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Potato (Solanum tuberosum L.) is often considered as a drought sensitive crop and

its sustainable production is threatened due to frequent drought episodes. There has

been much research aiming to understand the physiological, biochemical, and genetic

basis of drought tolerance in potato as a basis for improving production under drought

conditions. The complex phenotypic response of potato plants to drought is conditioned

by the interactive effects of the plant’s genotypic potential, developmental stage, and

environment. Effective crop improvement for drought tolerance will require the pyramiding

of many disparate characters, with different combinations being appropriate for different

growing environments. An understanding of the interaction between below ground water

uptake by the roots and above ground water loss from the shoot system is essential. The

development of high throughput precision phenotyping platforms is providing an exciting

new tool for precision screening, which, with the incorporation of innovative screening

strategies, can aid the selection and pyramiding of drought-related genes appropriate

for specific environments. Outcomes from genomics, proteomics, metabolomics, and

bioengineering advances will undoubtedly compliment conventional breeding strategies

and presents an alternative route toward development of drought tolerant potatoes. This

review presents an overview of past research activity, highlighting recent advances with

examples from other crops and suggesting future research directions.

Keywords: potato, drought, yield, high throughput phenotyping, water use efficiency, breeding

Introduction

Potato (Solanum tuberosum L.) is of great economic value and ranks as the fourth most
important food crop in the world. According to FAO (2011) global cultivation on 19.2 million
hectares resulted in an estimated 374 million tons production. Potato production provides food,
employment, and income as a cash crop (Scott et al., 2000) and helps in increasing food availability
while contributing to a better land use ratio by raising the aggregate efficiency of agricultural
production systems (Gastelo et al., 2014). Potatoes are grown in over 125 countries and more
than a billion people worldwide consume them on a daily basis (Mullins et al., 2006). The poor
and most undernourished farm households in many developing countries depend on potatoes
as a primary or secondary source of food and nutrition (Lutaladio and Castaidi, 2009) as its
short and flexible vegetative cycle makes it well suited for crop rotation with other major
crops. Moreover, it can be cultivated in environmental conditions where other crops may fail
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(Food and Agriculture Organization of the United Nations,
2009). Global geographical production of potatoes shows that
it is grown in all continents except Antarctica (Rowe and
Powelson, 2002). Along with its flexibility for cultivation,
potato also represents an excellent source of nutrients including
carbohydrates, proteins, vitamin C, several forms of vitamin B,
and minerals (Camire et al., 2009; White et al., 2009; Birch
et al., 2012). As a major staple food, potato tubers are high in
compounds including ascorbate, β-carotene, organic acids, and
cysteine-rich polypeptides that promote mineral bioavailability.
Furthermore, potato is low in anti-nutrients such as oxalates and
phytates which can decrease mineral bioavailability (White et al.,
2009).

Drought already poses one of the most important constraints
to plant growth and terrestrial ecosystem productivity in
many regions all over the world (Chaves et al., 2003) and
water availability is becoming even scarcer for agricultural
communities. The influencing factors include inadequate rainfall,
excessive levels of salts in the soil solution or the increasing
diversion of limited fresh-water resources to competing urban
and industrial uses (Neumann, 2008). Climatic model predict
that global warming will further escalate drought as a result of
increasing evapotranspiration (Salinger et al., 2005; Cook et al.,
2007) though there are likely to be large regional differences
(Metz et al., 2007) with frequency and intensity increasing
from 1 to 30% in extreme drought land area by 2100 (Fischlin
et al., 2007). These negative consequences of climate change in
agriculture will drastically affect poor and marginalized groups
who depend on agriculture for their livelihoods coupled with
limited potentials to cope. Impact of climate change on potato
production in Ireland using simulation models (in the DSSAT
package) showed an expected relatively uniform increase in
temperature of about 1.6◦C over the country by the 2075 climate
period (Holden et al., 2003) and potato yield in 2055 and 2075 is
expected to fall for non- irrigated tubers resulting in severe loss
of yield over most of the country by 2055 (Holden et al., 2003).
In northern temperate regions there will be more heterogeneity
in weather events with northern Europe influencing more
rain in winter and significantly less in summer (Haverkort
and Verhagen, 2008) affecting both agriculture production and
adaptation. In the Mediterranean and Sahel regions during the
heat- free periods of the year potato yields will go down as the
suitable periods become shorter. Higher evaporative demand will
result to water being use less efficiently and only irrigation may
hold the keys for yield increments in potato in the temperate
(Haverkort and Verhagen, 2008). Globally, for potato, drought
will decrease potential potato yield by 18–32% in the projected
period of 2040–2069 (Hijmans, 2003). The indication for the
effect of drought on potato production and cultivation can be
seen from available FAO data and recent case studies. In 2011
and 2012 drought and heat waves in the USA have resulted
in damage to summer crops (including potatoes) and livestock
causing losses of $40–88 in billions of dollars (NOAA, 2011,
2012) . In 2010, drought affected Russia and led to production
losses of around 30% on industrial potato farms and households
in the Central and the Volga Valley—a federal district that
traditionally produces over 60% of the Russian potato crop

(GAIN, 2010; Barriopedro et al., 2011). Crop models predict that
potato yields may reduce by ∼30% as a result of water deficit
in Poland (http://www.climateadaptation.eu/poland/agriculture-
and-horticulture/).

Drought Response

Drought Sensing and Signaling
Drought limits productivity of crop plants by affecting
photosynthetic processes at the canopy, leaf or chloroplast
level, either directly, or by feedback inhibition if transport of
photosynthate to sink organs is limited (Jones and Corlett,
1992). The response pattern of plants to drought is regulated
by intensity, duration and rate of progression of imposed
drought (Pinheiro and Chaves, 2011). Figure 1 provides an
overview of the effect of different levels of drought and the
response triggered under these levels. Under mild to moderate
conditions, stomatal characteristics are affected which result
in biomass loss while under severe conditions non-stomatal
factors can become dominant (Liu et al., 2010) constraining
photochemical efficiency and Rubisco activity and thus affecting
the biochemical and physiological metabolisms (Xu et al., 2010).
Light signal transduction pathway of guard cells remains the
primary mechanism regulating stomatal opening (Lee, 2010),
while mechanism of stomatal behavior is influenced by ABA
in the root-to-shoot signaling under stress (Jia and Zhang,
2008). Plants grown under drought conditions tend to have
lower stomatal conductance, thus helping to conserve water
and maintain an adequate leaf water status but at the same time
reducing leaf internal CO2 concentration and photosynthesis
(Chaves et al., 2002). Nevertheless, the precise relationship is
also dependent on other factors, for example genotype, influence
of drought history, and environmental conditions (Schulze and
Hall, 1982; Tardieu and Simonneau, 1998). It has been shown
that long term exposure of leaf or canopy to low vapor pressure
deficit generates a sort of “memory” in guard cells that results
in loss of closing stimuli of stomatal responses (Nejad and Van
Meeteren, 2007; Fanourakis et al., 2011). Thus, when studying
drought response, differentiation is needed between terminal or
intermittent drought and its interaction with environment. In the
case of terminal drought the availability of soil water decreases
progressively leading to premature plant death while intermittent
drought comprises finite periods of inadequate water occurring
at one or more intervals during the growing season (Neumann,
2008) (Figure 1). The timing of intermittent drought during
growth may have much larger impact on biomass and yield than
intensity of drought and may also depend on stress duration
and phenological stage (Pinheiro and Chaves, 2011). Yield losses
depend on plant growth phase affected by drought (vegetative
and reproductive) (Serraj et al., 2004), which indirectly reduces
the photosynthetic rate, CO2 fixation and finally resulting
in less assimilate product (Mafakheri et al., 2010). Figure 2

details different growth stages in potato and how water limited
environment can influence plant growth and development and
eventually yield even if the lack of water is transient. In potato,
tuber yield is correlated with both harvest index (HI) and dry
matter and therefore for breeding, it is critical to understand the
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FIGURE 1 | Flow chart detailing the effect of different types of drought and how plants respond to the stimulus at molecular, physiological, and

morphological levels.

genotypic variation dependence on assimilate distribution and
the dry matter production (Jefferies and Mackerron, 1987, 1993;
Mackerron and Jefferies, 1988; Gregory and Simmonds, 1992;
Jefferies, 1993a; Tourneux et al., 2003b). Little information is
available on the effects of prolonged long term water shortage
regimes but studies have widely examined short term lack of
water consequences suggesting that soil moisture should not
drop below 50% of crop available water in the soil for maximum
yield (Mackerron and Jefferies, 1986). Drought in potato not only
reduces yield, in that the crop may extract less of the available
water from the soil in comparison with other crops (Weisz et al.,
1994), but it can also harm product quality, for example by
increasing common scab incidence (Mane et al., 2008).

