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Recent insights into the physical biology of plant cell walls are reviewed, summarizing the
essential differences between primary and secondary cell walls and identifying crucial gaps
in our knowledge of their structure and biomechanics. Unexpected parallels are identified
between the mechanism of expansion of primary cell walls during growth and the mecha-
nisms by which hydrated wood deforms under external tension. There is a particular need
to revise current “cartoons” of plant cell walls to be more consistent with data from diverse
approaches and to go beyond summarizing limited aspects of cell walls, serving instead as
guides for future experiments and for the application of new techniques.
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INTRODUCTION
Primary and secondary cell walls are microfibril-based nanocom-
posites that differ in the arrangement, mobility and structure of
matrix polymers, the higher-order organization of microfibrils
into bundles and discrete lamellae, their rheological and mechani-
cal properties, and their roles in the life of the plant. Wall structure
has sometimes been compared with that of fiberglass – a plas-
tic matrix reinforced by glass-fibers – but this analogy fails to
account for the complex rheological behavior of plant walls. In this
mini-review we summarize recent insights linking the molecular
organization of cell walls with their mechanical and rheological
properties.

Primary cell walls are synthesized during growth and typically
are relatively thin, pliant, highly hydrated structures. The primary
wall must be strong to withstand the tensile forces arising from
turgor pressure, extensible to allow wall stress relaxation which
motivates cell water uptake and physical enlargement of the cell
(Hamant and Traas, 2010), and incorporative, meaning capable
of linking newly deposited wall polymers into the load-bearing
structure. These properties partly derive from the physical struc-
ture of the wall, but they also involve dynamic actions by expansin
and xyloglucan endotransglycosylase/hydrolase (Cosgrove, 2005;
Eklof and Brumer, 2010).

Secondary cell walls provide strength and rigidity in plant
tissues that have ceased growing. Any tall terrestrial plant requires
stems with bending strength and with water-conducting tissues
that can withstand negative pressures (Koch et al., 2004; Speck
and Burgert, 2011). Secondary walls therefore need compressive
as well as tensile strength, but not extensibility. Nevertheless,
under some conditions they can undergo various deformation
processes that resemble, to some degree, primary cell wall
growth.

STRUCTURE AND BIOMECHANICS OF GROWING WALLS
Primary walls are comprised of 15–40% cellulose, 30–50% pectic
polysaccharides, and 20–30% xyloglucans and lesser amounts of
arabinoxylans and structural proteins, on a dry weight basis, struc-
tured into one or more lamellae. The pectic polysaccharides are
particularly important for wall hydration, which is essential for the
slippage and separation of cellulose microfibrils during expansive
growth. Notable deviations from this generic composition include
the primary walls of:

• grasses, where arabinoxylans constitute most of the matrix;
mixed-linkage glucans transiently comprise 10–20% of wall
mass (Carpita et al., 2001; Gibeaut et al., 2005);

• celery and sugar beet parenchyma, which are rich in cellulose
and pectin, but have little hemicellulose (Thimm et al., 2002;
Zykwinska et al., 2007b).

Understanding how mechanical performance emerges from
molecular structure – particularly the mechanism of cell wall
expansion – has been a key raison d’être of primary cell wall
models for decades (Keegstra et al., 1973; Preston, 1974; Cos-
grove, 2005), yet despite significant progress we still have a long
way to go to achieve the “consistency of molecular structure with
the physical properties of the walls during growth” (Carpita and
Gibeaut, 1993).

Studies of the viscoelastic properties of primary walls – sum-
marized in numerous reviews (Preston, 1974; Cosgrove, 1993;
Geitmann, 2010) – show that unaided viscoelastic extension of
walls decays rapidly, amounting to a few % extension, whereas
in the living plant it continues for hours or days and results in
extensions of 50–100% or more. Normal cell wall expansion is
not a simple result of the wall’s constitutive properties but results
from continuous action by the cell or by wall-associated proteins.
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It follows that measures of wall viscoelasticity may correlate with
wall structure at any given instant, but these physical measures
generally do not encompass this active aspect of wall extensibility,
which has sometimes been described as chemorheological creep,
meaning polymer creep that depends on chemical or enzymatic
modification (Ray and Ruesink, 1962). The gap between in vitro
and in vivo extensibility is at least partly filled by the action of
expansins, which induce stress relaxation and sustained creep of
cell walls (Sampedro and Cosgrove, 2005). Although we know
expansin structure in atomistic detail (Yennawar et al., 2006), the
details of its loosening action on the wall remain enigmatic, in
part because our understanding of the molecular architecture of
the primary wall is incomplete.

