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Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy
production is currently being developed globally. Biomass is a complex mixture of cellulose,
hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall
compositional analysis for biomass characterization is laborious and time consuming. In
order to characterize biomass fast and efficiently, several high through-put technologies
have been successfully developed. Among them, near infrared spectroscopy (NIR) and
pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and
capable of evaluating a large number of raw or modified biomass in a short period of
time. NIR shows vibrations associated with specific chemical structures whereas Py-
mbms depicts the full range of fragments from the decomposition of biomass. Both
NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups
and molecular structures. They provide complementary information of chemical insight
of biomaterials. However, it is challenging to interpret the informative results because
of the large amount of overlapping bands or decomposition fragments contained in the
spectra. In order to improve the efficiency of data analysis, multivariate analysis tools
have been adapted to define the significant correlations among data variables, so that
the large number of bands/peaks could be replaced by a small number of reconstructed
variables representing original variation. Reconstructed data variables are used for sample
comparison (principal component analysis) and for building regression models (partial least
square regression) between biomass chemical structures and properties of interests. In
this review, the important biomass chemical structures measured by NIR and Py-mbms are
summarized.The advantages and disadvantages of conventional data analysis methods and
multivariate data analysis methods are introduced, compared and evaluated. This review
aims to serve as a guide for choosing the most effective data analysis methods for NIR and
Py-mbms characterization of biomass.
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INTRODUCTION FOR BIOMASS CHEMICAL COMPOSITION
Biomass is a complicated mixture of organic and inorganic
compounds. It is mainly composed of cellulose, hemicelluloses
and lignins, as well as minor components, such as proteins, extrac-
tives, ash, and other nonstructural mineral materials. Because of
its renewable nature and chemical composition, biomass is an
attractive feedstock for energy and chemical products (Ragauskas
et al., 2006; Himmel et al., 2007; Wei et al., 2009; Sluiter et al.,
2010). In order to provide an effective guide for feedstock selec-
tion and process development, it is very important to measure
biomass chemical composition accurately and efficiently (Sluiter
et al., 2010; Templeton et al., 2010; Daystar et al., 2013). In this
paper, we will review the use of two high-throughput techniques,
near infrared spectroscopy (NIR) and pyrolysis-molecular beam
mass spectrometry (Py-mbms) in biomass characterization. The
advantages and disadvantages of different data analysis methods,
including band/peak assignment, tools for spectral treatments and

resolution enhancement and multivariate data analysis methods,
are introduced, compared and evaluated. Selected research pub-
lications are reviewed and categorized as “case studies” according
to the ways they analyzed data and the specific biomass properties
that are evaluated.

CONVENTIONAL BIOMASS CHARACTERIZATION RELEVANT
TO BIOFUEL PRODUCTION
Traditional biomass compositional analysis, based on two-stage
sulfuric acid hydrolysis followed by gravimetric and instrumental
analysis, has been used to measure lignin and carbohydrates for
more than 100 years. These methods have been used by researchers
for studies of wood materials, animal food, human health, bioen-
ergy production, and many other areas related to biomaterials.
The history and uses of these methods were reviewed in detail
elsewhere (Sluiter et al., 2010). The analytical uncertainty for
different methods was also evaluated by statistical analysis and
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reported as the standard deviation of measurement for each com-
ponent (Templeton et al., 2010). Other wet chemical techniques
also include: acidolysis, thioacidolysis, nitrobenzene oxidation,
transesterification, acetyl bromide method, orcinol method, Van
Soest method, etc. Routine procedures, a number of less com-
mon methods, and new analytical methods developed for research
purposes in the field of wood chemistry are described in books
(Browning, 1967; Sjöström and Alén, 1999). These techniques
quantify important chemical structure biomass, but they are time
consuming and laborious.

Separately, combustion-related properties are of interest for the
utilization of biomass in biofuel and biopower production. There
are three types of combustion-related properties: morphological,
physical, and chemical properties (Braadbaart and Poole, 2008).
Traditional fuel analysis of biomass includes ultimate analysis,
proximate analysis, and thermogravimetric analysis. In addition,
ash composition and sulfur can be determined and used to predict
fuel indices, especially for slagging behavior, aerosol formation,
and corrosion related risks (Obernberger, 2014).