At the molecular and biochemical level, plants perceive and
respond to drought stress by dynamically shifting regulatory
responses during transcription and protein expression, thus
affecting many biochemical pathways and consequently
physiological and developmental processes (Mane et al., 2008;
Vasquez-Robinet et al., 2008). The reduction in photosynthesis
as a result of drought is mediated through the stomatal
and non-stomatal effects, where later involves decreased

electron flow as a result of both photo-inhibitory damage and
regulatory control of energy dissipation in the chloroplasts
(Angelopoulos et al., 1996; Baker, 2008). Stomatal closure
decreases CO2 availability in the mesophyll, and changes in the
electron transport and biochemical pathways (Boyer, 1976) all
contributing to reduced photosynthesis (Cornic et al., 1983;
Genty et al., 1987) under water deficit stress. Biochemical
changes include decreased ribulose bisphosphate (RuBP)
synthesis (Gimenez et al., 1992), decreased Rubisco activity and
decreased carboxylation efficiency (Martin and Ruiztorres, 1992)
or both (Faver et al., 1996). The progressive decrease inmaximum
metabolic capacity under stress saturates photosynthetic rate and
thus suggests, implicates photosynthetic carbon reduction cycle
enzymes, including RuBP carboxylase/oxygenase (Rubisco).
Limitation of RuBP synthesis is probably caused by inhibition of
ATP synthesis, due to progressive inactivation or loss of coupling
factor resulting from increasing ionic (Mg2+) (Lawlor, 2002).
Selective enhancement of Rubisco activase capacity could partly
enhance photosynthesis under stress, but this enhancement
would generally be small (Parry et al., 2013). At the electron
transport level, decreased CO2 assimilation leads to reduced
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FIGURE 2 | Effect of water stress at different growth stages of potato.

regeneration of NADP+ in the Calvin cycle (Schapendonk
et al., 1989; Cruz de Carvalho, 2008) resulting in concomitant
generation of reactive oxygen species (ROS) and potential
photo-inhibitory damage. Moreover, decreased intercellular
CO2 concentration (as stomata close) favors oxygenation of
RuBisCO which can also contribute to ROS production (Cruz
de Carvalho, 2008). Figure 1 provides a detailed description
of plant response to drought, stimulus to different types of
drought, their effect on signaling pathways and plant adaptive
responses. Different signaling pathways initiate phosphorylation
cascades and activate appropriate transcription factors which
trigger cellular responses under drought. These transcription
factors regulate gene expression as a primary response of
the plant resulting in plant stress adaptation (Rensink et al.,
2005). Cytosolic Ca2+ is implicated as a cellular sensor second
messenger in signal transduction, intracellular communication,
and coordination of parts of recipient cells toward a behavioral
objective (Sanders et al., 2002; Trewavas, 2002). In addition to
localized responses there is compelling evidence for an important
role for long-distance signaling, for example, abscisic acid (ABA)
as a major chemical root to shoot stress signal in plants grown
under dry conditions (Davies and Zhang, 1991; Davies et al.,

2002; Dodd, 2005; Hey et al., 2010). As a response to drought
signal, the dosage of plant hormone ABA rises relative to stress
severity and it represents a key signal in cellular response by
activating the expression of different drought responsive genes
(Chaves et al., 2003). Other hormonal signals sent to the shoot
through transpiration stream along with ABA upon drought
perception include ethylene and Gibberellic acid (GA). Studies
have revealed that these hormones invoke responses in both
mature and young leaves, with ABA response in mature leaf cells
and ethylene and GA response in dividing and expanding leaf
cells (Skirycz et al., 2010; Verelst et al., 2010). Similarly, Jasmonic
acid (JA) or Jasmonates are shown to be important cellular
regulators activating signal transduction pathway between stress
perception and response under drought conditions (Wasternack
and Parthier, 1997; Du et al., 2013; Lee et al., 2013). Some
protein families serve as an interface of ABA, JA, and (GA)
signaling, suggesting a pivotal functional involvement of lipid-
derived signaling in abiotic stress responses (Golldack et al.,
2014). Compatible solutes including amino acids, ammonium
compounds, sulfonium compounds, sugars, and polyols protect
cellular structures (Chen et al., 2007). To protect plant enzymes
and proteins from denaturizing upon drought stress, compatible
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solutes help to stabilize enzymes (Büssis and Heineke, 1998). The
differential distribution and accumulation response of plants
to this complex interaction defines their status toward survival
or death. Plant cell death under severe drought stress occurs
when concentration in ROS exceeds the scavenger potential
with a consequence of irreparable damage to different plant
cells including lipids, proteins, and deoxyribonucleic acid
(DNA).

Adaptive Response
Plants respond to limiting water availability through a complex
series of adaptive changes often accompanied by deleterious
pleiotropic effects (Chaves et al., 2002; Jones, 2014). In an
agricultural context farmers and breeders tend to define
drought tolerant cultivars as those that maintain yield under
drought conditions. Water deficit elicits responses that are
expressed on growth, reproduction, partitioning of assimilates,
survival, and death. These adaptive responses can be short
term physiological regulation, cellular reversible adjustments,
structural irreversible adjustments, and genotypic adjustments.
The evolutionary responses to water stress are seen in light of
genetic adaptation which produces specialized set of traits that
allows them to prevail (Körner, 2003). Adaptation of plants
to drought can involve avoidance or tolerance and thus stress
adjustment scenarios that can be partitioned into (i) avoidance
of tissue water deficits/dehydration, (ii) tolerance of tissue water
deficits, and (iii) efficiency mechanisms (Turner, 1986; Jones,
2014). Avoidance of tissue water deficits (drought resistance
according to Levitt, 1980) can be achieved by means of “drought
escape,” where a plant grows only during periods of ample water
availability and often involves rapid phenological development.
The drought escape process is significant in arid regions where
adapted annuals might combine short life spans with high rates of
growth and gas exchange while utilizing the maximum moisture
content in soil (Maroco et al., 2000). Avoiding tissue dehydration
can also be achieved by enhanced water uptake associated with
adaptive aspects such as increased root depth, altered rooting
patterns (Jackson et al., 2000) or by reduced water loss as a result
of mechanisms involving stomatal closure or adjustments to the
leaf energy balance through reductions in light absorption or
modifications to heat and mass transfer in the leaf boundary
layer (Larcher, 2000; Mitra, 2001; Jones, 2014). High stomatal
resistance can be observed when potato leaf temperature is above
25◦C while vapor pressure gradient is relatively constant (Ku
et al., 1977) resulting to significant reduction in transpiration.
The closure of potato stomata under high leaf temperature is
a reflection of adaptation to a cooler environment (Ku et al.,
1977). Notably, the increased stomatal resistance may not result
to proportional decrease in transpiration rate because for a given
reduction in transpiration due to stomatal closure, the increase
in leaf temperature would depend strongly on environmental
factors, particularly the radiation load on the leaf, and the heat
transfer coefficient of the air (Hsiao, 1973). Non-stomatal factors
in the leaf, often referred to as “mesophyll,” cause significant
reductions in transpiration as water stress develops. In addition,
water deficit affects stomata via its effect on ABA levels or on
plant hormonal balance (Chaves, 1991).

Although stomatal density and stomatal size play an
important role in determining the transpiration rate and leaf
conductance and especially providing a rapid response to water
deficits, much of the most important control of water loss over
the life cycle of a crop is achieved by adjustments to leaf area
(Wolfe et al., 1983; Jones, 2014). Tolerance of tissue water
deficits most commonly involves maintenance of turgor, even
when the tissue water potential declines, either through osmotic
adjustment (OA) (Morgan, 1984) or as a result of the presence
of rigid cell walls or decreased cell size (Wilson et al., 1980).
The substantial differences between species in their ability to
tolerate tissue water deficits and thus continue metabolism at
low water potentials is often associated with the build-up of so-
called “compatible” solutes. Our functional definition of drought
tolerance is based on combination yield stability and high relative
yield under water deficits. This has been proposed as useful
selection criterion for adaptation under varying degree of water
deficit (Pinter et al., 1990). Potential efficiency mechanisms for
improvement of crop drought tolerance include improvements
in the water use efficiency (WUE) and improvements in the
efficiency with which assimilate is converted to harvestable yield
(HI). In practice a plant may combine a range of drought
tolerance mechanisms (Ludlow, 1989), but it is important to
note that there is an important trade-off involved with many
“drought tolerance” mechanisms as they may reduce potential
yield: for example stomatal closure conserves water but also
reduces photosynthetic assimilation.

Understanding the interactions between the various
biochemical, molecular and physiological mechanisms for
stress adaptation is vital for identifying traits that might improve
stress tolerance in crops through both conventional breeding
and transgenic strategies (Evers et al., 2010). In the context of
climate change, there is also an urgent need to understand and
develop potato management practices that will help adaptation
to water deficit and their interaction with traits that confer
tolerance or resistance to stress. This review discusses the
current state of knowledge in trait identification with evidence
of our understanding of drought tolerance in potato and further
highlights the strategies and mechanisms being used to address
adaptation. The review also discusses the use of new “pheno-
technological” platforms and how they can be used to narrow the
gap between genotyping and phenotyping for drought stress and
to enhance breeding practices.

