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Free sugar profile in cycads
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The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues
of Zamia muricata Willd. to determine their distribution throughout various organs of a
model cycad species, and in lateral structural roots of 18 cycad species to determine the
variation in sugar concentration and composition among species representing every cycad
genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female
strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater
than stem sugar concentration. The dominant root sugars were glucose and fructose, and
the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for
leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus
tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue,
but absent in other tissues. The concentration of total free sugars and each of the four
sugars did not differ among genera or families. Stoichiometric relationships among the
sugars, such as the quotient hexoses/disaccharides, differed among organs and families.
Although anecdotal reports on cycad starch have been abundant due to its historical use
as human food and the voluminous medical research invested into cycad neurotoxins, this
is the first report on the sugar component of the non-structural carbohydrate profile of
cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative
abundance highly contrasting among organs.Their importance as forms of carbon storage,
messengers of information, or regulators of cycad metabolism have not been determined
to date.
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INTRODUCTION
Non-structural carbohydrate (NSC) reserves can be mobilized and
deployed to support plant metabolism and growth when current
photosynthates are insufficient. This may occur following severe
defoliation from events such as herbivory, fire, or tropical cyclone
damage, when initial regrowth of foliage and continued mainte-
nance of stem and root tissue depends on stored carbohydrates.
A plant’s NSC pool is comprised of low molecular weight sug-
ars (the most abundant free sugars in plants are the disaccharides
sucrose and maltose, and the monosaccharides glucose and fruc-
tose) plus starch (Chapin et al., 1990). Because of their role in plant
resilience in times of stress, they comprise a functional trait that
can explain species differences in growth and survival. Therefore,
knowledge of the quantity of various NSCs and the relationships
among them within various plant organs can improve our under-
standing of specific growth characteristics and plant responses to
seasons and stresses.

Cycads are ancient gymnosperms represented by extant taxa
that have retained many primitive features. Their perseverance
and ancestral history provides researchers the rare opportunity to
gain insight into various aspects of plant evolution and biology
(Brenner et al., 2003). The study of cycad taxonomy has received
considerable attention, and the result is a description of 300+
species among 10 genera and three families (Osborne et al., 2012).
In contrast, the study of cycad horticulture and physiology has

been minimal despite the fact that more practical research may
shed light on what has enabled persistence of this plant group
throughout 100s of millions of years (Norstog and Nicholls, 1997).
Moreover, cycads represent the most threatened group of plants
worldwide (Hoffmann et al., 2010), so gaining further knowledge
regarding all aspects of cycad biology is urgent, and may improve
horticultural protocols and aid in developing and implementing
successful conservation strategies. Although NSCs undoubtedly
play a major role in cycad growth and development, they have
not been extensively studied for any cycad species. Because the
structural components of cycad stems and roots are primarily liv-
ing tissue and they have no true wood (Norstog and Nicholls,
1997), reports on NSC relations of woody trees (e.g., Loescher
et al., 1990; Nzima et al., 1997) are not reliable for predicting NSC
relations of cycads. Furthermore, plants show lineage-specific dif-
ferences in metabolite composition, but the extent to which the
portions of the metabolome can reconcile with cycad taxonomy is
unknown.

Our current understanding of the carbohydrate relations of
cycad plants is unmistakably incomplete. This work was designed
as an initial study to determine the quantity and stoichiome-
try of four common free sugars among representatives of every
described cycad genus, and among various tissues throughout one
representative cycad species. We included 18 cycad species grow-
ing in a common garden environment. In addition to providing
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the first look at the distribution and profile of cycad sugars, we
addressed several questions. (1) Since the cycad taproot is essen-
tially an extension of the non-woody pachycaulis cycad stem,
would stem and taproot tissue exhibit similar amounts and sto-
ichiometry of sugars? (2) Would the tissues with specialized
functions such as leaves, strobili, and coralloid roots exhibit
amounts and proportional relations of the sugars inconsistent
with the structural/storage tissues? (3) Would sucrose dominate
the sugar profile in coralloid roots, where cycad endosymbionts
carry out nitrogen fixation, in accordance with its dominance in
legume nodules?