CONVENTIONAL VIEW OF XYLOGLUCAN’S ROLE
IN WALL MECHANICS
According to current depictions of primary walls, cellulose
microfibrils are coated by xyloglucans and tethered by them
to form a load-bearing network, with pectins functioning as
a co-extensive, space-filling matrix that separates the microfib-
rils. This “tethered network model” (Figure 1A) might exhibit
turgor-driven yield and creep resembling real primary cell walls
if xyloglucan binding was dynamic and reversible (Veytsman and
Cosgrove, 1998; Dyson and Jensen, 2010). However, if xyloglu-
can bound cellulose tightly and irreversibly, as appears to be
true, this network would behave more like a viscoelastic solid,
with retarded elasticity due to the time needed for unfolding
of xyloglucan tethers and viscous movement of the cellulose
microfibrils within the pectic matrix (Abasolo et al., 2009). On the
other hand, there is some doubt that xyloglucan–cellulose binding
has sufficient strength to withstand the tensile forces in the wall
(Thompson, 2005). This issue seems an open question that might
be addressed by molecular dynamics simulations (Bergenstrahle
et al., 2009). A thorough analysis is complicated by microfibril
structure which has distinct hydrophobic and hydrophilic surfaces
as well as disordered regions, which likely differ in xyloglu-
can binding. Furthermore, xyloglucan may be entrapped within
microfibrils or bundles of microfibrils, further complicating such
analysis.

The elastic behavior of a multi-lamellate version of the tethered
network has been modeled by a finite-element simulation, absent
the pectin component (Kha et al., 2010). A key advantage of this
approach is that the spatial distribution and range of tensile loads
can be calculated for individual tethers. This may be important
for extending the model to incorporate viscoelastic extension and
creep behavior of walls in a realistic way.

Using another approach, Dyson et al. (2012) modeled the
effects of stretch-dependent cross-link breakage on cell wall-
yielding behavior, incorporating potential effects of expansin
and xyloglucan endotransglycosylase/endohydrolase. The results
resemble Lockhart’s semi-empirical equation in which the rate
of wall expansion is given by ϕ (P − Y ), that is, extensibil-
ity ϕ times turgor pressure P in excess of the yield threshold
Y (Lockhart, 1965). Moreover, the model offers a molecular
interpretation of ϕ as due to the pectin viscosity and Y as
related to the density of xyloglucan tethers. These are testable
predictions.

A

B

FIGURE 1 | Alternative hypothetical architectures of cellulose–

xyloglucan networks in primary cell walls. (A) The tethered network
model in which xyloglucans (black lines) fully coat the surfaces of cellulose
microfibrils (larger red rods) and additionally span the 20–40 nm gap
between adjacent cellulose microfibrils as load-bearing tethers. The
distance between microfibrils is large enough to permit penetration of a
xyloglucanase-specific endoglucanase (yellow “Pacman” symbols) of the
type used by Park and Cosgrove (2012a). This model is based a variety of
results (Scheller and Ulvskov, 2010; Hayashi and Kaida, 2011) but is still
hypothetical and recent work is at odds with it. In this model, the primary
means of cell wall expansion is by cutting the xyloglucan tethers or by
destabilizing the xyloglucan–cellulose interaction, resulting in wall stress
relaxation and yielding. The directionality of growth depends on the net
orientation of cellulose microfibrils (Baskin, 2005; Kerstens et al., 2001). (B)

A revised architecture based on the enzyme/biomechanics analysis of Park
and Cosgrove (2012a), in which the load-bearing xyloglucan (broken black
lines highlighted by gray ellipses) is a minor fraction of the total xyloglucan
and is trapped between microfibrils, so it is not accessible to
xyloglucan-specific endoglucanase. By this arrangement the xyloglucan
glues microfibrils into a network of microfibril bundles which serve to
protect it from lytic action by xyloglucan-specific endoglucanases as well as
xyloglucan endotransglycosylase/hydrolase. The gray circles demark the
limited region that bear the static tensile forces generated by turgor
pressure. An arrangement as shown here could account for the lack of
wall loosening caused by xyloglucan endotransglycosylase/hydrolases
(Saladie et al., 2006; Maris et al., 2009; Miedes et al., 2011).