USE OF SPECTROSCOPIC TOOLS IN BIOMASS
CHARACTERIZATION AS HIGH THROUGHPUT TECHNIQUES
Spectroscopic methods, such as Fourier transform infrared spec-
troscopy (FTIR), NIR, Raman spectroscopy (Raman), and nuclear
magnetic resonance (NMR), are widely used to measure functional
groups and chemical bonds in biomass. These measurements
are faster and more convenient than most conventional chemi-
cal methods used for biomass characterization and fuel analysis.
Besides, since there is no degradative chemical treatment used
during analysis, the information gained from these tools is more
representative of the chemical structures in original biomass.
However, there are some drawbacks for using these spectroscopic
tools. For example, data interpretation for FTIR, Raman, and
NMR is relatively complicated, sample preparation can be com-
plex, and due to the mixed nature of biomass, peak assignment
usually suffers from the overlap of many compounds. A good
summary of spectroscopic tools used as high throughput tech-
niques in biomass study can be found in a recent review (Lupoi
et al., 2014).

HIGH THROUGHPUT TECHNIQUES COUPLED WITH
MULTIVARIATE STATISTICAL ANALYSIS
Because of many chemical features included in a single spectrum,
it is challenging to elucidate data directly for a group of samples.
Therefore, multivariate analysis (MVA) tools have been widely
used in spectroscopic data analysis (Jin and Xu, 2011; Smith-
Moritz et al., 2011; Xu et al., 2013; Lupoi et al., 2014). Among
them, the two multivariate tools that have been widely used are: (1)
Principal component analysis (PCA), and (2) Partial least square
(PLS).

Principal component analysis is mainly used for identifying
outliers, sample comparison, and screening. It relies on projecting
original samples variables on several (usually <six) reconstructed
variables which are representative of original sample variation.
Those reconstructed variables are known as principal compo-
nents (PCs). Samples described with PCs can be plotted in scores
plot, in which similar samples cluster together while samples

different from each other are separated in two-, three-, or n-
dimensional coordinates. Together with the scores plot, PCA
loadings plot allows for the determination of important chemi-
cal features responsible for the sample grouping. In the loadings
plot, variables with large values are highly correlated with sample
grouping (Sykes et al., 2009).

Partial Least Square is used to build prediction correlation mod-
els between spectral data and the property of interest. In the
application of NIR and Py-mbms, spectral data is regarded as
“predictors” for the biomass properties of interest. The properties
of a new sample can then be estimated using a PLS model built
from spectral data taken on a set of similar samples with known
characteristics. In this way, time consuming experiments for new
samples could be eliminated. Regression coefficients are generated
and can be used to relate chemical features in the spectra to the
specific sample properties (Labbe et al., 2006).

In summary, multivariate tools used in spectroscopic data
analysis have three functions: (1) comparing sample similarities
and differences and discovering outliers; (2) building prediction
models between spectroscopic data and biomass properties of
interest; and (3) discovering correlations between property data
and spectral data.

BIOMASS CHARACTERIZATION BY NIR SPECTROSCOPY
Near infrared spectroscopy is normally considered to be in the
range of electromagnetic spectrum from 12,000 to 4000 cm−1

(Smith-Moritz et al., 2011). This wavelength region has two major
advantages: first, the speed of spectral acquisition is high, which
facilitates the real-time data collection for process control; sec-
ondly, the wide applicability to a diverse ranges of materials with
little or no sample preparation (Schwanninger et al., 2011). This
allows NIR to be effective for online monitoring and quality con-
trol of a wide variety of product properties and manufacturing
processes (Workman, 2001; Kelley et al., 2004a; Tsuchikawa, 2007;
Jin and Xu, 2011). Because of this, NIR has been extensively used
as a high-throughput method to determine chemical, physical,
mechanical, and fuel properties of woody biomass during the past
20 years.

However, there are some disadvantages to NIR. Although NIR
absorption spectra have similar patterns to those in the mid-IR,
they have wider separation, more anti-symmetry, and weaker
intensity due to the fact that it is the combination and over-
tone bands from fundamental vibrations involved in NIR region.
Therefore, the interpretation of NIR spectra are much harder than
mid-IR (Schwanninger et al., 2011; Lupoi et al., 2014).