Drought Effects on Potato

Physiological and Morphological Responses
Physiological responses are variety dependant and vary with
source of the seed or physiological age of the tubers (Steckel and
Gray, 1979). The differences in source may influence patterns of
foliage growth and yield as well as the number of root primordia
and the eventual size of root system (Wurr, 1978). As might
be expected, physiological responses to drought are often more
closely associated with “predawn” water potential than with
daytime water potentials (Jones, 2007). Physiological response
strategies include drought sensitive stomata which result in
low transpiration rates and relatively increased intrinsic WUE
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regardless of radiation level and thus promote growth in areas
with limited water availability (Coleman, 2008). Transpiration is
affected by leaf area, root to leaf ratio, leaf orientation, leaf shape,
leaf surface characteristics (pubescence), leaf thickness, and
distribution of stomata. An overview of the studies highlighting
the impact of drought on morphological/physiological traits in
potato is shown in Table 1 (with guidance from Figure 1) and
the crop stages at which these characters are influenced are
highlighted in Figure 2.

Plants under water stress show a decrease in leaf conductance
(g1) which largely declines in parallel with leaf water potential
(91) with efficient water conservative strategy dependant on
the characteristics of canopy architecture such as canopy area,
open/close canopy, leaf orientation, and cuticular transpiration
rates. Potatoes exhibit isohydric characteristic with soil water
potential (9soil) and stomatal conductance (gs) decreasing under
water stress while maintaining 91 similar to values obtained
from non stressed conditions (Liu et al., 2005) suggesting delay
in onset of stress. Predawn 91 and gs can therefore be used as
parameters for water stress as they exhibit coherent relationship
with growth and yield In potato, water stress studies have shown
reduction in expansion of stems and leaves, leading to reduced
foliage, reduced canopy, reduced leaf area index, decreased shoot
biomass, and finally reduction in dry matter content (Jefferies,
1992, 1993b; Jefferies and Mackerron, 1993; Dallacosta et al.,
1997; Deblonde et al., 1999; Deblonde and Ledent, 2001; Mane
et al., 2008; Albiski et al., 2012; Anithakumari et al., 2012).
These morphological responses depend on the time of stress
(development stage) and also whether the stress is short or long
term. Stress at stolon initiation and tuber initiation stages not
only restrains foliage and plant development but also limits
the number of stolons leading to reduced tuber numbers and
therefore, reduced HI and dry matter with effects on final yield
(Fasan and Haverkort, 1991; Deblonde and Ledent, 2001; Lahlou
et al., 2003; Tourneux et al., 2003b; Evers et al., 2010). In
some cases, studies have shown some contrasting effects on the
morphological and physiological traits, which can be attributed
to genotype x environment interaction. Contrasting reports of
increased HI (Fleisher et al., 2013) and reduced HI (Fasan
and Haverkort, 1991) can be credited to varying enviromental
conditions used for the studies. A controlled sunlit soil–plant-
atmosphere research (SPAR) chamber with short term drought
cycles was used in the former while the latter were grown under
a permanent rain shelter in mobile containers. Root length
has been reported to decrease under water stress using both
in vitro screening (Albiski et al., 2012) and terminal drought
evaluation (Auber et al., 2013). This contrasts with an earlier
report (Jefferies, 1993a) that showed a constant root length while
using self- and reciprocal grafts as planting materials with scions
having a dominant effect in determining the partitioning of dry
matter between shoot, root and tubers. Studies by Katerji and
colleagues reported significant decrease in WUE when crops are
grown in clay soil as during the active growing phase, a reduced
water uptake occurs in the plants growing in the clay soil (Katerji
and Mastrorilli, 2009) contradicting the results showing WUE
not affected by soil type and salinity (Karam et al., 1996). Similar
contradictory results have been reported for stolon numbers, with
drought either reducing the stolon number (Haverkort et al.,

1990) for a series of experiments in plots, in pots or in containers
in a glasshouse or under a rain shelter environment or increasing
the number (Lahlou and Ledent, 2005) for other experiments
under field and green house conditions. In all these contrasting
studies, the environmental conditions, soil type, stress severity
and phenological stage of stress induction differed and may have
led to the variability in results.

Plant size, reduced leaf area, early maturity, and prolonged
stomata closure are key traits in response to mitigating the
effect of drought on plants (Weisz et al., 1994; Mahan et al.,
1995; Karamanos and Papatheohari, 1999; Farooq et al., 2009;
Xu et al., 2009). Similarly, the ability of potato to form a large
“above ground” biomass has been shown to be an effective
insurance against soil water deficit (Schittenhelm et al., 2006).
As discussed above, plant response to drought may involve
avoidance or tolerance.While avoidance and resistance responses
involves morphological restraints, change in canopy size, area
and anatomy and increase stomatal and cuticular resistance,
tolerance is primarily attributed to maintenance cell turgor that
includes OA and cellular or tissue elasticity. The limitation
in measuring large number of genotypes for traits linked to
tolerance without high throughput approaches has led to the use
of transgenic approaches to bioengineer crop plants for tolerance
(discussed in next Section).

Crop growth models allow us to evaluate the complexity
of drought tolerance mechanisms and should help to provide
a basis for identification of optimal strategies for any specific
environmental combination. For example, the closing of stomata
early in response to drought can save water for future growth
at the expense of current growth but without affecting final
growth and assimilate product (Spitters and Schapendonk,
1990). Although work is still being carried out to understand
the physiological basis for this association, carbon isotope
discrimination (δ13C) shows a significant positive correlation
with plant height and the dry biomass of the plant foliage (Legay
et al., 2011; Anithakumari et al., 2012). δ13C measures the ratio
of stable carbon isotopes (13C/12C) in the plant dry matter
compared to the ratio in the atmosphere (Condon et al., 1990).
In a water deficit condition, δ13C represents a reliable estimator
of stomatal conductance (Condon et al., 2002) andWUE in crops
(Turner, 1997; Tambussi et al., 2007). Studies show that drought
tolerant genotypes exhibited high WUE, stomatal control, and
root elongation by maintaining photosynthesis and putative
sucrose export to tubers under drought exposure. Studies show
that high CO2 assimilation rate favors high N assimilation which
in turn up-regulates nitrate reductase activity (NR), with lower
decrease in NR associated with drought tolerance (Balasimha and
Virk, 1978; Das et al., 2005).

Drought Responsive Genes
Stress responsive expression is thought to be an important
mechanism of adaptation as it plays an important role in
tolerance. Several studies have cataloged a large number of
genes showing differential expression during stress treatment
both in cereals and model crops. Although this list can be
differentiated into WUE, avoidance and escape and finally
tolerance based on traits associated, this paragraph compiles
them under one heading as these mechanisms are interactive and
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TABLE 1 | Summary of drought impact on different morphological and physiological traits and summarized literature search highlighting these effects in

potato.

Morphological/physiological

traits

Decreasing references Improving references

Productive foliage (stem and leaf) Jefferies and Mackerron, 1987, 1993; Fasan and Haverkort, 1991; Shock

et al., 1992; Dallacosta et al., 1997; Deblonde et al., 1999; Albiski et al.,

2012

−

Stem thickness Albiski et al., 2012

Plant dry matter Jefferies and Mackerron, 1987; Jefferies, 1992; Albiski et al., 2012; Fleisher

et al., 2013

Jefferies, 1993a; Jefferies and Mackerron, 1993

Canopy coverage Jefferies and Mackerron, 1993 −

Leaf dry mass, leaf area index

(LAI), leaf area duration (LAD

Fasan and Haverkort, 1991; Lahlou et al., 2003; Albiski et al., 2012 −

Leaf growth Jefferies and Mackerron, 1993; Weisz et al., 1994 −

Leaf water potential Moorby et al., 1975; Haverkort et al., 1991; Heuer and Nadler, 1998 −

Diffusive leaf resistance − Ierna and Mauromicale, 2006

Leaf osmotic potential Heuer and Nadler, 1998 −

Leaf sugar concentration − Moorby et al., 1975

Number of green leaves Fasan and Haverkort, 1991; Deblonde and Ledent, 2001 −

Plant water content Albiski et al., 2012 −

Plant Height Fasan and Haverkort, 1991; Shock et al., 1992; Deblonde and Ledent,

2001; Albiski et al., 2012

−

Tuber yield Jefferies and Mackerron, 1987, 1989; Miller and Martin, 1987; Lynch and

Tai, 1989; Spitters and Schapendonk, 1990; Fasan and Haverkort, 1991;

Jefferies, 1992; Martin et al., 1992; Shock et al., 1992, 1998; Karafyllidis

et al., 1996; Dallacosta et al., 1997; Steyn et al., 1998; Deblonde and

Ledent, 2001; Lahlou et al., 2003; Tourneux et al., 2003b; Proietti et al.,

2005; Ierna and Mauromicale, 2006; Shiri-E-Janagard et al., 2009; Evers

et al., 2010; Ierna et al., 2011; Alva et al., 2012

−

Tuber dry matter Levy, 1983; Jefferies and Mackerron, 1989, 1993; Deblonde et al., 1999 Steckel and Gray, 1979; Jefferies and Mackerron,