MATERIALS AND METHODS
Plants representing 18 species of cycads were sampled from the
living collection at the Nong Nooch Tropical Botanical Garden in
Chonburi, Thailand. The plants representing many of the species
were too valuable to sacrifice for destructive analysis. We there-
fore evaluated a suitable tissue that could be collected without
harming the plants. Sampling leaf tissue would have inflicted the
least disturbance to the plants, but we desired the use of stor-
age tissues so leaves were not appropriate for our goals. Stem
tissue would have met our goal of storage tissue, but physical
damage to a portion of stem tissue elicits extensive secondary
damage to cycad stems (Fisher et al., 2009; Marler et al., 2010).
Therefore, we could not use stem tissue for the survey. Lateral
structural roots were selected as the tissue for analysis, as exci-
sion of lateral roots rarely leads to subsequent growth or health
problems for cycad plants in horticultural settings. Lateral root
tissue was collected from two species for each genus except for

the mono-specific Microcycas calocoma (Miq.) A. DC. and Stan-
geria eriopus (Kunze) Baill. The species representing the other
eight genera were Bowenia spectabilis Hook. ex Hook.f., Bowenia
serrulata (W.Bull) Chamb., Ceratozamia robusta Miq., Ceratoza-
mia miqueliana H.Wendl., Cycas machonochiei Chirgwin and K.D.
Hill, Cycas riuminiana Porte ex Regel, Dioon sonorense (De Luca,
Sabato, and Vázq.Torres) J. Chemnick, T.J. Gregory, and S. Salas-
Mor., Dioon spinulosum Dyer ex Eichl., Encephalartos mackenziei
L.E. Newton, Encephalartos laurentianus De Wild., Lepidozamia
peroffskyana Regel, Lepidozamia hopei (W.Hill) Regel, Macrozamia
macdonnellii (F. Muell. ex Miq.) A. DC., Macrozamia mount-
perriensis F. M. Bailey, Zamia encephalartoides D. W. Stev., and
Zamia muricata. Species habitat characteristics and plant size were
documented (Table 1).

Female Zamia muricata plants were destroyed to use as the
model species to determine the general distribution of sugars
among various tissues and organs. The plants were 4 years old,
supporting female strobili of 8–10 months old. Tissue samples
were collected on 19 March 2010 from taproots, lateral structural
roots, coralloid roots, stems, petioles, leaflets, and strobili then
lyophilized.

Soluble sugar extraction was conducted with hot-water extrac-
tion with acetonitrile (80◦C; Schloter et al., 2005). The concentra-
tions of sucrose, fructose, glucose, and maltose were determined by
HPLC-RI (Thermo Scientific RI-150, AS3000 autosampler, P2000
pump). Our direct and calculated response variables were con-
centration of the four sugars and total free sugars (sum of the
four sugars). In addition, we evaluated the sugar stoichiometry
of each tissue category, genus, or family by calculating the

Table 1 | Characteristics of 18 cycad species growing at Nong NoochTropical Botanical Garden, Pattaya,Thailand.

Species Family Stem height (cm) Stem diameter (cm) Native habitat

Cycas machonochiei Cycadaceae 36 19 Tropical

Cycas riuminiana Cycadaceae 124 37 Tropical, wet forest

Dioon sonorense Zamiaceae 22 32 High elevation desert

Dioon spinulosum Zamiaceae 64 24 Lowland tropical rainforest, wet

Ceratozamia robusta Zamiaceae 35 31 Lowland tropical rainforest, wet

Ceratozamia miqueliana Zamiaceae 20 36 Dense rainforest, hot wet summers

Microcycas calocoma Zamiaceae 147 37 Lowland, deciduous forest, dry

Zamia encephalartoides Zamiaceae 39 24 Full sun, hot, montane dry

Zamia muricata Zamiaceae 9 8 Understory, montane forest, wet

Stangeria eriopus Stangeriaceae 16 13 Understory, shade, deciduous forest, dry

Lepidozamia perrofskyana Zamiaceae 72 32 Understory, shade, Lowland rainforest, wet

Lepidozamia hopei Zamiaceae 89 32 Understory, shade, tropical rainforest, wet

Encephalartos mackenziei Zamiaceae 44 42 Full sun, hot, dry

Encephalartos laurentianus Zamiaceae 90 66 Understory, dense forest, wet

Macrozamia macdonnellii Zamiaceae 31 36 Desert, barren rocky slopes

Macrozamia mountperriensis Zamiaceae 15 20 Subtropical, hot wet summers

Bowenia spectabilis Stangeriaceae 18 27 Lowland tropical rainforest, wet

Bowenia serrulata Stangeriaceae 12 12 Understory, shade, tropical rainforest, wet

Stem dimensions are for above-ground portions only.
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quotients among the three dominant sugars: glucose/fructose, glu-
cose/sucrose, and fructose/sucrose. Finally, we determined the
relative immediate carbohydrate availability with the quotient
hexoses/disaccharides where the hexose content was the sum of
glucose and fructose, and the disaccharide content was the sum of
sucrose and maltose.

