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idea that organ size is determined independently from constituent 
cells (Kaplan, 2001). On the other hand, cell perspective employs an 
idea that cell is a basic unit that determines organ size. We employ 
neo-cell perspective that leaf size determination is mediated by 
cell–cell communication (Tsukaya, 2002). Indeed recently we dem-
onstrated that cell–cell communication is a key mechanism behind 
compensation (Kawade et al., 2010).

The earliest report describing compensation was by Haber (1962) 
in a study characterizing leaf development using gamma-irradiated 
wheat grains. Cell division is severely compromised and overall leaf 
growth is significantly reduced in developing seedlings following 
gamma irradiation. Despite this, however, leaf morphogenesis occurs 
and cells in the leaf show larger expansion than control cells; thus, 
the reduction in cell proliferation triggers excessive cell expansion 
(Haber, 1962). In the modern molecular genetics era, compensation 
has been observed in transgenic plants in which the cell cycle was 
inhibited through manipulation of core cell cycle regulators such as 
CDKA;1 (Hemerly et al., 1995) and KIP-related protein2 (KRP2; De 
Veylder et al., 2001), and in mutants defective in positive regulators 
of cell proliferation, such as AINTEGUMENTA (ANT; Mizukami 
and Fischer, 2000) and ANGUSTIFOLIA3/GRF-INTERACTING 
FACTOR1 (AN3/GIF1; Kim and Kende, 2004; Horiguchi et al., 
2005). Many more instances have since been reported, mainly 
from Arabidopsis thaliana (Table 1) and other plant species such as 
Oryza sativa (Barrôco et al., 2006) and Antirrhinum majus (Delgado-
Benarroch et al., 2009).

Defective cell proliferation triggers compensation
Changes in the number and size of leaf cells in response to the 
alterations of core cell cycle regulator activities have a seesaw-like 
relationship; enhanced and reduced cell proliferation negatively 
and positively affects postmitotic cell expansion, respectively. This 
relationship has held true in several cases in which the expression 

Organ size regulation is an essential process for the optimal growth 
and appropriate function of multicellular organisms. The size of 
aerial lateral organs in plants, i.e., leaves and floral organs, is deter-
mined by the number and size of constituent cells since the growth 
of these organs is determinate. Therefore, quantitative recognition 
of size-related parameters and developmental decisions is required 
to control the kinetic aspects of cell proliferation and cell expan-
sion. The molecular mechanisms underlying cell proliferation 
and postmitotic cell expansion have been investigated extensively, 
mainly through the characterization of the cell cycle and endocycle 
in which multiple rounds of DNA replication occur without cell 
division (Inzé and De Veylder, 2006; Breuer et al., 2010). In addi-
tion to these cell cycle regulators, a number of genes have been 
identified over the last decade that regulate the size of lateral organs 
through the modulation of cell proliferation and/or cell expan-
sion (Gonzalez et al., 2009; Krizek, 2009; Micol, 2009). Many of 
these genes encode regulatory factors that act at the transcriptional 
(Mizukami and Fischer, 2000; Kim and Kende, 2004; Horiguchi 
et al., 2005, 2009; White, 2006; Usami et al., 2009; Ichihashi et al., 
2010) or posttranscriptional level (Disch et al., 2006; Li et al., 2008; 
Usami et al., 2009), and some are involved in cell–cell communica-
tion (Strabala et al., 2006; Anastasiou et al., 2007; Eriksson et al., 
2010). In addition to such cell level regulation, cell proliferation 
and postmitotic cell expansion must be coordinated to establish an 
organ of the appropriate size. Although the mechanisms underly-
ing such coordination are still largely unknown, recent molecular 
genetic studies have begun to provide some insight. In this review, 
we focus on the phenomenon termed “compensation,” wherein a 
decrease in cell number in a leaf caused by a genetic defect leads to 
an enhanced cell expansion. This phenomenon serves as a key to 
understanding organ size regulation (Tsukaya, 2002, 2008; Beemster 
et al., 2003). When considering the mechanisms of organ size, two 
contrasting theories exist. Organismal perspective is based on the 
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levels of core cell cycle regulators were manipulated. Transition 
from the cell cycle to endocycle occurs during leaf development. 
Differentiating cells often undergo several rounds of endocycle 
and expansion in a manner correlated with nuclear DNA content 
(Melaragno et al., 1993). A precocious transition from the cell cycle 
to endocycle increases the number of rounds of endocycle and 
causes leaves to have fewer and larger cells (Boudolf et al., 2004; 
Verkest et al., 2005). Conversely, CYCD3;1 and E2Fa overexpression 
prolongs cell proliferation and inhibits the endocycle, resulting in 
the inhibition of cell expansion that usually takes place in associa-
tion with endocycling (De Veylder et al., 2002; Dewitte et al., 2003).