GROWING DOUBTS ABOUT XYLOGLUCAN’S ROLE
Despite the widespread acceptance of the tethered network model,
recent results have led to some doubts about its correctness.
As mentioned above, some walls contain little hemicellulose.
Attempts to measure xyloglucan bound to cellulose by 13C-NMR
in intact Arabidopsis and mung bean walls concluded that <10% of
the cellulose surface is coated with xyloglucan, contrary to expec-
tations of the dominant model (Bootten et al., 2004; Dick-Perez
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et al., 2011). Much of the xyloglucan interacted with pectins, which
showed extensive interactions with cellulose. Neutral pectins bind
to cellulose in vitro, although less avidly than does xyloglucan
(Zykwinska et al., 2007a, 2008).

Another blow to the tethered network model came from
analysis of mutants defective in xyloglucan synthesis which dis-
played only modest growth defects despite the complete absence
of xyloglucan (Cavalier et al., 2008; Zabotina et al., 2012). Fur-
ther analysis showed that pectins and xylans assumed greater
biomechanical roles in the xyloglucan-deficient walls (Park and
Cosgrove, 2012b) which were mechanically weaker but simulta-
neously less extensible because they lacked the major target of
α-expansin. Xyloglucan may also affect microfibril structure or
aggregation (Atalla et al., 1993), with indirect consequences for
the effectiveness of wall-loosening agents. This idea draws some
support from NMR analyses (Dick-Perez et al., 2011) and con-
focal microscopy (Anderson et al., 2010) which indicate that the
xyloglucan-deficient walls contain larger cellulose microfibrils or
microfibril bundles compared with wildtype walls.

A revised view of xyloglucan’s role recently emerged from
experiments in which substrate-specific endoglucanases were
assessed for their ability to induce wall creep (Park and Cosgrove,
2012a). Although xyloglucan-specific endoglucanases removed
much of the xyloglucan, they did not increase wall creep or com-
pliance. Cellulose-specific endoglucanases were likewise inactive
in biomechanical assays. Only enzymes able to hydrolyze both
xyloglucan and cellulose were active in these assays, with large
biomechanical effects associated with digestion of ∼0.3% of the
total xyloglucan. These results argue against the tether model
(Figure 1A), as such tethers would be digested by xyloglucan-
specific enzymes. Figure 1B shows one possible scheme consistent
with the new results, where the biomechanically significant
xyloglucan is restricted to inaccessible junctions between micro-
fibrils.

These studies de-emphasize the role of xyloglucan as the exclu-
sive moderator of cell wall mechanics and indicate that other
matrix polysaccharides may fill in for some xyloglucan func-
tions. This idea is further reinforced by studies showing pectin
de-esterification is linked with enhanced growth in the Arabidop-
sis hypocotyl (Pelletier et al., 2010) and in the outgrowth of leaf
and flower primordia in the shoot apical meristem (Peaucelle
et al., 2008, 2011). These effects of pectin methyl esterase are
hard to understand in terms of wall structure because pectin de-
esterification, by itself, should lead to enhanced ionic cross linking
of pectins, thereby rigidifying the wall (Zhao et al., 2008). Indirect
effects of pectin de-esterification may be linked to these growth
enhancements (Wolf and Greiner, 2012). Moreover, pectin may
play a greater role in specialized walls found in pollen tubes and
in some algae (Fayant et al., 2010; Rojas et al., 2011; Palin and
Geitmann, 2012).

BIOMECHANICS OF SECONDARY CELL WALLS
In most angiosperms the functions of water conduction and sup-
port are divided between vessels and interfascicular xylem cells,
patterned through the influence of distinct transcription factors
(Guo et al., 2009; Ohtani et al., 2011) and intercellular signaling
networks (Fuchs et al., 2011). The requirement for tensile and

compressive strength is satisfied by a high content of rather
uniformly oriented cellulose, synthesized by a distinct set of
cellulose synthases and normally lignified. In trees the result is
wood (Mellerowicz and Sundberg, 2008). Xylem tissues broadly
similar in structure and function, although often with less lignin
or none (Carlquist and Schneider, 1998; Hepworth et al., 1998;
Jung and Engels, 2002) are found in herbaceous plants, bamboos,
and palms.