For comparison among tissue categories of Zamia muricata
plants or among genera or family for the phylogenetic analysis, a
one-way ANOVA was performed using Proc GLM function in SAS
with Type III P-value to determine significance. Means separation
when significant was conducted employing the Least Significant
Difference test.

RESULTS
SUGAR PROFILES AMONG Zamia muricata ORGANS
Total sugar concentration exhibited a 6.4-fold difference
(F6,14 = 192.39; P < 0.0001) among the tissue categories
(Figure 1). Total sugars ranged from 39 mg·g−1 for stem tis-
sue to 247 mg·g−1 for taproot tissue. The sugar concentration
in taproot and lateral structural root tissues greatly exceeded
that in all other tissue categories. Fructose concentration var-
ied among the tissue categories (F6,14 = 226.86; P < 0.0001).
Fructose was not detected in stem tissue, and ranged from 22 to
108 mg·g−1 in accordance with coralloid root < leaflet ≤ peti-
ole < strobilus ≤ lateral root < taproot. Glucose concentration
exhibited variation among the tissue categories (F6,14 = 81.73;
P < 0.0001). Glucose was not detected in stem or coralloid root
tissue, and ranged from 11 to 120 mg·g−1 throughout the range
of leaflet ≤ strobilus < petiole < lateral root < taproot tissues.
Sucrose concentration was present in every tissue category yet the
range was more constricted than for fructose or glucose. Sucrose
concentration varied among the tissue categories (F6,14 = 26.56;
P < 0.0001), ranging from 12 to 87 mg·g−1 in the order tap-
root < strobilus ≤ petiole ≤ coralloid root ≤ stem < lateral
root < leaflet. Mean maltose concentration was 2.7 mg·g−1, and
maltose did not differ among the tissue categories (F6,14 = 2.26;
P < 0.0985).

Glucose and fructose were the dominant sugars in taproots,
lateral structural roots, and petioles (Figures 2 and 3). Sucrose

FIGURE 1 |The influence of tissue of reproductive 4-year-old female

Zamia muricata plants on total sugar concentration among seven

types of tissue. Means with same letter are not different. P < 0.0001.

FIGURE 2 | Per cent of glucose, fructose, sucrose, or maltose

comprising total sugar content for female strobilus (A), petiole (B), or

leaflet (C) tissue of Zamia muricata plants.

represented about 60% of the sugars in leaflets and coralloid roots
(Figures 2 and 3), and was the only sugar detected in stems. Female
strobilus tissue was the only tissue in which fructose dominated
the sugar profile (Figure 2). Sugar diversity was greatest in taproot,
leaflet, and strobilus tissues, as these were the only tissues in which
all four sugars were detected. Stem tissue was the tissue exhibiting
the least diversity in free sugars, as it was the only tissue within
which three of the sugars were not detectable.

The quotient glucose/fructose exhibited minimal but signif-
icant differences (F6,14 = 64.6; P < 0.0001) among the tissue
categories. Glucose/fructose was <0.3 for coralloid root, female
strobilus, and leaflet tissue; and was >1.0 for stem, petiole, lateral
root, and taproot tissue. The quotient glucose/sucrose exhibited
substantial range (F6,14 = 13.61; P < 0.0001), with glucose/sucrose
in taproot tissue being 10.4 and glucose/sucrose of all other tis-
sue categories being <2.2. The quotient fructose/sucrose differed
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FIGURE 3 | Per cent of glucose, fructose, sucrose, or maltose

comprising total sugar content for taproot (A), lateral structural root

(B), or coralloid root (C) tissue of Zamia muricata plants.

among the tissue categories (F6,14 = 5.12; P < 0.0056); and was
<1.7 for all tissue categories except for strobilus (6.2) and taproot
(9.4). The quotient hexoses/disaccharides significantly differed
among the organs (F6,14 = 44.89; P < 0.0056). This quotient
was close to nil for stem, coralloid root, and leaflet tissues; from
3.3 to 3.5 for petiole, lateral root, and strobilus tissue; and 12.2 for
taproot tissue.