In these instances, the cause is clearly altered cell proliferation 
activity. However, in some specific cases, cell number and size are 
regulated at the whole-plant level. The more and smaller cells (msc) 
mutants show increased cell number and reduced cell size in leaves 

(Usami et al., 2009). The msc phenotype seems to be the opposite of 
the prototypic compensation. This suggests that an increase in cell 
number is able to negatively affect cell size during leaf development. 
However, msc genes are not directly involved in the regulation of 
cell proliferation. Rather, they are associated with heteroblasty in 
which various leaf traits such as leaf shape, cell number, cell size, and 
trichome distribution progressively change during the transition 
from juvenile to adult phases (Usami et al., 2009). In the wild-type, 
cell number increases and cell size decreases in leaves formed at 
higher nodes. On the other hand, in msc mutants, such develop-
mental changes take place faster than in the wild-type, indicating 
that the msc phenotype is caused by accelerated heteroblasty and 
not increased cell proliferation (Usami et al., 2009). The msc1-D 
mutant has an miR156 resistance mutation in the SQUAMOSA-
PROMOTER BINDING PROTEIN-LIKE15 (SPL15) gene, while 
msc2 and msc3 are new alleles of PAUSED (PSD) and SQUINT 
(SQN), respectively (Usami et al., 2009).

In the above instances increase or decrease in cell number is 
associated with decrease or increase of cell size, respectively as if 
they have a seesaw-like relationship. However, certain instances of 
compensation, at least of the prototype one, have different charac-
teristics than this seesaw-like relationship. In the case of ant- and 
an3-induced compensation, cell number is fewer, but cell size is 
larger compared to the wild-type (Mizukami and Fischer, 2000; 
Horiguchi et al., 2005). In these cases, the cause of compensation is 
clearly defective cell proliferation, as ANT and AN3 are expressed in 
young leaf primordia with active cell proliferation and are gradually 
downregulated as the leaf matures (Horiguchi et al., 2005; Kang et 
al., 2007). In contrast to these loss-of-function phenotypes, their 
overexpression promotes cell proliferation in leaf primordial; how-
ever, this does not cause inhibition of cell expansion (Mizukami and 
Fischer, 2000; Horiguchi et al., 2005). These observations suggest 
that for ANT and AN3 compensation is induced only when their 
loss-of-function impairs cell proliferation. It is not yet clear what 
mechanistic differences determine whether unidirectional or see-
saw-like compensation occurs, but the next issues to be resolved will 
involve identification of the transcriptional targets of AN3 and ANT 
and how these transcriptional regulators control cell proliferation.

These observations indicate that altered cell proliferation is a 
trigger for compensation. Conversely, is it possible that altered 
postmitotic cell expansion influences cell proliferation in the same 
leaf primordium? There is no clear evidence in support of this 
possibility; among the mutants with phenotypes characterized by 
either fewer but larger cells or more but smaller cells, no known 
genes have specific functions in postmitotic cell expansion. Rather, 
several lines of evidence support the suggestion that altered post-
mitotic cell expansion does not affect cell proliferation. There are 
mutants with a cell expansion-specific phenotype, but a normal 
number of leaf cells. Both rotunda2 (ron2) and rpl4d enhance cell 
expansion in leaves without any changes in cell number (Cnops 
et al., 2004; Horiguchi et al., 2011). Similarly, the bigpetal (bpe) 
mutation increases epidermal cell size without affecting cell number 
in petals (Szécsi et al., 2006). A number of extra-small sisters (xs) 
mutants show specific reductions in final cell size in leaves (Fujikura 
et al., 2007a). Furthermore, the levels of ATHB16 and ARGOS-LIKE 
(ARL) expression are negatively and positively correlated with epi-
dermal cell size in leaves, respectively, without affecting cell number 

Table 1 | Examples of compensation-exhibiting mutants and transgenic 

plants.