1987, 1993; Jefferies, 1992; Nadler and Heuer, 1995

Number of tuber Mackerron and Jefferies, 1986; Lynch and Tai, 1989; Martin et al., 1992;

Shock et al., 1992; Deblonde and Ledent, 2001; Lahlou et al., 2003;

Onder et al., 2005

−

Tuber specific gravity Shock et al., 1993, 2003; Eldredge et al., 1996

Stem-end reducing sugar − Levy, 1983; Shock et al., 1993; Nadler and Heuer,

1995; Eldredge et al., 1996

Harvest index Fasan and Haverkort, 1991 Fleisher et al., 2013

Stolon number Haverkort et al., 1990 Lahlou and Ledent, 2005

Tuber quality at storage − Shock et al., 1992

Total soluble solids Levy, 1985 Shock et al., 1993

Tuber osmotic potential Levy, 1985 −

Partitioning of assimilate into

tubers

− Jefferies and Mackerron, 1989

Root length Albiski et al., 2012; Auber et al., 2013 Jefferies, 1993a

Root number and thickness Albiski et al., 2012 −

Root biomass Mane et al., 2008 −

Root water potential Liu et al., 2005 −

Root dry matter − Jefferies, 1993a; Lahlou and Ledent, 2005

Root: shoot ratio − Jefferies, 1993a

response of one pathway affects the other. Studies have shown
that glycolysis gene transcription and amino-acid degradation
are more strongly repressed in drought tolerant cultivars when
compared to drought susceptible ones (Evers et al., 2010).
Drought stress led to strong repression of photosynthesis-related
genes in drought tolerant cultivar (Reiter and Vanzin, 2001;

Evers et al., 2010). Under stress recovery, genes associated
with PSII showed that genotype specific activation responses
increased sucrose accumulation and cell wall biosynthesis (Mane
et al., 2008). There is evidence of high mitochondrial metabolic
activity in a drought resistant cultivar (Vasquez-Robinet et al.,
2008) while a susceptible cultivar was characterized with higher
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levels of proline, trehalose, and GABA (γ-aminobutyric acid)
(Vasquez-Robinet et al., 2008). Several genes associated with
mitochondrial function were more negatively affected in drought
susceptible genotypes. Dihydrolipoamide dehydrogenase and
ADP-sugar biphosphatase were activated in drought resistant
clones but repressed in drought susceptible clones. Chloroplast-
localized antioxidant and chaperone genes were more highly
expressed in drought resistant cultivars whereas ABA-responsive
transcriptional factors (TFs) were more highly expressed
in drought susceptible ones (Vasquez-Robinet et al., 2008).
Evaluation under in vitro control and water-stressed conditions
identified putative candidate genes for drought tolerance as
transcription factors and signaling molecules, such as protein
kinases and ERF1 (Ethylene Response factor 1) (Anithakumari
et al., 2011, 2012). Silencing of a CBP80 (nuclear cap-binding
protein) gene in the cultivar Desiree increases water deficit
tolerance through initiating Cap-Binding Complex (CBC) that
recognizes and binds to the cap structure of RNA polymerase
II transcripts in the nucleus (Papp et al., 2004; Kierzkowski
et al., 2009; Pieczynski et al., 2013). The drought tolerant plant
silenced for the CBP80 gene exhibited an ABA-hypersensitive
stomatal closing response (Pieczynski et al., 2013). Products of
miR159, MYB33, and/or MYB101 genes that act downstream of
CBP80 have been shown to be involved in the ABA- mediated
regulation of potato responses to drought and similar studies
have also identified and characterized microRNA families for
drought stress response and their putative target genes including
miR171 (stu-miRNA171a, b, and c), miR159, miR164, miR166,
miR390, miR395, miR397, miR398, miR408, and miR482
(Hwang et al., 2011a,b; Pieczynski et al., 2013; Zhang et al.,
2013). Most of the genes identified in the above studies showing
differential down regulation were involved in photosynthesis
and carbohydrate metabolism, including chlorophyll a-b binding
proteins, fructose-1, 6-bisphosphatase trehalose-6-phosphate
synthase while sucrose synthase was up-regulated (Hwang et al.,
2011a,b; Kondrak et al., 2012).

Changes in transcript profiling upon imposition of
polyethylene glycol (PEG) induced water stress show that
up-regulated genes were prevalently involved in carbohydrate
metabolism, cellular communication, and signal transduction
whereas down regulated genes mostly include ATP-dependent
RNA helicase and cytochrome P450 followed by vacuolar
ATP synthase and genes involved in protein synthesis (Leone
et al., 1994; Ambrosone et al., 2011; Zhang et al., 2014).
Genes involved in different pathways of protein metabolism
participate in the early response, controlling protein folding, and
protein turn-over/degradation thus contributing to regulation
of protein synthesis while preventing major cellular damage
under water deficit (Ambrosone et al., 2013). Table 2 shows
the list of differential gene expression using validated RT-PCR
and microarray using leaf material under water and PEG
induced stress in potato. Dehydrins (group 2 members of
late embryogenesis abundant protein family) are shown to be
associated with crucial protective functions through membrane
stabilization, resistance to osmotic pressure and protection of
proteins—the so-called chaperone function (Allagulova et al.,
2003; Lopez et al., 2003; Agoston et al., 2011). Studies show that

the dehydrins interact with membranes in the interior of cells
and reduce dehydration induced damage through their ability to
replace water and, through their hydroxyl groups (Baker et al.,
1995) and dehydrins are shown to play a fundamental role in
plant response and adaptation to abiotic stress (Hanin et al.,
2011). Comparing expression analysis in non-transgenic potato
and AtDREB1A (Dehydrin responsive element binding protein)
transgenic potato suggest that potato may have mechanisms
in abiotic stress tolerance controlled by native TFs similar to
AtDREB1A (Watanabe et al., 2011). The over expression of
StMYB1R-1 (MYB-like transcription factor) improved plant
tolerance to stress and it is thought that the induced upregulated
expression of AtHB-7 (Arabidopsis homeobox gene), RD28
(Responsive to desiccation), ALDH (Aldehyde dehydrogenase),
and ERD15 (Early response to dehydration) under drought stress
conditions enhances tolerance (Shin et al., 2011). Induction
of protein phosphatase 2C gene was positively associated
with yield maintenance under drought with drought tolerant
cultivars expressing higher levels of DREB transcription factor
(Schafleitner et al., 2007b,c).

Constitutive overexpression of the ScCBFI gene from
Solanum commersonii in transgenic Solanum tuberosum and
S. commersonii plantlets grown in vitro showed better overall
plant growth and root development under drought stress,
providing evidence for a drought adaptation response (Teresa
Pino et al., 2013). Transgenic potato plants that overexpress
the Arabidopsis thaliana DHAR gene (AtDHAR1) in the cytosol
show greater shoot extension than the WT plants due to
elevated AsA (Ascorbate) leading to enhanced tolerance to
drought and salt stress (Eltayeb et al., 2011). TPS1-expressing
(Trehalose 6 phosphate synthase gene) transgenic potato lines
effectively retain water under drought treatment and maintained
an acceptable level of photosynthetic processes for a longer time
than wild type as the transgenic lines had lower CO2 fixation
rate and stomatal densities under optimal growth conditions
than the non-transformed control plants (Stiller et al., 2008).
The studies discussed above show that gene expression response
under stressful conditions strongly depends upon the genotypic
variation.

Stress Combinations
Plants interact with both abiotic (temperature, drought, and
salinity) and biotic (herbivores and pathogens) factors either
individually or in combination. Combination of stresses alter
metabolism in ways that may differ from responses to different
stresses applied individually (also dependent on species), as
molecular signaling pathways controlling abiotic and biotic
stresses may interact or counteract one another (Rizhsky
et al., 2004; Mittler, 2006). As for abiotic stresses, changes in
temperature, nutrient and the presence of heavy metals, toxins,
and oxidants have the potential to contribute to plant stress
and some of the aforementioned stress combinations can cause
cell injury and produce secondary stresses such as osmotic and
oxidative ones (Wang et al., 2003) with negative effects on yield,
tuber quality, and market value (Wang-Pruski and Schofield,
2012; Rykaczewska, 2013). In Arabidopsis, transcriptome and
metabolic profiling of plants subjected to a combination of
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TABLE 2 | List of validated (RT-PCR and microarray) up-regulated (+) and down-regulated (−) genes implicated in drought stress response in potato.