The utility of band assignments depends on the purpose
of specific research or application. There is ongoing discus-
sion around the necessity of interpreting NIR spectra in detail.
Chemical/physical information contained in the NIR spectra can
be used for detailed analysis (Schwanninger et al., 2011). How-
ever, it is not necessary to fully understand the chemical details
for NIR to be useful for quantitative analysis. If NIR is used
as a fast tool in distinguishing samples and in building predic-
tion models for biomass properties, the detailed assignments
are generally not needed. Statistical analysis for extracting use-
ful information is essential for this purpose (Xu et al., 2013).
Meaningful scientific insight of structural information could be
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better gained with the help of both statistical analysis and band
assignments.

NIR BAND ASSIGNMENT AND DATA PROCESSING
In NIR analysis, data points are usually collected in reflectance
form (R) and converted to log10(1/R) form, which is equivalent to
an absorbance spectrum.

As stated above, knowledge regarding band assignment is
important for the understanding of chemical structures in biomass
and there are several references on NIR band assignments
(Tsuchikawa et al., 2003; Schwanninger et al., 2011; Via et al.,
2013). Commonly assigned vibrations in the NIR spectra of woody
biomass include (Schwanninger et al., 2011):

(1) 1370–1471 nm: First and second overtones of O–H stretching
vibrations from free or weakly bonded O–H in carbohydrates
and first overtones of C–H, Caromatic–H stretching vibrations,
such as first overtone of O–H stretching in free OH group or
OH group with a weak H-bond from cellulose, xylan, and glu-
comannan (1386, 1414, 1428, 1471, 1477–1484), first overtone
of O–H stretching in phenolic hydroxyl groups from extractive
or lignin (1410, 1447, 1448), first overtone of C–H stretching
and bending in aromatic associated C–H from lignin (1417,
1440).

(2) 1471–1632 nm: First overtone of O–H stretching from
strong O–H bonded group, semi-crystalline and crystalline
region of cellulose (1473–1632) or intramolecular H-bond in
glucomannan (1471, 1493).

(3) 1666–2000 nm: First overtone of aliphatic and aromatic C–
H stretching vibrations and O–H combination bands from
extractives/lignin (e.g., 1668, 1674, 1684, 1726), hemicellu-
lose (e.g., 1720, 1724), cellulose (e.g., 1723, 1731), which are
overlapped with each other and water band (e.g., 1887–2000).

(4) ABOVE 2000 nm: Assignment in this region is difficult due to
high number of possibilities for the coupling of vibrations.

There are a number of well-established NIR spectra preprocess-
ing techniques that can be used to achieve resolution enhancement
and to more precisely locate band position. Methods for spec-
tral data preprocessing include: (1) smoothing and derivatization
(Denoyer and Dodd, 2002; Rousset et al., 2011) such as using the
algorithm based method used by Savitzky and Golay (1964), (2)
calculation of differential spectra (Rousset et al., 2011), and (3)
Fourier self de-convolution, curve fitting (Ozaki et al., 2001) with
more advanced techniques involving PCA (Fackler and Schwan-
ninger, 2010) and two dimensional correlation analysis (Ozaki
et al., 2001; Schwanninger et al., 2011).

Among those preprocessing methods, derivatives are widely
used to reduce the impact of overlapping peaks and baseline vari-
ation. However, there is a concern that generating derivatives can
possibly generate false information. Both the shape of the spec-
trum and the data processing algorithms have an impact on band
shape and location. Differences between the location of the bands
between the raw and the second derivative spectrum can be more
than 20 cm−1 (5 nm). Researchers have also reported that the sec-
ond derivative form was not always more precise than the normal
form for the prediction of lignin in wood (Michell, 1995; Xu et al.,
2013). Therefore, when spectral data is processed with the second

derivative, possible peak shifts should be taken into consideration.
The same consideration is also important for deriving conclusions
from processing spectra of PCA and regression coefficients from
PLS (Schwanninger et al., 2011).

NIR SPECTROSCOPY COUPLED WITH PCA
The primary application of NIR coupled with PCA is to classify
biomass samples of various origins or from different pretreat-
ments without conducting laborious traditional wet chemistry
techniques on all samples. Related areas of this application are
summarized below:

(1) Related to species/plant fractions (Michell, 1995; Kelley et al.,
2004a; Labbe et al., 2008a,b; Nkansah et al., 2010);

(2) Related to genetic engineering of feedstock crops (Baillères
et al., 2002; Sandak and Sandak, 2011; Zhou et al., 2011);

(3) Related to chemical/thermal/biological treatments (Kelley
et al., 2004b; Yang et al., 2007; Houghton et al., 2009;
Krongtaew et al., 2010).