Gene Type of mutation Reference

AE7 Loss-of-function Yuan et al. (2010)

AN3/GIF1 Loss-of-function Kim and Kende (2004), 

  Horiguchi et al. (2005)

ANT Loss-of-function Mizukami and Fischer (2000)

CDKA;1 Dominant negative Hemerly et al. (1995)

CYCD3 Loss-of-functions of Dewitte et al. (2007) 

 CYCD3;1, CYCD3;2, 

 and CYCD3;3

ER Loss-of-function Horiguchi et al. (2006), 

  Ferjani et al. (2007)

ETG1 Loss-of-function Takahashi et al. (2008)

FAS1 Loss-of-function Exner et al. (2006), 

  Ramirez-Parra and 

  Gutierrez (2007)

FAS2 Loss-of-function Exner et al. (2006)

FUGU1 Recessive mutation Ferjani et al. (2007)

FUGU2 Recessive mutation Ferjani et al. (2007)

FUGU3 Dominant mutation Ferjani et al. (2007)

FUGU4 Dominant mutation Ferjani et al. (2007)

FUGU5 Recessive mutation Ferjani et al. (2007)

GPA1 Loss-of-function Ullah et al. (2001)

ICK1 Overexpression Wang et al. (2000)

KRP2 Overexpression De Veylder et al. (2001)

MAX2 Loss-of-function Horiguchi et al. (2006)

miR396 Overexpression Liu et al. (2009), 

  Rodriguez et al. (2010)

OLI Loss-of-functions of Fujikura et al. (2009) 

 OLI2 and OLI5 or 

 OLI2 and OLI7

PFL2 Loss-of-function Ito et al. (2000)

RPS6A Loss-of-function Horiguchi et al. (2011)

RPS21B Loss-of-function Horiguchi et al. (2011)

RPS28B Loss-of-function Horiguchi et al. (2011)

SMP Epimutation Clay and Nelson (2005)

SWP Loss-of-function Autran et al. (2002)

UVI4/PYM Loss-of-function Hase et al. (2006)
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et al., 2010). The existence of a threshold for the induction of com-
pensation suggests that there is an unknown mechanism of sens-
ing cell proliferation activity and modulating cell expansion during 
differentiation.

How are proliferating anD Differentiating cells 
linkeD?
Since proliferating cells and differentiating cells coexist in the 
same leaf primordium during leaf development (Donnelly et al., 
1999; Kazama et al., 2010), it is possible that a defect in cell pro-
liferation affects postmitotic cell expansion in a non-cell autono-
mous manner. Alternatively, mitotic cells showing unusually low 
cell proliferation activity may enhance their own cell expansion 
after exiting the mitotic cycle. Studies of genetic chimeras showed 
both of these suggestions to be true depending on the trigger of 
the defects in cell proliferation. When chimeric leaves with an3 
mutant sectors and AN3-overexpressing sectors were examined 
using the CRE-loxP system, compensation was seen irrespective 
of leaf cell genotype (Figures 1A–D; Kawade et al., 2010). This 
suggested that a mobile signal is transmitted from the an3 sec-
tors to neighboring cells to enhance cell expansion. Interestingly, 
this signal seems unable to move laterally beyond the midvein 
in the leaf primordia, as a longitudinal half-and-half chimera 
separated by the midvein exhibited compensation only in the 
an3 half (Figure 1E). On the other hand, KRP2-induced com-
pensation occurred in a cell autonomous manner when wild-
type sectors and KRP2-overexpressing sectors coexisted in leaves 
(Figures 1A,F,G; Kawade et al., 2010). There are two possible 
interpretations regarding how individual cells cause compensa-
tion on overexpression of KRP2. Since mitotic cells overexpressing 
KRP2 are already larger than wild-type (Ferjani et al., 2007), such 
a difference may be maintained until maturation of the leaves. 
The other interesting interpretation is that cells “remember” very 
low levels of cell proliferation activity and show enhanced cell 
expansion based on this “memory” when they enter the postmi-
totic phase of leaf development (Fujikura et al., 2007b; Kawade 
et al., 2010). Thus, compensation appears to be a heterogene-
ous phenomenon, with multiple inputs and pathways leading to 
enhanced cell expansion.

(Wang et al., 2003; Hu et al., 2006). These observations suggest 
that modulation of cell expansion in many cases does not trig-
ger compensation through cell proliferation. Taken together, these 
observations indicate that some specific types of compensation 
are unidirectionally induced only when cell number is decreased.