Stress

condition

Source Gene family (gene) Regulation References

PEG Cell AP-1 complex (γ-adaptin), catalase isozyme 1 (AW906659), sucrose synthase 2

(BE471969), LRR- receptor kinase (BF188424), hydroxyproline-rich extension

(BF188513), protein heparanase (BF188529), 14-3-3 protein family (BE471953)

+ Ambrosone et al., 2011

Water Leaf Sucrose synthase genes + Evers et al., 2010

PEG Leaf GTP-binding proteins (BE341142) + Ambrosone et al., 2011

PEG Cell Sphingolipid protein membrane (Serinc) − Ambrosone et al., 2013

PEG Cell Phe ammonia-lyase (PAL1), Peroxidase (Peroxidase 17), sphingolipid protein membrane

(Sphingolipid Desaturase), ubiquitin-conjugating

Enzyme (ubiquitin-conjugating enzyme E2), ribosomal RNA components (ribomosal

L41,18s rRNA), heat shock proteins (HSP 20.2, HSP 83),

+ Ambrosone et al., 2013

Water Leaf Elongation factor (EF1α) + Kondrak et al., 2011

Water Leaf Ubiquitin-proteasome protein (UBC2) + Kondrak et al., 2011

Water Leaf Thaumatin protein (PGSC0003DMG400003569), low-temperature-induced 65 kDa

protein (PGSC0003DMG400014293), jasmonate ZIM-domain protein

1(PGSC0003DMG400002930), ethylene-responsive late embryogenesis

(PGSC0003DMG400000066), ascorbate peroxidase (PGSC0003DMG401001731),

WRKY transcription factor 4 (PGSC0003DMG400009051), non-specific lipid-transfer

protein (PGSC0003DMG400032250), auxin repressed/dormancy associated protein

(PGSC0003DMG400012826), early-responsive to dehydration 7

(PGSC0003DMG402006194), gibberellin 2-oxidase (PGSC0003DMG400009021),

ethylene-responsive transcription factor (PGSC0003DMG400014240), ERF114 MYB

transcription factor (PGSC0003DMG400022399), hydroxyproline-rich glycoprotein

GAS31(PGSC0003DMG400031105),

+ Zhang et al., 2014

Water Leaf Germin (PGSC0003DMG400014027), abscisic acid receptor

PYL4(PGSC0003DMG400011033), polygalacturonase-1 non-catalytic subunit beta

(PGSC0003DMG400027019), transcription factor bHLH49 (PGSC0003DMG400019659)

− Zhang et al., 2014

Water Unspecified MYB-like transcription factor (StMYB1R-1), protein 2 (RD28), aldehyde dehydrogenase

(ALDH22A1), early responsive to dehydration (ERD15-like), homeodomain-leucine zipper

(HD-Zip) proteins (AtHB-7)

+ Shin et al., 2011

Water Leaf delta 1-pyrroline-5-carboxylate synthase (AtP5CS), + Schafleitner et al., 2007a;

Evers et al., 2010

Water Leaf Proline dehydrogenase (PDH) +/− Schafleitner et al., 2007a

Water Leaf Galactinol synthase, arginine decarboxylase, spermidine synthase, proton gradient

regulation 5

+ Evers et al., 2010

Water Leaf Spermine synthase, raffinose synthase +/− Evers et al., 2010

Water Leaf Chaperone Dna K, thioredoxin +/− Vasquez-Robinet et al., 2008

Water Leaf Ppiase Chl, Heat shock protein (ER HSP 110 and ER HSP 90) + Vasquez-Robinet et al., 2008

Water Leaf Glutathione-S-transferase, glutathione synthetase, Chaperone DnaJ − Vasquez-Robinet et al., 2008

Water Leaf chlorophyll a-b binding proteins, fructose-1,6-bisphosphatase, trehalose-6-phosphate

synthase

− Kondrak et al., 2012

Water Leaf MADS-box proteins (AGL8 and AGL24), GATA factor, Alfin 1 TF − Kondrak et al., 2011

Water Leaf SU11B, Rubisco small subunit (RBCS-3B) + Kondrak et al., 2011

PEG, Polyethylene glycol; +, up regulation;−, down regulation; +/−, up and down regulation.

drought and heat stress showed a partial combination of two
multi-gene defense pathways and an accumulation of sucrose
and other sugars such as maltose and glucose (Rizhsky et al.,
2004). Evidence of evolutionary conservation of stress responses
to salt, osmotic, heat, and ABA stimuli has been highlighted by
Massa et al. (2013). Net photosynthesis and respiratory potential
were lower in drought exposed plants 4 weeks after treatments
[well watered and drought and with and without selenium (Se)
foliar spraying] with Se inducing high respiratory potential in the
leaves (Germ et al., 2007). Higher efficiency of energy conversion
in PSII, expressed by higher quantum yield was observed in

Se treated plants 2 weeks after treatment (Germ et al., 2007).
Water deficit coupled with silicon (Si) application decreased
total sugars and soluble protein concentration in potato leaves,
with Si concentrations increasing in potato leaves under deficit
conditions (Crusciol et al., 2009). Exposure of SO2 under
well watered conditions produced defoliation and dry weight
reduction of leaf, stem, and tubers while there was usually no dry
weight reduction induced by SO2 under water stressed condition
(Qifu and Murray, 1991). Well watered plants accumulated
significantly higher leaf sulfur than did water-stressed plants at
the same concentration of SO2 (Qifu and Murray, 1991). The
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combined effect of nematode infection and water stress resulted
in decreased potato tuber production with reduced uptake of
total P, K, andMg (Fatemy and Evans, 1986; Fasan andHaverkort,
1991; Haverkort et al., 1991). As the interaction between stresses
sometimes are regulated by the same signaling and regulatory
networks, therefore, understanding these regulators connecting
different response pathways provide better opportunities to breed
for stress tolerant crop/genotypes covering broad spectrum.

Potential Traits for Drought Tolerance
Breeding in Potato

An ability to maintain economic yield under water deficits is
a valuable trait whenever water availability is a problem. This
can be achieved by improvements in dehydration avoidance,
dehydration tolerance and in other traits linked to optimum
growth and metabolism under stress (Okogbenin et al.,
2013). Desirable drought phenotypic traits must be genetically
associated with yield under stress, highly heritable, genetically
variable, easy to measure, stable within the measurement period,
and must not be associated with a yield penalty under unstressed
conditions (Okogbenin et al., 2013). Potato yields depend on
the timing of water stress within the growing period (Spitters
and Schapendonk, 1990) and upon climatic and soil conditions
(Tourneux et al., 2003a) and thus it is necessary to consider these
factors before making recommendations of optimal phenotypes
for any specific environments. One might expect some characters
such as enhanced WUE or improved tolerance of given water
deficits to be generally adaptive. This is not generally the case as
there will usually be some corresponding cost (e.g., higher WUE
usually comes at the expense of lower photosynthetic rates while
tolerance of water deficits often has a metabolic cost). Indeed the
important character is notWUE but the “effective use of available
water” (i.e., tailored to the specific growing environment) (Blum,
2009). For this reason results from artificial (e.g., hydroponic
or controlled environment) studies may not often have direct
relevance to drought tolerance in the field, though they may
help to identify genotypes with characters predicted to be of
value in specific environments (e.g., low stomatal conductance
for consistently water-limited environments). We discuss below
a number of traits which have been suggested as being crucial
contributors to the genetic improvement of drought tolerance.
While highlighting these traits, we also want to highlight that
success rate of recovery after re-watering also depends upon the
pre-drought intensity, duration, and species (Xu et al., 2010).
In addition the species specific variation in hydraulic potentials
is critical in steering the dynamic response of plants during
recovery (Blackman et al., 2009).

Stomatal Characters
Plants adapt to drought conditions either by decreasing water
loss or by maintaining water uptake. OA results in an increase
in solutes (organic solutes and inorganic ions) in plant cells
leading to a lowered osmotic potential, which in turn can improve
cell hydration, help maintain cell turgor in leaf tissue, maintain
metabolic processes and thus enhance plant growth and yield
under drought stress (Morgan, 1984; Ludlow and Muchow,

1990; Sanders and Arndt, 2012). Studies on the diploid mutant
“droopy” in potato whose leaves wilt during day leading to
premature leaf fall indicates the advantage of stomatal hydrostat
in normal plants as wilting and tall and slim structure of
“droopy” was not attributed to root or vascular system but
stomatal opening. Interspecific differences occur in species in
their response and relationship of stomatal conductance to leaf
water potential as stomatal conductance is controlled by complex
interaction of intrinsic and extrinsic factors and not soil water
availability alone. Nevertheless, studies mainly show that stomata
close with increasing drought. Therefore, measuring stomatal
characters (size and frequency) and control of water loss can
aid in identification of desirable genotypes. Stomatal size and
frequency are factors which influence stomatal resistance since
most of the water escape through the stomata (Wang and
Clarke, 1993). Remote sensing techniques using the thermal
range of the spectrum can be used as an indication for plant
water status and early studies showed the relationship between
canopy temperature measured (indirectly influenced by stomatal
closure) and plant water status in potato (Dallacosta et al., 1997;
Leinonen et al., 2006). Thus differences in canopy temperature
can be used as a selectionmethod for screening drought tolerance
among potato genotypes (Prashar et al., 2013; Prashar and Jones,
2014). These screening methods can be used to phenotype
large populations to identify chromosomal regions controlling
stomatal opening and closing and toward breeding crops with
optimal stomatal response with some plasticity in behavior, so
that stomata remain open under ample water conditions but close
as water deficits increase.