Like primary cell walls, secondary cell walls are composite mate-
rials based on 3-nm cellulose microfibrils, with lignin, xylans,
and glucomannans replacing xyloglucans and pectins (Mellerow-
icz and Sundberg, 2008). Secondary cell walls are less hydrated
than primary cell walls, containing only about 30% water at sat-
uration. In coniferous wood at least, the cellulose microfibrils
form loose bundles 10–20 nm across with direct lateral adhesion
between adjacent microfibrils over part of their length (Fernandes
et al., 2011). Most of the lignin and hemicelluloses are thought to
lie outside these aggregates (Salmen, 2004; Fernandes et al., 2011),
but hemicellulosic glucomannans are closely associated with cel-
lulose (Salmen and Bergstrom, 2009; Figure 2). In contrast to the
dispersed cellulose orientations in primary cell walls, the cellulose
microfibrils are wound around wood cells in a helix whose pitch
is defined by the microfibril angle, the angle that the microfib-
rils make with the cell axis (Barnett and Bonham, 2004). Tree
saplings have high microfibril angles giving flexibility in response
to wind and snow, while mature trees have low microfibril angles
providing the stiffness to avoid buckling under the compressive
loads imposed by their weight (Altaner and Jarvis, 2008). A tree’s
mechanical history is recorded in the variation of microfibril angle
across the annual rings of the trunk.

Because of the importance of wood as a construction material
its mechanical properties have been studied much more inten-
sively than those of growing plant cells (Salmen, 2004). Models
and tentative mechanisms have been suggested for three kinds
of deformation: (1) viscoelastic (reversible) deformation; (2) an
irreversible time-dependent form of deformation termed here
“viscoplastic” (Flores et al., 2011); (3) mechano-sorptive defor-
mation. Only (2) and (3) are irreversible and therefore directly
analogous to the growth of primary cell walls, but it is not clear
to what extent (1)–(3) are mechanistically related. All three may
therefore suggest insights or potential experimental approaches
that might help to understand the physical processes occurring
when primary cell walls elongate.

VISCOELASTIC STRETCHING AND BENDING
Dry secondary cell walls with small microfibril angles show purely
viscoelastic behavior, either in tensile or bending experiments
at constant stress or by stress relaxation. The viscous compo-
nent increases with the angle between the microfibrils and the
stress (Bonfield et al., 1996; Gril et al., 2004) and has been mod-
eled as due to viscous shear in the lignin–hemicellulose matrix
between elastic microfibrils (Engelund and Svensson, 2011) or
microfibril aggregates. The calculated free energy of activation
was consistent with the breaking of four to six hydrogen bonds
in each sliding event (Bonfield et al., 1996). Chemical deligni-
fication (Kohler and Spatz, 2002) or down regulation of lignin
synthesis (Koehler and Telewski, 2006) generally reduced stiffness,
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FIGURE 2 | Hypothetical architecture of polymer network in secondary

cell walls of conifer wood. Loosely aggregated bundles of cellulose
microfibrils (red) are coated with a disordered xylan–lignin complex (shaded
light blue). Partially oriented glucomannan chains (blue lines) adhere by
hydrogen bonding to the cellulose aggregates and acetylated segments of

these glucomannans bridge between the aggregates. For clarity the structure
is shown much more open than is the case: the free space, filled by water
in vivo, is only about 40% of the total volume. This is much less than the free
space in hydrated primary cell walls. Based on Terashima et al. (2009) and
Fernandes et al. (2011).

demonstrating involvement of lignin. There was also less direct
evidence for involvement of hemicelluloses (Assor et al., 2009;
Bjurhager et al., 2010), but mechanisms remain unclear at the
molecular level.