How is compensation triggereD?
As discussed above, a decrease in cell proliferation specifically 
induces compensation. This raises the question of how compensa-
tion is triggered. The observations that rotundifolia4-D (rot4-D) and 
growth regulating factor5 (grf5) decrease cell number in the leaves, 
but fail to induce compensation provide insight into this question 
(Narita et al., 2004; Horiguchi et al., 2005). The grf5 phenotype is 
especially important as GRF5 is an interacting partner of AN3, and 
both of these molecules promote cell proliferation (Horiguchi et al., 
2005). The degrees of reduction in cell number in these mutants are 
milder than those of ant or an3 (Narita et al., 2004; Horiguchi et al., 
2005), suggesting that there is a threshold level of cell number or cell 
proliferation activity below which compensation is triggered. This 
was confirmed by two experiments. In the first experiment, a series 
of AN3-silenced lines were used. The leaf cell number was reduced at 
various levels according to the strength of AN3 silencing, but com-
pensation was triggered only when cell number was substantially 
reduced (Fujikura et al., 2009). In the second experiment, a series of 
oligocellula (oli) mutants were used. The leaves of these oli mutants 
had a reduced number of normal-sized cells (Fujikura et al., 2009). 
In contrast, oli2 oli5 and oli2 oli7 double mutants had fewer leaf 
cells than the parental single mutants and showed compensation 
(Fujikura et al., 2009). These three OLI genes encode a yeast NOP2 
homolog that is involved in ribosome biogenesis (OLI2) and two 
ribosomal protein RPL5 paralogs (OLI5 and OLI7; Fujikura et al., 
2009). These findings were also consistent with the observation that 
strong ribosomal protein-defective mutants exhibit compensation 
(Ito et al., 2000; Horiguchi et al., 2011). Similar observations were 
made using KRP2 and miR396. KRP2 inhibits CDKA;1 activity, 
while miR396 targets many members of the GRF family (De Veylder 
et al., 2001; Rodriguez et al., 2010). Overexpression of these genes 
impairs cell proliferation and induces compensation, but only in 
mutants  showing strong expression (Verkest et al., 2005; Rodriguez 

FiGuRE 1 | Schematic diagram of chimeric leaves and cell size. (A) A 
wild-type leaf. (B) An an3 leaf with cells larger than wild-type. (C) An AN3-
overexpressor in the an3 background with normal-sized cells. (D) A chimeric leaf 
consisting of AN3-overexpressing (deep green, right) and an3 (red, left) cells. 
Cells are larger than wild-type regardless of genotype. (E) A half-and-half 
chimera. An AN3-overexpressing sector containing midrib (deep green, right) 

showed maintenance of normal cell size, while an adjacent an3 sector (red, left) 
contained cells larger than those in the AN3-overexpressing sector. (F) A 
KRP2-overexpressing leaf with cells larger than wild-type. (G) A chimeric leaf 
consisting of wild-type (light green, left) and KRP2-overexpressing (yellow, right) 
sectors. Cells in the KRP2-overexpressing sector were larger than those in the 
wild-type sector.

Horiguchi and Tsukaya Compensation in organ size regulation

www.frontiersin.org July 2011 | Volume 2 | Article 24 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/plant_evolution_and_development/archive


references
Anastasiou, E., Kenz, S., Gerstung, M., 

MacLean, D., Timmer, J., Fleck, C., 
and Lenhard, M. (2007). Control of 
plant organ size by KLUH/CYP78A5-
dependent intercellular signaling. Dev. 
Cell 13, 843–856.

Autran, D., Jonak, C., Belcram, K., 
Beemster, G. T., Kronenberger, J., 
Grandjean, O., Inzé, D., and Traas, J. 
(2002). Cell numbers and leaf devel-
opment in Arabidopsis: a functional 
analysis of the STRUWWELPETER 
gene. EMBO J. 21, 6036–6049.

Barrôco, R. M., Peres, A., Droual, A. M., 
De Veylder, L., Nguyen le, S. L., De 
Wolf, J., Mironov, V., Peerbolte, R., 
Beemster, G. T., Inzé, D., Broekaert, 
W. F., and Frankard, V. (2006). The 
cyclin-dependent kinase inhibitor 
Orysa; KRP1 plays an important role 

in seed development of rice. Plant 
Physiol. 142, 1053–1064.

Beemster, G. T., Fiorani, F., and Inzé, D. 
(2003). Cell cycle: the key to plant growth 
control? Trends Plant Sci. 8, 154–158.

Beemster, G. T. S., De Veylder, L., 
Vercruysse, S., West, G., Rombaut, 

mutants examined, such as fugu2 and an3, show faster leaf cell 
expansion compared to the wild-type (Ferjani et al., 2007). One 
exception is fugu5 in which the duration of cell expansion is 
extended compared to the wild-type (Ferjani et al., 2007). Thus, 
induction, transmission, and response processes of compensation 
are linked by multiple parallel pathways and further studies are 
required to determine whether these pathways are interconnected.