SUGAR PROFILES OF STRUCTURAL LATERAL ROOTS AMONG GENERA
AND FAMILIES
Total sugar concentration of lateral structural roots exhibited an
overall mean of 79.0 mg·g−1 and did not differ among the 10
genera (P < 0.3404) or among the three families (P < 0.2073).
The total sugar content for these 18 species was fairly evenly split
among glucose, sucrose, and fructose fractions (Figure 4), and
concentration of each of these sugars did not differ among the

FIGURE 4 | Mean sugar concentration of lateral structural roots of 18

cycad species. Mean ± SE.

genera or families. Maltose was a minor component of the lateral
root NSC profile, as it was not detected in lateral structural roots
of seven genera or one family. Maltose concentration exhibited
an overall mean of <10% of that for each of the three dominant
sugars (Figure 4).

The stoichiometry of these sugars exhibited variables with
greater diversity than concentration of each sugar. The quotient
glucose/fructose was not influenced by genus (P < 0.5676) but
differed among families (P < 0.0307); and was 0.4 ± 0.2 for
Zamiaceae, 1.3 ± 0.3 for Cycadaceae, and 1.7 ± 0.4 for Stan-
geriaceae. Similarly, glucose/sucrose did not differ among genera
(P < 0.1366) but differed among families (P < 0.0087); exhibit-
ing 0.2 ± 0.2 for Cycadaceae, 0.6 ± 0.3 for Zamiaceae, and
4.4 ± 2.3 for Stangeriaceae. Fructose/sucrose differed among gen-
era (P < 0.0028) and families (P < 0.0123). Fructose/sucrose
was 0.1 ± 0.1 for Cycadaceae, 1.0 ± 0.2 for Zamiaceae, and
2.3 ± 0.7 for Stangeriaceae. The quotient hexoses/disaccharides
was not influenced by genera (P < 0.1658) but significantly dif-
fered among families (P < 0.0081). This quotient was 0.4 ± 0.4
for Cycadaceae, 1.4 ± 0.3 for Zamiaceae, and 6.5 ± 3.2 for
Stangeriaceae.

DISCUSSION
Cycad plants are known for long-term survival and resilience
(Norstog and Nicholls, 1997), and NSC storage traits may partly
explain their ability to cope with ephemeral biotic and abiotic
stress. Much has been written about the abundance of starch
in cycad tissues (Whiting, 1963; Norstog and Nicholls, 1997;
Whitelock, 2002; Williams, 2012). However, the soluble sugar
component of NSC relations of cycads has not been reported
until now.

The cycad taproot is essentially an extension of the non-woody
pachycaulis cycad stem (Marler et al., 2010), so we asked if stem
and taproot tissue would exhibit similar amounts of sugars and
relationships among sugars. The large storage tissues of stems and
taproots of Zamia muricata as a representative cycad species were
highly contrasting in their sugar relations. In fact, taproots and
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stems defined the absolute extreme limits of the sugar concen-
tration range when all tissue categories were compared. Taproots
contained the greatest while stems contained the least concen-
tration of sugars. Moreover, taproot tissues were highly diverse
in sugar type, as all four sugars were represented; while sucrose
alone defined the stem tissue sugar signature. Taproots contained
more fructose and glucose than any other tissue, yet exhibited less
sucrose than all other tissue categories. The sugar profile in stem
tissue was highly contrasting from that in taproot tissue. Both
organs are primarily comprised of living parenchyma tissue with
vascular tissue interspersed throughout. They are essentially the
same diameter at the stem-root transition, and are sometimes dif-
ficult to distinguish based on external morphology. In stems, the
vascular tissue is arranged in organized cylinders, whereas in tap-
roots the vascular tissue is organized in scattered bundles, but in
both organs living parenchyma is the major substrate through-
out and true wood is absent (Marler et al., 2010). We expected
the free sugar characteristics to be similar for these two organ
sections that collectively comprise the cycad caudex (Marler et al.,
2010), signifying that both would be efficient at NSC storage and
serve as potential sites of rapid carbon deployment in times of
primary growth. Our results indicated that structural roots alone
may be the dominant site of readily available NSC reserves. We
note, however, that a full understanding of the respective roles
of stem and root source-sink relations will require simultaneous
measurement of starch and sugars before, during, and following
the ephemeral sink stage of an expensive leaf or strobilus episodic
event.

