major source for
ROS generated in response to abiotic stress. ROS production
can be perceived by the cell as an alarm that triggers stress
responses. Although H2O2 is proposed as a possible retrograde
signal molecule, the challenge with this model lies in that how
H2O2 could function as a specific messenger to communicate
information on the state of chloroplasts to the nucleus because
H2O2 is generated at different cellular compartments and in
response to various different stresses and stimuli in higher plants.
In future, identifying the novel interconnecting components
of retrograde signaling by innovative genetic or biochemical
approaches will significantly advance our understanding of the
complicated retrograde pathways in response to a variety of
abiotic stresses.
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