Photosynthesis
One of the primary physiological impacts of crop water scarcity
is reduction of photosynthetic rate per unit leaf area (Moorby
et al., 1975; Vos and Oyarzun, 1987; Schapendonk et al., 1989;
Dallacosta et al., 1997; Deblonde and Ledent, 2001; Germ
et al., 2007). The decreased net photosynthesis as a consequence
of stomatal closure (Vos and Oyarzun, 1987; Trebejo and
Midmore, 1990; Haverkort et al., 1991; Jefferies, 1994; Liu
et al., 2005) and leaf area reduction under water stress are
key contributors to yield loss under drought (Legay et al.,
2011). Photosynthetically active radiation in plants is absorbed
by chlorophyll and accessory pigments of chlorophyll-protein
complexes which migrate to the reactive centers of PS I and
II, where conversion of the quantum photosynthetic process
takes place (Horton et al., 1996). Chlorophyll fluorescence helps
in unraveling the different functional levels of photosynthesis
including processes at the pigment level, primary light reactions,
thylakoid electron transport reactions, dark enzymatic stroma
reactions, and slow regulatory processes (Smillie and Nott, 1982;
Maxwell and Johnson, 2000; O’Neill et al., 2006). The analysis
of chlorophyll content and chlorophyll fluorescence parameters
including initial fluorescence (F0), maximal fluorescence (Fm),
variable fluorescence (Fv), and maximal quantum efficiency
of PSII (Fv/Fm) is considered an important approach for the
evaluation of health or integrity of the internal apparatus during
photosynthetic processes within a leaf while providing a platform
for rapid and precise detection and quantification of plants
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tolerance to drought stress (Vertucci et al., 1985; Chaerle and
van der Straeten, 2000; Clavel et al., 2006; Buerling et al., 2013).
These parameters might estimate influence of stress on growth
and yield, since these traits are closely correlated with the rate
of carbon exchange (Fracheboud et al., 2004; Czyczylo-Mysza
et al., 2011). They can serve as reliable indicators to evaluate
the energetic and metabolic imbalance of photosynthesis and
yield performance across genotypes under limited water/stress
scenarios (Araus et al., 1998). Components of the photosynthetic
apparatus could be damaged in drought sensitive genotypes while
drought tolerant genotypes can decrease or evade impairment
resulting from drought stress (Smillie and Nott, 1982; O’Neill
et al., 2006). Genetic differences in photosynthetic capacity
exist at intraspecific and interspecific levels, so the use of the
photosynthetic capacity as a physiological marker could be
realistic where a positive relationship between the photosynthetic
performance and the growth under stress conditions has been
confirmed (Ashraf and Harris, 2013).

Chlorophyll fluorescence provides rapid indicators and a
method for the study of changes in photosynthetic capacity of
potato under water stress (Anithakumari et al., 2012) while the
ratio between Fv and Fm and the differences in the canopy
temperature can be used as a selection method for screening
drought tolerance among potato genotypes (Ranalli et al., 1997;
Prashar et al., 2013; Prashar and Jones, 2014). Chlorophyll
fluorescence parameters F0, Fm, Fv, and Fv/Fm show genotypic
variation under drought stress in potato with drought stress
having a reducing affect (Anithakumari et al., 2012). This is as
a result of photoinhibition (Baker and Horton, 1987), reversible
photoprotective down regulation or irreversible inactivation of
PSII (Baker and Bowyer, 1994; Long et al., 1994). Water stress
severity increase leads to a decrease in the heritability of Fv/Fm
(Jefferies, 1992; Zrùst et al., 1994; Anithakumari et al., 2012).
There is evidence of a highly significant correlation between
fluorescence emission and tuber yield with genotypes varying in
response (Ranalli et al., 1997). A small decrease in quantum yield
as a result of drought is associated with drought tolerance and this
has been observed in early maturing varieties (Van Der Mescht
et al., 1999; Anithakumari et al., 2012). Chlorophyll fluorescence
parameters has the potential of separating genotypes according
to their tolerance to water deficit (Newell et al., 1994).

Differences in leaf angle distribution can in principle affect
light interception and photosynthesis (Jones, 2014), for example
a theoretical analysis has shown that an increase in canopy leaf
angle from 30 to 60◦ should result in a potential increase in rate of
dry matter accumulation of between 15 and 30% after complete
leaf-area expansion in maize (Tollenaar and Bruulsema, 1988).
A similar morphological shift could be considered for potato by
breeding for more erect leaved canopies. It could be hypothesized
that genotypes which maintain canopy expansion and maximum
light interception will yield higher dry matter content and
significant yield under limiting water (Frusciante et al., 1999).
Although higher photosynthesis rates, and associated characters
such as stay green, are associated with higher yields (Cattivelli
et al., 2008), it does not necessarily mean that selection for high
assimilation will improve drought tolerance, as such lines may
use water faster and suffer more from drought.

Water Use Efficiency (WUE)
The growth and yield model of Passioura (1996) describes
crop yield as the product of water uptake (WU), water-use
efficiency (WUE), and HI. Improvement in any one of these
components, while maintaining the others constant, can increase
yield, but interactions can occur with increases in WU, for
example, tending to be associated with lowered WUE. This
means that selection for any one of these components must take
account of effects on others. At the physiological level, WUE
may be defined as the ratio of photosynthesis to transpiration
as well as simultaneous ratio of net carbon assimilation to water
transpiration of the stomata from the leaf (Xu and Hsiao, 2004;
Guo et al., 2006). The leaf transpiration efficiency is determined
by cellular solutes, specific ions, pH, and ABA produced in the
leaf or imported from the root (Blum, 2009). WUE at whole
plant and crop level is relatively lower when compared to the leaf
level because of water loss associated with non-photosynthetic
process and respiratory carbon loss during conversion of initial
photosynthate to biomass as well as fraction of total water inputs
that is never taken up by the plant (Guo et al., 2006). The
factors influencing plant transpiration and water use at the whole
plant level under drought include growth duration (Mitchell
et al., 1996), leaf permeability (Kerstiens, 2006), nocturnal
transpiration (Caird et al., 2007), leaf desiccation (Blum and
Arkin, 1984), leaf area and orientation (Xu et al., 2009), leaf
growth (Weisz et al., 1994), and soil evaporation (Rebetzke and
Richards, 1999). There is a tendency for WUE to increase as
stomata close (Vos and Groenwold, 1989; Jones, 2014). The
advantage of constitutive stomatal closure is expected to be only
valid in consistently dry environments, where it can lead to
enhanced WUE, but where drought occurrence is uncertain,
constitutive closure is likely to be disadvantageous for yield
unless genotypes show responsive flexibility in opening and
closing dependent upon stress. In consistently dry environments,
genotypes that can deplete soil moisture only slowly and may
optimize crop WUE rather than maximizing short-term growth.
Ideally they will continue until the soil water is depleted, at
which point growth is halted (Elsharkawy et al., 1992). Onemight
expect plants with higher stomata number per unit area, or with
greater length and width, to lose more water, but there may be
natural compensations between size and frequency (Jones, 1977),
while stomatal movements can override such morphological
differences (Jones, 1987). A low rate of cuticle transpiration may
reduce leaf dehydration and promote leaf survival (Wang and
Clarke, 1993). Early vigor has the potential of improving both
WU and WUE, while deep roots and/or osmoregulation under
appropriate conditions increase water extraction from the soil
(Richards, 2006; Blum, 2011; Sadok and Sinclair, 2011).

Significant progress in assessing genetic variability in WUE
was achieved after the establishment of the physiological links
between δ13C andWUE (Farquhar and Richards, 1984; Farquhar
et al., 1989). δ13C has been used as a surrogate for WUE and
has been successfully used for tomato (Martin and Thorstenson,
1988), wheat (Rebetzke et al., 2002), and rice (Impa et al., 2005).
Nevertheless, although understanding the inheritance of δ13C
could be useful for the development of potato cultivars with
high WUE (Anithakumari et al., 2012), an understanding of the
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relationship between TE, WUE and yield under different levels
of water stress is important. Improvement of the WUE of a
crop plant results in higher yield performance if high HI can
be maintained as total biomass yield in drought environment
is positively associated with WUE (Blum, 2009; Araus et al.,
2012). TE is under genetic control (Masle et al., 2005) and
excludes amount of water lost by soil evaporation, and hence
should be considered as a potential trait for drought stress
(Manavalan et al., 2009). It should be that WUE can primarily
be the result of limited water use rather than a net improvement
in plant production or assimilation and therefore for selection
trait evaluation both for resource efficiency and final product is
crucial. An effective breeding strategy will consider plant adaptive
characteristics which drive effective use of water, resultant
dehydration avoidance and yield potential (Blum, 2009).