We asked if the tissues with specialized functions such as leaves,
strobili, and coralloid roots would exhibit amounts and ratios of
the sugars inconsistent with the structural/storage tissues. Indeed,
female strobilus tissue was the only tissue type where fructose
dominated the sugar profile. Fructose appears to be important in
maintenance of Zamia muricata female reproductive tissues. The
female strobilus was also one of only three tissue categories that
exhibited detectable levels of all four sugars. Carbon is generally
transported from source to sink organs in higher plants as sucrose
(Zimmermann and Ziegler, 1975; ap Rees, 1984). If cycad petioles
serve primarily to position leaflet tissues for maximum photo-
synthesis and as conduits for exported and imported materials, we
predicted that the sugars in petiole tissue would primarily be com-
prised of the sucrose that is exported from leaflet tissue. This was
not the case, as glucose and fructose concentrations exceeded those
of sucrose in petiole tissue. Perhaps cycad petioles serve a NSC
buffering role where various sugars are available for metabolism
of nearby leaf or meristem tissues. We also should not discount the
possibility that substantial photosynthesis occurs in green petiole
tissues, leading to the documented soluble sugar richness. To our
knowledge, no measurements of petiole or rachis photosynthesis
have been made for any cycad species. Coralloid root structures
were positioned directly on large lateral roots, yet the sugar rela-
tions were highly contrasting between the two root types. First,
glucose concentration in lateral roots was substantial in relation
to other tissue categories and in relation to other sugars in lateral
roots, yet glucose was not detected in coralloid roots. Second, total
sugar concentration of coralloid roots was only 26% of that for
lateral roots.

Sucrose is the major sugar represented in legume root nod-
ules that have been studied (Streeter, 1991; Vikman and Vessey,
1993). Hence, whether sucrose would dominate the sugar profile
in cycad coralloid roots was of interest. The results with Zamia
muricata coralloid roots hosting nitrogen-fixing endosymbionts
conformed to this legume characteristic, as more than 60% of
the sugar profile was represented by sucrose. Cycad-cyanobacteria
mutualism occurs in this specialized cycad structure (Grove et al.,
1980; Lindblad, 1990; Norstog and Nicholls, 1997; Rai et al.,
2000), and the relative abundance of sucrose may indicate its
importance in the signaling system that enables success of the
mutualism. Further investigations are needed to characterize the
role of the endosymbiont as a regulator of coralloid root carbo-
hydrate metabolism (e.g., Rasmussen et al., 2012), a concept that
also applies to mycorrhizal relations in cycad roots. Sucrose is syn-
thesized by cyanobacteria, and genes coding for biosynthetic and
degradative enzymes have been cloned from cyanobacteria (Lunn,
2002). These traits present unique opportunities to study the car-
bon metabolism of the coralloid root structure, as both organisms
involved in the unique symbiosis are equipped with the tools to
catabolize sucrose.

Contemporary cycads represent an ancient lineage of land
plants that have commanded the attention of evolutionary biol-
ogists (Willis and McElwain, 2002). Resolving the phylogeny
of the Cycadales has been challenging (Crisp and Cook, 2011;
Nagalingum et al., 2011; Martinez et al., 2012). The Cycadaceae
family diverged from the other families as a sister clade in the
Triassic or early Jurassic, yet most of the speciation among
the three families has occurred in the relatively recent Ceno-
zoic (Nagalingum et al., 2011). We expected to find a diversity
in free sugar relations that would align with phylogeny, so the
lack of significant differences among the genera and families for
most of our response variables indicates remarkable stability in
sugar relations among highly contrasting clades that diverged
long ago.

The doubt arises as to whether the relationship of each sugar
to the other sugars would exhibit variations among genera and
families. All cycad genera were expected to contain an abundance
of free sugars in structural root tissues due to the abundance of
parenchyma in the non-woody construction of all cycad structural
tissues (Norstog and Nicholls, 1997). Therefore the stoichio-
metric relationships among the sugars were expected to exhibit
greater variation among the genera than total sugar concentra-
tion. Present results confirmed this prediction as the differences
in total sugar concentration exhibited no relationship with genus
or family. But the quotient hexoses/disaccharides exhibited a sig-
nificant 22-fold difference among the 10 genera and a significant
17-fold difference among the three families, with the Cycadaceae
being much lower than the other families comprising the sister
clade.