For example, in order to evaluate the impact of biomass pre-
treatments (including acid and alkaline pretreatments, some in
combination with hydrogen peroxide) on the change of cell wall
compositions of wheat and oat straw, FT-NIR was utilized to
characterize raw and pretreated straw (Krongtaew et al., 2010).
Second derivatives from NIR absorption bands were generated
and evaluated to show the changes in properties related to biomass
recalcitrance during subsequent bioethanol production. These
properties include the change of lignin, hemicelluloses; as well
as amorphous, semi-crystalline, and crystalline regions of cellu-
lose moieties of pretreated sample. PCA of derivative data was
efficiently utilized to differentiate the alterations in chemical struc-
ture of straw due to different pretreatment methods as shown in
Figure 1. It was demonstrated that FT-NIR coupled with PCA is a
powerful tool to assess biomass digestibility, with a potential to be
used in process control in the area of biomass utilization or energy
conversion.

NIR SPECTROSCOPY COUPLED WITH PLS
One of the main applications of NIR coupled with PLS is to
build regression models for the prediction of biomass properties,
such as lignin content, S/G-lignin ratio, moisture content, heating
value (Kelley et al., 2004a; Rousset et al., 2011; Schwanninger et al.,
2011).

Related areas of the application of NIR coupled with PLS in
existing literatures are summarized below:

(1) Prediction of cell wall components (Michell, 1995; Sanderson
et al., 1996; Tucker et al., 2001; Baillères et al., 2002; Kelley et al.,
2004a; Lovett et al., 2004; Yeh et al., 2004; Jin and Chen, 2007;
Labbe et al., 2008b; Philip Ye et al., 2008; Wolfrum and Sluiter,
2009; Nkansah et al., 2010; Hou and Li, 2011; Sandak and
Sandak, 2011; Smith-Moritz et al., 2011; Zhou et al., 2011).

For example, in order to identify specific monosaccharide
outliers from a plant mutant population, FT-NIR coupled with
PLS regression was utilized to analyze plant leaves of Arabidop-
sis (Smith-Moritz et al., 2011). Various Arabidopsis cell wall
mutants were analyzed for prediction model building. PCA was
performed on pre-processed and area-normalized NIR spectra,
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FIGURE 1 | PCA scores plot of untreated wheat straw samples (•) and samples treated with acid (���), alkali (���), acid/H2O2 (���), and alkali/H2O2 (�) as

reproduced from literature (Krongtaew et al., 2010).

followed by calculation of the Mahalanobis distance, a linear
discriminate analysis technique to identify outliers using PCA
results. By using this technique, a pilot study was conducted
which consisted of 550 mutant lines (3590 leaf samples),
resulting in a set of 235 leaf samples as Mahalanobis outliers.
Quantitative information about monosaccharide composition
is gained by means of PLS modeling with known biochem-
ical values and FT-NIR spectra. The correlation between
predicted and experiment determined monosaccharide com-
position (mol%) of 226 rice leaf samples are shown in Figure 2
with R2 = 0.98 (Smith-Moritz et al., 2011).

(2) Prediction of other physical properties (Thygesen, 1994;
Hoffmeyer and Pedersen, 1995), mechanical properties (Kelley
et al., 2004a; André et al., 2006), fuel properties (Lestander and
Rhen, 2005; Labbe et al., 2008a).

For example, NIR coupled with PLS has been used to pre-
dict cell wall chemistry and mechanical properties of loblolly
pine from different radial locations and heights of trees
grown in Arkansas (Kelley et al., 2004a). Mechanical proper-
ties include three point bending test and related microfibril
angle. The correlation between experimental data and pre-
dicted data from PLS modeling is very strong with correlation
coefficients (r) as high as 0.80. A reduced spectral range (650–
1150 nm) usually available in handheld NIR spectrometers
was also demonstrated to be useful for predicting mechanical
properties.