Maintenance of Water Status: Canopy
Temperature and Development
Plant water status maintenance is possible if the plant is equipped
with the appropriate “hydraulic machinery” (Sperry et al., 2002)
as well as additional traits to relieve the energy load on the
plant as well as manage an effective use of water (Chaves et al.,
2002; Blum, 2011). The state of water flux, transpiration, and
the associated leaf water potentials can be used to comparatively
phenotype toward identification of drought tolerant genotypes.
The obvious limitation is the dynamic nature of the inherent
traits modulating water status during the day. With a robust
and automated phenotyping platform this problem can be
circumvented by “dawn to dusk” measurements. Plants that can
maintain adequate relative water content (RWC) for a longer
period of time under drought exposure will have the greatest
likelihood of continued metabolic functioning and survival
and studies have been able to demonstrate that cultivars with
greater drought resistance were able to maintain higher cellular
hydration under drought conditions (McCann and Huang,
2008). The RWC has successfully been used in differentiating
drought resistance and drought susceptible potato cultivars
(Coleman, 1986). A relatively lower canopy temperature in
drought stressed crop plants indicates maintenance of high
stomatal conductance; this can indicate effective maintenance of
tissue water status particularly by effective uptake of soil moisture
or by other adaptive traits (Blum, 2009). Studies using various
crops including wheat (Amani et al., 1996; Rebetzke et al., 2013),
rice (Horie et al., 2006), sorghum (Mutava et al., 2011), and
more recently potato (Prashar et al., 2013) have all reported
that canopy temperatures can be associated with yield and could
therefore be used as a selection technique (Jackson et al., 1981;
Leinonen and Jones, 2004; Grant et al., 2007; Jones, 2007; Zia
et al., 2013). Therefore, a better understanding of themechanisms
that regulate growth under water deficit, such as those involved in
shutting down meristem activity will be vital in the development
of new technologies to increase growth under stress (Tisne et al.,
2010).

Root Characters
The morphology and architecture of the root system at any
stage of development may influence the hydrostatic gradient. The

resistance in the root system to water flow both radially (into
the root) and axially (within the xylem) may be great enough
to increase significantly the gradient, reduce the hydraulic
conductivity and increase the canopy temperature (Mahan et al.,
1995). Potato is very sensitive to water-stress when compared
to other species (Porter et al., 1999) because of its shallow
(Iwama and Yamaguchi, 2006) and sparse (Jefferies, 1993a) root
system. The tendency for an increased root—shoot ratio under
drought and for root growth to be maintained more than shoot
growth (Jefferies, 1993a) are both likely to contribute to drought
tolerance.

Breeding of new cultivars with excellent root quality that
ensures absorption of water from deeper soil layers and under
low soil moisture will help in more efficient utilization of
water for potato production (Iwama, 2008). Differences in gross
morphology, including the degree of branching and rooting
depth may decrease the availability of water due to the inability of
the root system to explore a larger soil volume and thus increase
the gradient (Mahan et al., 1995). Genotypic differences have
been reported for both rooting depth (Steckel and Gray, 1979;
Tourneux et al., 2003a,b) and root growth volume (Mackerron
and Peng, 1989; Jefferies, 1993a), while the positive correlation
between root mass, shoot mass and final tuber yield have led
to the suggestion of using root mass in the plow layer as a
selection criterion (Iwama, 2008). One approach to the selection
of deep rooting genotypes is to measure the pulling resistance
(PR) of roots (Ekanayake and Midmore, 1992; Stalham and
Allen, 2004). Differences in the ability of roots to continue to
elongate under low water potential could also be an adaptation to
water deficit (Westgate and Boyer, 1985; Spollen et al., 1993) as
would more efficient rooting architectures (Porter and Semenov,
2005; Tardieu, 2012; Wishart et al., 2013). Early vigorous root
proliferation may be a useful selection trait for maintaining
yield of potato under restricted water level (Puértolas et al.,
2014). It is noteworthy to mention that the concept of root
ideotype can only be exploited in practical field breeding with a
thorough knowledge of the plants stress environment as well as
the metabolic cost sustained by the plant to develop andmaintain
a more vigorous root system (Tuberosa, 2012). In addition to
well recognized factors of root density and depth, the hydraulic
characteristics of the plant, and its interaction with the soil
environment is highly significant in drought adaptation (Vadez,
2014).

Metabolites and Biochemical Response
OA is a key drought adaptive mechanism that enables plants
to maintain water absorption and cell turgor pressure and
thus potentially contribute to sustained higher photosynthetic
rate and expansion of growth (Cattivelli et al., 2008). The
accumulation of a metabolite during drought does not
functionally link with an increase in the tolerance level or
with tolerance differences between genotypes. Metabolite
levels can increase due to increasing degradation or a reduced
biosynthesis of another metabolite without any protective effect
(Degenkolbe et al., 2013). The response at metabolic level
varies between genotypes and studies have shown differential
accumulation of osmotically active solutes. This response to
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stress has also been used as an indicator of drought tolerance in
various model plants and crop species (Schafleitner et al., 2007c;
Vasquez-Robinet et al., 2008; Evers et al., 2010). Studies in potato
have demonstrated that drought stress leads to accumulation of
osmotically active solutes including proline, inositol, raffinose,
galactinol, and trehalose (Vasquez-Robinet et al., 2008; Evers
et al., 2010; Legay et al., 2011; Kondrak et al., 2012) indicating
an osmoprotector or osmoregulatory function (Schafleitner
et al., 2007a; Teixeira and Pereira, 2007). Proline serves as an
ROS scavenger and is used as a non-enzymatic antioxidant to
counteract the damaging effect of different ROS members helps
in water stress survival through osmoprotection (Vanková et al.,
2012). Proline synthesis and catabolism are required for optimal
growth at low water potential while its metabolism and function
in maintaining a favorable NADP/NADPH ratio are relevant to
understanding metabolic adaptations to drought and efforts to
enhance drought resistance (Sharma et al., 2011). Proline can act
as a signaling molecule to modulate mitochondrial functions,
influence cell proliferation or cell death and trigger specific gene
expression, which can be essential for plant recovery from stress
(Szabados and Savouré, 2010). Similar to metabolic, biochemical
response also changes as a function of stress. Win et al. (1991)
reported that application of antitranspirants that raised leaf
water potential and altering leaf: tuber potential gradients in
potato plants subjected to water stress led to greater Ca2+

accumulation in tubers and reversed Ca2+ deficiency-related
tuber necrosis. Studies by Lefevre and colleagues showed an
increase in the concentration of the majority of analyzed cations
in a large number of cultivars in response to water deficits while
identifying two cultivars that were able to maintain good yield
stability in association with high mineral content under water
deficit (Lefevre et al., 2012). Biochemical responses of potato
to drought are complex with levels of antioxidants showing
increases, decreases, or no effect, depending on the genotype and
kind of antioxidant (Andre et al., 2009; Wegener and Jansen,
2013). An increased activity of peroxidase, superoxide dismutase
and catalase in response to oxidative stress has been highlighted
in potato (Boguszewska et al., 2010) but antioxidant contents of
yellow tuber bearing cultivars are weakly affected by the drought
treatment as compared to non-yellow tuber bearing types which
show high cultivar-dependent variations (Andre et al., 2009).

Harvest Index
HI is a key partitioning index that shows the extent of
remobilization of photosynthates to tubers. Studies recommend
that maintaining a high HI is the best strategy for improving crop
yields under drought stress conditions (Ludlow and Muchow,
1990). Different adaptivemechanismsmay associate with growth,
biomass partitioning and yield under variable drought stress
conditions (McClean et al., 2011). Although, the contrasting
responses of the genotypes in response to drought may reflect
very distinct evolutionary strategies, change in partitioning to
plant parts during early stage of growth is considered as an
adaptive response to drought stress of resistant genotypes (Specht
et al., 2001; McClean et al., 2011). High HI coupled with high
leaf/stem ratio with low number of branches may contribute
to achieve high and stable potato yields in drought prone

environments (Iwama, 2008; Deguchi et al., 2010) and similarly,
identifying genotypes that may use photosynthates for greater
tuber expansion at the expense of shoot biomass will help in
drought tolerance selection.

Future Research Perspective

Breeding for drought tolerance presents a challenge as it is
a genetically complex polygenic trait with multiple pathways
implicated. Success in this objective not only helps in extending
the cultivation of crops into drought prone areas but in
addition may allow more stable yield under environmental
fluctuations. Identifying genetic variation for drought tolerance
is the first basic requirement for breeding advancement under
drought. An understanding of the genetic architecture of drought
resistance components is an important milestone. Effective crop
improvement for drought tolerance will require the pyramiding
of many disparate characters, with different combinations
being appropriate for different growing environments. The
difficulty of pyramiding drought tolerance related genes in
highly heterozygous tetraploid potato cultivars while considering
other important economic traits presents a major challenge with
linkage drag and distortion in segregation between inter-specific
hybrids presenting further challenges. Hopefully these issues can
be circumvented by using biotechnological approaches in future
years.