This study adds to several earlier reports on cycad saccharides
(Stephen and De Bruyn, 1967; Siniscalco-Gigliano, 1980, 1990;
Moretti et al., 1981; De Luca et al., 1982). Most of the earlier studies
were restricted to mucilage chemistry. Moreover, the relationship
of cycad taxonomy and secondary metabolites has been discussed
[see Richardson (1990) for review], and the collective reports are
difficult to interpret. However, many improvements in analytical
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methods and refining of cycad phylogeny have occurred since these
earlier publications.

The present work did not address relevant enzymes or their
activities. The regulation of sucrose metabolism by these enzymes
has become a central issue in understanding plant carbon rela-
tions (Koch, 2004). The biosynthetic enzyme sucrose-phosphate
synthase (SPS) plays a major role in controlling sucrose rela-
tions (Huber and Huber, 1996). Protein phosphorylation is an
essential mechanism controlling SPS activity (Winter and Huber,
2000). Variations in phosphorylation may explain some of the
observed differences in Zamia photosynthetic and storage organs
in the present study. The degradative enzyme sucrose synthase
(SUS) participates in starch and sucrose metabolism (Cardini
et al., 1955). It catalyzes the reactions that convert fructose and
glucose into sucrose, but its functional implications extend well
beyond catabolism (Subbaiah et al., 2007). The invertases also
cleave sucrose, but the products of the reaction differ from those
of SUS and invertase-catalyzed hydrolysis generally has been
associated with cell expansion (Winter and Huber, 2000; Koch,
2004).

APPLICATIONS
Why study cycad sugars? Storage of NSCs enhances plant survival
by enabling plants to cope with periods of biotic and abiotic stress.
An awareness of NSC relations is therefore needed to fully under-
stand plant susceptibility to and recovery from severe stresses such
as drought (Galiano et al., 2011; Muller et al., 2011; Rogiers et al.,
2011; Liu et al., 2013; Mitchell et al., 2013), shade (Myers and Kita-
jima, 2007), fire (Schutz et al., 2009; Wigley et al., 2009), nutrient
deficiency (Singh and Sale, 1997; Lei and Liu, 2011; Rellán-Álvarez
et al., 2011), pathogens (Angay et al., 2014; Tauzin and Giardina,
2014), and herbivory (Caldwell et al., 1981; Rodgers et al., 1995).
Research into all facets of cycad physiology has been minimal
to date (Norstog and Nicholls, 1997). Clearly, further research
on the impact of biotic and abiotic stresses to cycad populations
would benefit from the inclusion of NSC relations and their role
as messengers of information. In particular, this is needed to eval-
uate multiple competing hypotheses that may explain mortality
following terminal stress conditions (Fajardo et al., 2011; Adams
et al., 2013; Galvez et al., 2013; Keunen et al., 2013; Mitchell et al.,
2013).

Brenner et al. (2003) state that physiological roles for cycad
metabolites should be investigated and suggested endogenous sig-
naling compounds as a potential line of research. In that light,
following are examples that may inform continued cycad NSC
research. Efficient regulation of carbon metabolism can give an
evolutionary advantage to plants (Feugier and Satake, 2013) and
sugars directly regulate various physiological and developmental
events as signaling molecules (Rolland et al., 2006; Tognetti et al.,
2013). There is growing evidence that sugars exert a regulatory
influence over senescence (O’Grady et al., 2013; Thomas, 2013).
Sucrose is a direct signal during regulation of fruit ripening (Jia
et al., 2013). It also controls the expression of genes involved in
starch or fructan synthesis (Cairns and Pollock, 1988; Müller-
Röber et al., 1990) and those involved in photosynthesis (Sheen,
1990; Krapp et al., 1991; Van Oosten and Besford, 1994). Sim-
ilarly, sucrose or glucose alone can replace light as the trigger

to up-regulate nitrate reductase gene expression (Cheng et al.,
1992). Price et al. (2004) reported that almost a thousand Ara-
bidopsis genes were up- or down-regulated by glucose [see Halford
et al. (2011) for related review]. Moreover, Matsoukas et al. (2013)
report that the interplay between starch and sugars is involved in
inciting the transition from juvenile to adult phases in Arabidopsis.
Recent evidence illuminates that sugars play a central role as the
initial regulator of apical dominance rather than auxins as indi-
cated by conventional wisdom (Mason et al., 2014; Van den Ende,
2014).