BIOMASS CHARACTERIZATION BY Py-mbms
Py-mbms has been intensively used for studies of biological
and synthetic macromolecules, such as wood, grasses, carbon
in soil and chars. It has proved to be an efficient and power-
ful analytical tool (Evans and Milne, 1987; Kelley et al., 2002;
Labbe et al., 2005; Magrini et al., 2007; Sykes et al., 2008; Mann
et al., 2009; French and Czernik, 2010). Detailed description of
this technology is available in the above references. In short,
the Py-mbms is composed of a pyrolysis furnace and a free-
jet mbms. Typically the furnace is preheated to 500◦C before
ground sample of biomass is inserted into the inert atmo-
sphere of the furnace. Pyrolysis products from biomass in the
furnace are swept out of the furnace into the mbms by an
argon gas stream. Molecular fragments contained in the pyrol-
ysis vapor are expanded in a series of vacuum chambers to be
quenched; so that intermolecular collisions are prevented. A low-
energy electron beam (17–23 eV) in the triple quadruple mass
spectrometer is employed to produce a positive ion mass spec-
trum. The positive ion stream is magnified and collected by the
detector.

Mass peaks were assigned to chemical fragments produced
from fast pyrolysis of biomass for direct interpretation (Evans and
Milne, 1987). The spectra from Py-mbms is also interpreted with
the help of MVA tools, especially PLS and PCA (Hoover et al.,
2002; Kelley et al., 2002, 2004b; Labbe et al., 2005; Magrini et al.,
2007; Mann et al., 2009).
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FIGURE 2 | A correlation analysis predicted (PLS model of FT-NIR)

versus experimentally determined monosaccharide composition

(mol%) of rice leaf samples. The correlation coefficient between
experimental and predicted values was calculated to be R2 = 0.98 as
reproduced from literature (Agblevor et al., 1994; Smith-Moritz et al., 2011).

Py-mbms PEAK ASSIGNMENT AND DATA PROCESSING
During data acquisition of Py-mbms, amplified positive ions from
biomass pyrolysis vapor are scanned continuously; then the sig-
nal is collected by a computer. Approximate evolution time of
fast pyrolysis for a sample of 4 mg is less than 1 min. During
the evolution time there are typically 50 single scans collected.
Biomass with larger sample size will need longer evolution time
and more scans during fast pyrolysis. Together with single scan
spectrum, time resolved profile and averaged spectrum can be
collected by the computer acquisition software (Evans and Milne,
1987).

Average spectra are also known as spectral “fingerprints.” Spec-
tral fingerprints gained at analytical pyrolysis temperature of
500–550◦C and the molecular beam free jet expansion repre-
sent primary products from biomass pyrolysis. Studies shown
that at this temperature range, molecular structure of the orig-
inal biomass is well preserved and there is no interaction observed
among organic components during pyrolysis, although inorganics
may alter the pyrolysis pathways of the carbohydrates (Evans and
Milne, 1987). Thus, with known peak assignment, spectral“finger-
prints” generated could be used to depict the molecular structure
of chemical composition in biomass. A summary of important
peak assignment in biomass is shown in Table 1 (Evans and Milne,
1987; Sykes et al., 2008). Characteristic spectral fingerprints of
whole biomass samples and separated constituents of biomass are
shown in Figure 3 (Evans and Milne, 1987).

Pyrolysis-molecular beam mass spectrometry has been suc-
cessfully applied in many biomass-related studies, including the
research of cellulose, cellulose with inorganics, many woods, xylan,
milled wood lignin, bagasse (Evans and Milne, 1987), herbaceous
biomass under different storage environments (Agblevor et al.,
1994), hardwood sawdust and its torrefaction products (Nimlos
et al., 2003), and poplar grown under different nitrogen conditions
(Sykes et al., 2009).

For example, in the study of bark phenolysis conducted by
Alma and Kelley, bark and its phenolysis products from Calabrian
pine, Lebanon cedar, acacia, and European chestnut were charac-
terized using Py-mbms (Alma and Kelley, 2002). From the results
of Py-mbms averaged spectra, it was shown that bark (1) has less
common lignin peaks at m/z 180, 194, 210 assigned to coniferyl
alcohol/vinylsyringol, 4-propenylsyringol/ferulic acid, and sinapyl
alcohol, respectively; (2) has unique triplet of peaks at m/z of 96,
97, 98 assigned to furans; and (3) has more phenols, such as peaks
at m/z of 110, 124, 150, and 164 assigned to catechol, guaia-
col, vinyl guaiacol, and isoeugenol. In softwood bark, extractives
and lignin dimers can be identified at m/z of 298, 300, 302, and
272 assigned to didehydroabeitic acid, dehydroabeitic acid, abeit-
icacid, and lignin dimer, respectively (Alma and Kelley, 2002).
These results are consistent with known differences between bark
and wood.