Wild species and adapted germplasm are the reservoir of
many useful genes/alleles as they have evolved under natural
selection to survive climate extremes (Sharma et al., 2013)
and thus evaluation of this material is essential for progress.
Considerations should be made in respect to timing and intensity
of drought (Chaves et al., 2003; Cattivelli et al., 2008; Coleman,
2008). An understanding of the interaction between below
ground water uptake by the roots and above ground water loss
from the shoot system is essential and helpful for breeding
under different environment scenarios. Figure 3 presents the
summarized information on potential adaptive traits under water
stress. These traits are principally involved in water uptake and
energy translocation and we hold the view that for sustainable
management of water stress effect combination of these traits
would help in developing stress tolerant varieties in potato. It is
crucial to understand the interaction between these agronomical,
physiological and morphological traits in order to understand
drought tolerance and breed toward sustainability.

An integrated approach is needed where high throughput
genotyping can be precisely linked with phenotyping under
different field environmental conditions. A lack of precision
phenotyping is creating a significant bottleneck to progress.
Recent advancement in imaging sensor technology has made it
feasible to evaluate stress related traits under field conditions
remotely. Infra-red thermography (IRT) has been used as a
phenotypic resource for evaluating plant stress (Jones et al.,
2009; Prashar et al., 2013) and this needs to be explored using
multi-sensor approaches (Furbank and Tester, 2011; Araus and
Cairns, 2014). Efficient use of thermography for high-throughput
phenotyping (HTP) demands adequate control of variation
resulting from the environment and the use of appropriate
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FIGURE 3 | A hypothetical model of morphological and physiological traits implicated during water uptake and balance in drought stressed potato.

normalization techniques (Prashar et al., 2013; Prashar and
Jones, 2014). Although IRT combined with effective image
analysis provides a powerful approach for comparing large
number of genotypes for field scale phenotyping of characters
related to plant water relations, a single sensor approach has
limitations as complex stress traits are not just influenced
by one physiological or morphological component. With IRT
providing information on stomatal changes, reflecting WUE,
and crop productivity, when used in combination with other
available technologies such as fluorescence and hyperspectral
imaging it can be more powerful (Chaerle et al., 2009; Furbank
and Tester, 2011; Mahlein et al., 2012; Busemeyer et al., 2013;
Andrade-Sanchez et al., 2014; Luis Araus and Cairns, 2014)
in understanding complex traits such as drought (Topp et al.,
2013; Honsdorf et al., 2014). High throughput phenotyping
also allows the comprehensive assessment of complex traits
by allowing quantitative measurements of the contribution
individual parameters. With the new technological advances
in HTP methods assessment of three-dimensional characters
like plant architecture or plant shape is becoming feasible. As
discussed previously, plant architecture and its development
provides useful information on plant stress responses and
adaptation and their association with yield, thus enabling the
linking of high throughput genotyping with high throughput
phenotyping both for above and below ground characteristics
(Dhondt et al., 2013; Chen et al., 2014; Deery et al., 2014; Paulus
et al., 2014).

Along with effective analysis and reproducibility for high
throughput phenotyping, the other major requirement for
drought field phenotyping is to have adequate water stress
conditions and achieving proper control over the field stress
environment in order to assure relevant drought test profile

(Tuberosa, 2012). It is therefore imperative that researchers
should select ideal drought prone regions with limiting rainfall
or irrigation distributed over a reasonable time frame. Artificial
drought control with rain-out shelters can also be helpful.
Experimental protocols involving field and control environment
should complement each other as some physiological traits
are better exploited in either situation. The importance of
understanding the replication and repeatability of the results
under field conditions is essential to characterize the effects
of QTLs and to evaluate stability in diverse environment
and breed for different conditions and different scenarios
of stress interaction (Cattivelli et al., 2008). Analysis of G
× E (genotype × environment), which is becoming very
common, should be incorporated with management (M) in any
controlled and field experiment for identifying genotypes for
specific environment and under specific management practices
system (G × E × M) to overcome issues relating to stress
traits.

The candidate gene strategy bridges the division between
quantitative andmolecular genetics in studying complex drought
stress responses and has been gainfully applied to rice and barley
drought tolerance (Nguyen et al., 2004; Tondelli et al., 2006).
Comparative omics analysis on stress-responsive epigenomes
could aid in understanding of drought adaptations. Transgenic
research effort should focus on conferring drought tolerance
while increasing or stabilizing tuber yield. This implies that
drought transgenics should have extensive root system, reduced
stomata density and high WUE while possessing higher levels of
ABA, proline, soluble sugar, reacting oxygen species-scavenging
enzyme activities during drought stress (Werner et al., 2010;
Yu et al., 2013). Transgenic approaches should play a role
in the future in developing drought tolerant potato cultivars
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with incorporation of specific cloned genes and restricting the
transfer of undesirable genes from donor organism (Ashraf,
2010). Similarly, use of emerging genome engineering techniques
like a RNA-guided endonuclease technology for sequence-
specific gene expression known as clustered regularly interspaced
short palindromic repeats (CRISPR) provides a simple approach
for selectively perturbing gene expression on a genome-wide
scale (Sander and Joung, 2014). As stress traits are complex
traits, approaches like gene pyramiding not only for stress
combinations but also specific stress can be targeted with
cautious (Ashraf, 2010). This approach has led to engineering
genes that encode compatible organic osmolytes, plant growth
regulators, antioxidants, heat shock proteins, and TFs involved
in gene expression in potato (Stiller et al., 2008; Shin et al., 2011;
Zhang et al., 2011; Kondrak et al., 2012; Cheng et al., 2013; Pal
et al., 2013; Pieczynski et al., 2013). Transgenics can be used to
their full potential with the lifting of legislative barriers in many
countries so as to provide opportunities for extensive field testing
in different environments.

The plant root system can act as “resource island” which
attracts and selects specific microbial communities that
can promote plant growth through enhancement of plant
photosynthetic activity and biomass synthesis under water deficit
(Ruiz-Sanchez et al., 2011; Marasco et al., 2012; Naveed et al.,
2014). Studies have demonstrated the potential of arbuscular
mycorrhizal (AM) symbiosis in developing drought tolerant
maize and sweet potato cultivars respectively (Boomsma and
Vyn, 2008; Naher et al., 2013). AM enhanced the adaptation
of sweet potato plants to drought stress as indicated by higher
values of leaf RWC, root dry weight, root length, transpiration,
and WUE as compared to non-AM plants (Naher et al., 2013).
These microorganisms offer great potential because the resulting
tolerance/adaptability could be ascribed to changes in soil
microbial community rather than genetic changes in plants. For
example, soil microbes can prime plants to increase drought
resistance compounds or elicitors more rapidly and thus
increase resistance to stress (Horn et al., 2013; Okamoto et al.,
2013). However, the ability of crops to take advantage of soil
microorganism induced drought tolerance may be hindered by
modern agricultural practices that reduce crop-soil interactions
(Bennett et al., 2013).

A holistic approach involving morphological, physiological,
biochemical, phonological, and anatomical responses to water
stress conditions should provide the best opportunities for
enhancing drought tolerance in the potato crop. Concerted
efforts are required by geneticists, physiologists, breeders,
agronomists, and technologists toward precise and accurate

phenotypic evaluations and the development of platforms
for the automated analysis of the necessarily large mapping
populations. This will ensure good monitoring and phenotyping
of physiological, morphological, and growth parameters under
water stress. Identification of more potato phenotypes that
correlate positively with drought performance in the field is
urgently needed. It is noteworthy to mention that different
environmental conditions in different potato growing regions
demand diverse options and there is a lot to learn and
gain from their interactions with the complex nature of the
trait.

Conclusion

One of the great challenges for the next decade is to mitigate
any effect of climate change on crop production with a main
focus being to maintain crop production levels with reduced
availability of water. A multi-pronged approach using combined
expertise will be critical in sustaining potato production.
Efforts need to be intensified to improve the database of
potato drought-related genes and our understanding of their
potential roles in drought responses. Natural variation in
wild and cultivated potato germplasm provides an excellent
platform for the discovery of diagnostic markers for marker-
assisted selection (MAS) and for cloning and insertion of
drought resistance genes applicable to diverse agrarian zones.
Although genetic manipulation, using key genes identified
from functional studies, offers significant opportunities for the
development of drought tolerant varieties it will be necessary
to ensure that any deleterious negative effects are avoided.
The emergence of novel approaches involving the use of high
throughput “omics” technologies (also known as “Phenomics”)
including genetic, physiological, biochemical, molecular and
biotechnological techniques offer hope for exciting innovations
toward maintaining food and income security, mitigation of
poverty, and reduction of farmers’ risk in vulnerable agricultural
environments.
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