Relations among starch and various sugars can change with
organ development and with season (Boldingh et al., 2000). For
example, Nzima et al. (1997) reported that pistachio trees that
begin the growing season with greater NSCs produce copious fruit
loads, then end the season with less NSC reserves than trees that
produce less fruit load. Similarly, initial growth and early yield
of strawberry transplants were correlated with pre-transplant car-
bohydrate status (Kirschbaum et al., 1998; Palha et al., 2002). If
similar relations apply to cycads, then success of transplanting or
sucker removal for propagation may be influenced by timing of the
operation in relation to recent plant developmental and seasonal
events that directly influence ephemeral availability of NSCs.

Cycad growth and development is characterized by episodes of
rapid leaf or strobilus expansion, followed by longer periods of
“rest” during which no apparent primary growth occurs (Marler
and Dongol, 2011). This form of plant behavior may be regulated
by stored carbon reserves, as endogenous NSCs have been linked
to the control of episodic growth in other species (Kuehny et al.,
1997; Li et al., 1998). The number of leaf flushes per year and
the interval between successive organ expansion events are highly
contrasting among cycad species, even when grown in a common
garden set up.

The assimilation products produced by photosynthesis are
resource revenues that may serve as inputs to resource budget
models that inform timing and magnitude of plant reproduc-
tion (Isagi et al., 1997). Indeed, the cost of reproduction has been
demonstrated for cycads by documenting frequency of reproduc-
tive episodes, and the costs associated with production of a female
strobili is consistently greater than with production of a male stro-
bili (Clark and Clark, 1987, 1988; Ornduff, 1987; Clark et al., 1992;
Marler, 2010). Mechanisms that control these differences may be
explained by NSC depletion during and NSC recovery following a
growth episode. Therefore, studies that determine pools of NSCs
in cycad roots and stems before a leaf or strobilus growth event
versus immediately following full expansion of that event would
improve our understanding of which organs and their stored
metabolites are involved in supporting the considerable biomass
additions involved in cycad plant growth events.

Observations of cycad plant mortality following the develop-
ment of a strobilus are common, especially when this occurs
on young or undersized female plants (personal observations),
providing indirect evidence of carbon starvation as a result of
strobilus development. Therefore, a more thorough understand-
ing of which metabolites and organs are involved as sources may
aid in understanding this unfortunate feature of cycad growth and
development, and lead to ex situ management decisions that may
mitigate these outcomes.
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Maltose is the disaccharide that emerges from the breakdown
of starch (Lloyd et al., 2005). Maltose has been proposed to con-
fer protection against degradation of PSII, and the suppression
of maltose production results in decreased PSII photochemical
efficiency (Kaplan and Guy, 2005). The modest maltose lev-
els in leaflets and female strobili, which were presumed to be
photosynthetic, may serve this function.

CONCLUSION
The implications of this initial look at free sugars in cycads are
far-reaching and provide novel insights. The diversity of free sug-
ars and their elevated concentrations in cycad roots illuminates a
sharp contrast to the paucity in sugar diversity and muted concen-
tration in the pachycaulis stems. The stoichiometry of free sugars
was more influenced by phylogeny than was absolute concentra-
tions. For example, hexoses/disaccharides of Cycadaceae was a
fraction of that for the other families collectively representing a
sister clade. These traits may be of importance to ecologists for
understanding plant behavior in natural habitats, and to conser-
vationists of rare taxa for informing horticultural management
decisions. The present work leaves several unresolved issues for
future work. For example, the influence of sink activity of primary
growth episodes on pools of free sugars among storage organs is
unknown. The influence of free sugar pools on biotic and abi-
otic stress relations is also unknown for any cycad species. The
role of free sugars in plant signaling represents a research pri-
ority that is yet to be explored (Tognetti et al., 2013), and the
study of cycad sugar relations may add greatly to this agenda. At
least one cycad species has been shown to possess crassulacean
acid metabolism in leaf photosynthesis (Vovides et al., 2002), and
the antiquity of cycads may offer a unique look at evolution of
carbon concentrating mechanisms in plants (Raven et al., 2008;
Reinert and Blankenship, 2010). The role of relevant enzymes in
sucrose metabolism were not addressed in this study. The under-
lying physiological reasons for the observed sugar profiles may
be more fully understood with direct research on enzyme activ-
ities in addition to metabolite levels. Finally, functional aspects
of NSCs in cycads may be more fully understood by studying
ecological correlates among species grouped by ecotype rather
than by studying phylogenetic patterns among species grouped
by taxonomy.
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