SELECTED PEAKS FROM Py-mbms RAW DATA
As summarized above, certain Py-mbms peaks can be unambigu-
ously assigned to specific biomass components. Lignin fragments
are particularly easy to identify. Because of this, Klason lignin con-
tent of biomass can be directly estimated from Py-mbms spectral
fingerprints. Firstly, spectral fingerprints of samples are area/mean
normalized for the mass of the original sample. Then, the total
intensity of lignin related peaks from the normalized spectrum is
calculated. After that, a correction factor is calculated by dividing
the known Klason lignin value by the summed intensity of a NIST
standard material. The correction factor can be used to convert
the total intensity of lignin related peaks to Klason lignin con-
tent (Davis and Lagutaris, 2002; Sykes et al., 2008, 2009; Ziebell
et al., 2013). Similarly, S/G ratios were determined by dividing
the sum of S-lignin peaks by the sum of G-lignin peaks exclud-
ing peaks associated with both S and G fragments (Davis and
Lagutaris, 2002; Sykes et al., 2008, 2009; Mann et al., 2009; Ziebell
et al., 2013).

For example, corrected lignin values and S/G-lignin ratio were
determined from Py-mbms for 800 greenhouse-grown poplar
trees grown under atmosphere containing different amount of
nitrogen (Sykes et al., 2009). Lignin contents ranged from 13 to
28% whereas S/G ranged from 0.5 to 1.5. It was shown that
the variations in cell wall composition were larger in the plants
grown under high nitrogen conditions than those grown under
low nitrogen conditions.

Similarly, “within-tree” variability in lignin content and S/G
ratio with increasing height and increasing ring for poplars
was determined by Py-mbms (Sykes et al., 2008). Wood disks
from seven different poplar trees, which were seven years old,
were sampled at five different heights of 0.3, 0.6, 1.2, 1.8,
and 2.4 m from base to stem. Samples were collected from
the north side of each wood disk taken at height of 1.2 m to
study difference between growth rings. According to results from
Py-mbms, ring effect on lignin content was significant while
the effect of height was small. Higher S/G ratio was observed
with increasing ring size, whereas lignin content decreased.
S/G ratio was determined for switchgrass grown under dif-
ferent environment using the same methodology (Mann et al.,
2009).
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Table 1 | Peak assignments associated with Py-mbms spectrum for Populus wood based on literature (Evans and Milne, 1987; Sykes et al., 2008).

Mass peaks (m/z) Assigned products S or G precursor

57, 73, 85, 96, 114 From C5 sugar

57, 60, 73, 98, 126, 144 From C6 sugar

94 Phenol, dimethylcyclopentene

108 Methyl phenol (o-cresol, m/p-cresol)

110 Dihydroxybenzene, 5-methylfurfural

120 Vinylphenol

122 Ethylphenol, ethylphenol, benzoic acid

124 Guaiacol (2-methoxyphenol), trimethylcyclopentenone G

137* Ethylguaiacol, homovanillin, coniferyl alcohol G

138 Methylguaiacol G

150 p-Inylguaiacol, coumaryl alcohol G

152 4-Ethylguaiacol, vanillin G

154 Syringol (2,6-dimethoxyphenol) S

164 Isoeugenenol, eugenol G

167* Ethylsyringol, syrinylacetone, propiosyringone S

168 4-Methyl-2,6-dimethoxyphenol S

178 Coniferyl aldehyde G

180 Coniferyl alcohol, syringylethene S, G

182 Syringaldehyde S

194 4-Propenylsyringol S

208 Synapyl aldehyde S

210 Synapyl alcohol S

*Fragmention.
m/z: mass to charge ratio.
S, syringyl lignin; G, guaiacol lignin.

Py-mbms COUPLED WITH PCA
Pyrolysis-molecular beam mass spectrometry coupled with PCA
provides a fast analytical method to distinguish a large number of
biomass samples. It has been used to study biomass compositional
variations due to species (Evans and Milne, 1987; Agblevor et al.,
1994; Alma and Kelley, 2002; Kelley et al., 2004b), genetic engi-
neering (Labbe et al., 2005; Davis et al., 2006), different growth
environments (Mann et al., 2009; Sykes et al., 2009), thermal
(Nimlos et al., 2003)/chemical (Alma and Kelley, 2002; Kelley
et al., 2004b)/biological (Kelley et al., 2002; Arantes et al., 2009)
treatments, and various storage/collection (Agblevor et al., 1994)
methods.