Does compensation Have pHysiological anD 
Developmental roles?
In many cases, compensation does not fully restore leaf area. Thus, 
compensation is unlikely to be a mechanism that maintains an 
organ at a constant size. Compensation may play a role in an envi-
ronmental response. When wild-type plants are irradiated with 
ultraviolet B (UV-B), the number of epidermal cell decreases and 
compensation is induced (Wargent et al., 2009). Curiously, uv 
resistance locus8 (uvr8), which was recently shown to be defective 
in a UV-B receptor (Rizzini et al., 2011), shows reduced cell num-
ber in response to UV-B irradiation but does not show enhanced 
cell expansion (Wargent et al., 2009). An increase in ploidy level 
confers UV-B tolerance in both tetraploid Arabidopsis and UV-B-
insensitive4 (uvi4) mutants (Hase et al., 2006). Furthermore, the 
UV-B response includes induction of the PHR1 gene encoding 
photolyase through downregulation of DP-E2F-LIKE1 (DEL1), 
which is an endocycle repressor (Radziejwoski et al., 2011). These 
reports suggest that compensation associated with increased ploidy 
level may reflect part of the UV-B resistance mechanism.

In addition to the possibility that compensation reflects an envi-
ronmental response, it may also represent a normal developmental 
mechanism for cell expansion. For example, the linkage of cell pro-
liferation and postmitotic cell expansion may achieve fine-tuning 
of organ size, inhibition of premature entry into differentiation, or 
rapid change from proliferating to differentiating status. Although 
these possibilities remain to be confirmed, the establishment of 
the genetic framework of compensation over the past decade will 
enable these issues to be tested. For identification of the molecular 
components involved in compensation, more precise measurements 
and observations of cellular behavior in relation to developmental 
timing during compensation are needed in future experiments. The 
results that will be obtained from these approaches will help to 
elucidate underlying molecular mechanisms to gain insight into the 
physiological/developmental significance of compensation.
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How is cell expansion enHanceD?
When compensation is triggered, differentiating cells show 
enhanced cell expansion through at least two different mechanisms. 
One route is the endocycle. In some compensation-exhibiting 
mutants, such as fasciata1 (fas1), fugu2, and struwwelpeter (swp), 
the ploidy distribution of leaves shifts to a higher level (Autran 
et al., 2002; Exner et al., 2006; Ferjani et al., 2007; Ramirez-Parra 
and Gutierrez, 2007). Timing of transition from mitotic cycle to 
endocycle can vary in different cells in the same tissue. Occurrence 
of endoreduplication coincides with cell expansion in epidermis 
(Beemster et al., 2005). This may explain correlation between ploidy 
level and cell size (Traas et al., 1998). In yeast, ploidy-associated 
changes in gene expression have been demonstrated and many of 
which encodes cell surface components or their regulators (Wu 
et al., 2010). However, it is not clear whether similar transcriptional 
changes occur in plants.

The second route is a ploidy-independent process. This is an 
ambiguous classification as no molecular components involved in 
this process have been identified and it does not mean that differ-
ent compensation-exhibiting mutants without an increased ploidy 
level share a common mechanism of enhanced cell expansion. 
Some compensation-exhibiting mutants have a relatively normal 
ploidy level [e.g., erecta (er); Ferjani et al., 2007] or even a reduced 
ploidy level (e.g., KRP2-overexpressors; De Veylder et al., 2001). In 
tetraploid Arabidopsis, palisade cell size observed from the parader-
mal viewpoint is 1.6-fold larger than that in diploid counterparts 
(Tsukaya, unpublished). The palisade cells in an3 are about 1.5-fold 
larger than those of the wild-type, but the increase in ploidy level is 
not significant (Ferjani et al., 2007; Fujikura et al., 2007), suggesting 
that a ploidy-independent process mediates part of the enhanced 
cell expansion. In the case of an3-induced compensation, three sup-
pressor mutations, xs1, xs2, and xs5, were identified (Fujikura et al., 
2007a). These xs mutants have normal numbers of smaller leaf cells 
in comparison to the wild-type, suggesting that genes involved in nor-
mal cell expansion are also required during compensation (Fujikura 
et al., 2007a). These xs mutants have normal (xs1), reduced (xs2), and 
increased (xs5) ploidy levels compared with wild-type (Fujikura et 
al., 2007a). At present, these phenotypes are difficult to interpret. It 
is possible that a certain ploidy level may be required to establish 
compensation, but a further increase in ploidy level is not necessarily 
required, at least in an3-induced compensation. These results also 
suggest that in certain genetic backgrounds, ploidy- associated and 
ploidy-independent  compensation pathways are induced simultane-
ously. This puzzling situation would be solved when these XS genes 
are cloned and such experiments are in progress.

A comparative study using several compensation-exhibiting 
mutants, including fugu and an3, also suggested that multiple physi-
ological pathways are involved in enhanced cell expansion during 
compensation (Ferjani et al., 2007). Most  compensation-exhibiting 
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