VISCOPLASTIC DEFORMATION ABOVE THE YIELD THRESHOLD
When fully hydrated as in the living tree, wood with high microfib-
ril angle shows a two-phase load-deformation curve. Above a
threshold stress it becomes less stiff. This second phase of elon-
gation is irreversible but this does not result from overt damage,
because when the stress is reduced below the yield threshold the
elongated sample remains as stiff as before (Kohler and Spatz,
2002; Keckes et al., 2003). Mechanically, then, elongation of
wood above the yield threshold resembles turgor-driven exten-
sion growth as described by the Lockhart equation. The term
“molecular Velcro” was coined to describe this form of deforma-
tion in wood because it is simulated by hook-and-loop fasteners
that can be pulled apart, moved and refastened without per-
manent loss of strength (Keckes et al., 2003). Molecular Velcro
tensile behavior has been demonstrated for wet wood samples
in which the cellulose microfibrils are oriented at 20–45◦ to the
cell axis. If the wood is dry or the microfibril angle is low,
the yield threshold rises until the sample breaks before reach-
ing it (Kamiyama et al., 2005). Because of this technical problem
it is common to use isolated single wood cells, which can be
stretched to greater elongation than bulk wood samples with-
out breaking (Keckes et al., 2003). The helical arrangement of
the microfibrils tends to untwist on stretching, so single wood
cells need to be rotationally restrained to match their behavior
in wood, where each cell is locked to the next and cannot twist
(Fratzl et al., 2004).

The molecular Velcro phenomenon requires that cellulose
microfibrils should slide past one another and should also rotate
closer to the line of stress (Flores et al., 2011): these two deforma-
tions must be balanced if the cell is not to twist (Fratzl et al., 2004).
The yield threshold then corresponds to the abrupt onset of sliding
between aggregates of microfibrils. Several mechanisms have been
suggested to trigger this sliding process. The original suggestion

was that hemicelluloses anchored to two adjacent microfibrils were
entangled and that a threshold shear stress was required to break
the entanglement, allowing the microfibrils to slide (Keckes et al.,
2003). There is doubt about whether the orientation of hemicel-
luloses is consistent with entanglement interactions (Salmen and
Bergstrom, 2009), and a more recent explanation of this mecha-
nism (Speck and Burgert, 2011) substitutes lateral association of
two hemicellulose chains, stabilized by hydrogen bonding over a
number of residues. A further alternative mechanism involves the
peeling of a hemicellulose chain off the microfibril surface by the
component of the stress perpendicular to the microfibril aggre-
gates, allowing them to slide parallel to one another until contact
is restored (Altaner and Jarvis, 2008). All these triggering mecha-
nisms focus on hemicelluloses and assume topologies rather like
the “tethered network” model for primary walls, but there is evi-
dence for the involvement of lignin as well (Kohler and Spatz,
2002) as for viscoelastic extension below the yield stress.

HYGROMECHANICAL DEFORMATION
Wood deforms progressively when maintained under a constant,
often quite small, tensile or bending load through repeated cycles
of drying and wetting (Bengtsson, 2001; Entwistle and Zadorosh-
nyj, 2008). The cumulative deformation is largely permanent
unless the load is reversed. In that respect hygromechanical creep
resembles viscoplastic deformation above the yield threshold, and
it has been suggested to require breaking of hydrogen bonds
between hemicelluloses and cellulose under hydrated conditions
and their re-formation, in different locations, on drying (Entwistle
and Zadoroshnyj, 2008).

All three of these forms of deformation of wood seem
to be focused in the matrix region between microfibrils or
microfibril aggregates, and increase simultaneously in magni-
tude with microfibril angle (Bengtsson, 2001; Fratzl et al., 2004;
Gril et al., 2004), but it does not follow that they share exactly
the same mechanism. There is an interesting parallel with the
unexplained observation that stress relaxation parameters for the
stretching of primary walls often correlate with growth (Nakamura
et al., 2002).
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CONCLUSION
Although primary walls of growing cells possess inherent
viscoelastic–viscoplastic properties arising from the polymeric
nature of their structure, cell wall expansion is primarily a dynamic
process requiring the action of expansins or other wall-loosening
agents. Deformation of wood is considered to be physical. Nev-
ertheless there are similarities. Both processes are sensitive to
microfibril orientation and both involve interactions of hydrated
non-cellulosic polysaccharides with cellulose surfaces. The topol-
ogy of these interactions in response to the local distribution of

stresses – details best conveyed in cartoons like Figure 1 – are only
now starting to be understood. In secondary cell walls the key
structural elements are not individual microfibrils but bundles of
microfibrils, and the possibility that this is also true in primary cell
walls deserves to be explored. The research communities working
on primary and secondary cell walls are rather separate, but both
could benefit from converging and exchanging ideas.
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