For example, Py-mbms coupled with PCA has been used to
measure the overall composition between and within a series of
original and transgenic aspens (Labbe et al., 2005). Two clones
were transformed with GRP-iaaM gene (N1-17-26 and N1-2-1)
and GRP-iaaM/35S-ACCase (N2-4-9 and N2-5-5). PCA analysis
was conducted for data analysis with an attempt to identify chem-
ical differences between the modified and control aspens. Figure 4
shows PCA scores plots with four replicate samples from five dif-
ferent aspen samples. Figure 4A shows a plot of PC1 versus PC2,
while Figure 4B shows a plot of PC2 versus PC3. In Figure 4A,
there is clear separation between the two N1 samples while two

N2 samples are indistinguishable. Moreover, two N2 samples are
clearly separated from each other along PC3 as shown in Figure 4B.
The loadings from PCA are shown in Figure 5. Using PC1 load-
ings as an example, C5 carbohydrates (m/z 85 and 114) and lignin
(m/z 137, 180, 210, and 272) are highlighted for PC1. This suggests
there are more C5 sugars and less lignin in controls than those in
N1 and N2 samples (Labbe et al., 2005).

Pyrolysis-molecular beam mass spectrometry had been also
used to study the impact of storage environment on herba-
ceous material. Weathered and unweathered fractions of three
types of herbaceous biomass after storage at 18 different con-
ditions for 6–9 months were analyzed by Py-mbms coupled
with PCA (Agblevor et al., 1994). Two major trends in the data
were shown by PCA (factor analysis): major clusters were dis-
tinguished by relative nitrogen contents between switchgrass and
the other two herbaceous biomass samples; subgroups of weath-
ered and unweathered materials are clearly separated as subgroups
within the major clusters. According to the variance diagram
(similar to loadings plot), lower amount of carbohydrates con-
stituted the major chemical difference between weathered and
unweathered samples (Agblevor et al., 1994). This observation is
consistent with results from traditional wet chemical analysis and
Py-GC/MS.
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FIGURE 3 | Characteristic mass spectral patterns of primary pyrolysis products for several whole biomass samples and for separated constituents of

biomass (Evans and Milne, 1987).

FIGURE 4 | Scores plot of PCA of Py-mbms data for original and transgenic aspens; (A) PC1 versus PC2; (B) PC2 versus PC3; N1 samples are clearly

separated from control samples in (A) while two N2 samples are not distinguishable; in (B) two N2 samples are clearly separated by PC3 as

reproduced from literature (Labbe et al., 2005).

In some cases, there is no separation of clusters in PCA scores
plot. This indicates that there is no comprehensive difference
among samples for the specific chemical features included in those
particular PCs.

For example, three transgenic clones of populous wood were
analyzed by Py-mbms, GC/MS, and traditional wet chemical tech-
niques to screen for possible variations in cell wall composition
due to genetic engineering (Davis et al., 2006). Various Bacillus
thuringiensis (Bt) gene-containing constructs were used to trans-
form poplar genotypes. Transgenic poplar was then compared

with non-transgenic control. PCA results showed that there were
generally no distinct groupings of individual transgenic lines or
non-transgenic controls, indicating no significant differences in
cell wall composition between control and transgenic poplars
(Davis et al., 2006).

Py-mbms COUPLED WITH PLS
One of the primary applications of Py-mbms has been the develop-
ment of prediction models for biomass compositional properties.
Results from conventional methods of cell wall compositional
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FIGURE 5 | Loadings from PCA of Py-mbms data for original and

transgenic aspens; from top to bottom: PC3, PC2, PC1; C5

carbohydrates (m/z 85 and 114) and lignin (m/z 137, 180, 210, and 272)

are highlighted for PC1 as reproduced from literature (Labbe et al.,

2005).

analysis were used as references to build calibration models with
capability for predicting the composition for future samples. As a
result, laborious wet chemistry techniques can be eliminated. PLS
regression is widely used in this arena for both woody (Tuskan
et al., 1999; Labbe et al., 2005) and herbaceous biomass (Agblevor
et al., 1994; Kelley et al., 2004b; Mann et al., 2009).

For example, the effectiveness of NIR and Py-mbms in pre-
dicting cell wall composition of various agricultural residues was
tested (Kelley et al., 2004b). Forty-one samples from 14 species
with known content of lignin and six individual sugars were ana-
lyzed by NIR and Py-mbms. Prediction models were built between
spectral data from both techniques and cell wall compositional
data. Correlation coefficient and root mean square error data for
each calibration and validation model was presented and com-
pared. Good correlations between the predicted and measured
value of major components (lignin, glucose, xylose, and mannose)
were obtained (correlation coefficients of both calibration and val-
idation model are above 0.80 for both NIR and Py-mbms), while
correlations for minor sugars (mannose, galactose, arabinose, and
rhamnose) were not as good. A summary of PLS prediction of
chemical composition from Py-mbms is presented in Table 2.
According to the author, more samples for specific feedstocks
are needed for building improved models. This work also did a
thorough comparison between NIR and Py-mbms (Kelley et al.,
2004b).

Other than being used to predict cell wall composition of
biomass, PLS has been applied in predicting other biomass prop-
erties and processing parameters. The acidic phenolysis condition
of bark (Alma and Kelley, 2002), weight loss during fungal degra-
dation of spruce (Kelley et al., 2002) and carbon content/fraction
of different soils (Hoover et al., 2002; Magrini et al., 2007) were
also predicted by Py-mbms coupled with PLS.

For example, NIR and Py-mbms were utilized to monitor the
chemical changes of wood undergoing brown-rot degradation. In
this case, spruce blocks were infected by Postia placenta or Glaoeo-
phyllum trabeum for 0, 2, 4, 8, and 16 weeks (Kelley et al., 2002).
Weight losses over the time period were monitored and recorded.
PLS models were built to predict weight loss. Strong correlation
between recorded weight loss and predicted weight were obtained
(correlation coefficients of calibration model reached 0.98, while
those of test model reached 0.96 for both NIR and Py-mbms).
The regression coefficients for PLS model from Py-mbms data
show that weight loss during decay is positively correlated to
carbohydrates (m/z 85, 114, and 126) and negatively correlated
to monomethoxylated lignin fragments (m/z 123, 138, and 151;
Kelley et al., 2002).

CONCLUSION
Compared to traditional techniques in biomass characterization,
high-throughput analytical techniques, such as NIR and Py-mbms
have been proved to be efficient tools in exploring the chemical
features of different biomass samples with minimal sample prepa-
ration. These high-throughput techniques coupled with MVA have
been demonstrated to be efficient in identifying outliers, compar-
ing samples (using PCA), and building prediction models (using
PLS). Both NIR and Py-mbms coupled with MVA could be used
not only for characterizing the cell wall chemistry, but also for pre-
dicting other chemical, physical, mechanical, and fuel properties.
In comparison with Py-mbms, NIR has the advantages of low cost
and simple instrumentation, field-portable, and nondestructive,
whereas Py-mbms provides superior information of molecular
structural information.

Thus, we recommend that NIR and Py-mbms coupled with
MVA should be widely employed for biomass characterization.
Additional fundamental work on assigning NIR vibrations band
and Py-mbm speaks for modified biomass or biomass related
products are recommended since current assignment are mainly
based on the study of unmodified biomass. Lack of assignments
for new bands/peaks in modified biomass limit the application
of these two techniques in exploring the fundamental changes
of chemical composition of modified biomass. Also, comparison
and correlation between analytical results from Py-GC/MS and

Table 2 | Summary of the PLS-2 predictions of chemical composition from Py-mbms (six PCs; Kelley et al., 2004b).

Lignin Glucose Xylose Mannose Galactose Arabinose Rhamnose

r(CALB) 0.85 0.85 0.87 0.92 0.83 0.70 0.80

r(VALD) 0.77 0.75 0.81 0.86 0.65 0.54 0.71

RMSEC 4.60 6.20 3.40 1.40 0.40 0.50 0.10

RMSEP 5.50 8.00 4.10 1.80 0.50 0.60 0.10
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Py-mbms should be encouraged because of the important simi-
larity and differences in these two techniques are critical for using
those techniques for the characterization of biomass molecular
structure.
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