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Acute kidney injury (AKI) is a common and devastating clinical condition with a high
morbidity and mortality rate and is associated with a rapid decline of kidney function
mostly resulting from the injury of proximal tubules. AKI is typically accompanied
by inflammation and immune activation and involves macrophages (Mφ) from the
beginning: The inflamed kidney recruits “classically” activated (M1) Mφ, which are initially
poised to destroy potential pathogens, exacerbating inflammation. Of note, they soon
turn into “alternatively” activated (M2) Mφ and promote immunosuppression and tissue
regeneration. Based on their roles in kidney recovery, there is a growing interest to use
M2 Mφ and Mφ-modulating agents therapeutically against AKI. However, it is pertinent
to note that the clinical translation of Mφ-based therapies needs to be critically reviewed
and questioned since Mφ are functionally plastic with versatile roles in AKI and some Mφ

functions are detrimental to the kidney during AKI. In this review, we discuss the current
state of knowledge on the biology of different Mφ subtypes during AKI and, especially,
on their role in AKI and assess the impact of versatile Mφ functions on AKI based on the
findings from translational AKI studies.

Keywords: macrophage, acute kidney damage, fibrosis, macrophage depletion, chronic kidney disease

INTRODUCTION

Severe AKI is a clinical condition closely linked with a high morbidity and mortality rate (Zuk and
Bonventre, 2016). AKI manifests as a rapid decline of kidney function and is associated with CKD
(Chawla et al., 2014; Fiorentino et al., 2018). AKI mostly results from the injury of proximal tubules
and is accompanied by inflammation and immune activation (Zuk and Bonventre, 2019). Thereby,
distinct Mφ subtypes are involved across different stages of AKI (Huen and Cantley, 2017; Chen
et al., 2019): (1) “Classically” activated (M1) Mφ, which are poised to destroy potential pathogens,
are recruited to the inflamed tissue and exacerbate inflammation in the initial stage of AKI; (2)
“alternatively” activated (M2) Mφ predominate in the injured tissue during the resolution phase of
AKI and mediate immunosuppression and tissue regeneration; and (3) the last-mentioned also play

Abbreviations: AKI, acute kidney injury; CKD, chronic kidney disease; CLP, cecal ligation and puncture; CSF, colony-
stimulating factor; DAMPs, damage-associated molecular patterns; DT, diphtheria toxin; (i)DTR, (inducible) diphtheria toxin
receptor; ECM, extracellular matrix; IRI, ischemia-reperfusion injury/surgery; LPS, lipopolysaccharide; Mφ, macrophage(s);
PAMPs, pathogen-associated molecular patterns; PDGF, platelet-derived growth factor(s); PRR, pathogen recognition
receptor(s); RA, retinoic acid; Th, T helper type; TLR, toll-like receptor; UUO, unilateral ureteral obstruction.
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a role in the transition of AKI to CKD. As M2 Mφ are found
to be protective against AKI, there is a growing interest to
use M2 Mφ and Mφ-modulating agents as therapeutic tools to
treat patients with AKI (Chen et al., 2019). Whilst valuing its
immense therapeutic potential, it is to acknowledge that the
clinical translation of Mφ-based therapies needs to be critically
reviewed and questioned, especially since Mφ act like double-
edged swords being both beneficial and harmful to the injured
tissue (Figure 1) (Braga et al., 2015). In this review, we discuss
the current state of knowledge on the biology of different Mφ

subtypes during AKI and on the impact of global Mφ and Mφ

subtypes on AKI based on the findings from in vivo Mφ depletion
studies. At the end, we outline Mφ-based therapeutic strategies
for the treatment of AKI.

KIDNEY Mφ IN STEADY STATE AND
INFLAMMATION

Mφ are, as their name implies: [Greek: macrophage =
µακρóς (large) + ϕαγ εíν (to eat)], cells highly specialized in
phagocytosis, belonging to the mononuclear phagocytic system
(MPS). They reside in virtually all organs and orchestrate tissue
homeostasis and inflammation, being capable of both inducing
and suppressing immune responses as well as promoting tissue
repair. Mφ are also the most abundant leukocytes in the resting
and inflamed kidney, maintained by two main Mφ survival
factors, CSF-1 and interleukin-34 (IL-34), primarily expressed
by tubular epithelial cells (Isbel et al., 2001; Menke et al., 2009;
Zhang et al., 2012; Baek et al., 2015). Both cytokines are further
up-regulated during renal inflammation and account for Mφ

expansion of in the kidney tissue (Baek et al., 2015). CSF-1 and
IL-34 both signal through the CSF-1 receptor (CSF-1R), whereas
the signaling via CSF-1R is the key pathway for Mφ proliferation,
differentiation, and survival (Baek et al., 2015). In addition to
CSF-1R, IL-34 activates another receptor, which is receptor-type
tyrosine-protein phosphatase zeta (PTP-ζ), (Nandi et al., 2013).
However, there is so far no evidence that PTP-ζ is expressed by
Mφ (Baek et al., 2015).

Like Mφ in other organs, first kidney Mφ arise during
organogenesis, derived from erythro-myeloid progenitors that

FIGURE 1 | Schematic representation of versatile functions of Mφ during AKI.

are generated in the yolk sac before E8.5 and colonize the
fetal liver of the embryo. These primitive progenitors give rise
to pre-Mφ, which simultaneously populate the whole embryo
from E9.5 and differentiate to fetal and perinatal tissue-specific
Mφ activating tissue-dependent transcriptional machinery (Mass
et al., 2016). Tissue-resident Mφ are known to renew themselves
in situ throughout the lifetime of the host (Figure 2). However,
Mφ arising from blood-circulating monocytes (also known as
circulating Mφ precursors) are also detected in resting adult
kidneys, but they turn over within 14 days and do not substitute
kidney-resident Mφ unless kidney-resident Mφ niches become
available (Lever et al., 2019).

In the occurrence of inflammation, additional Mφ are
recruited from the blood circulation (Sere et al., 2012). Blood-
circulating monocytes are attracted to the site of inflammation,
where they differentiate to Mφ and clear pathogens and cellular
debris (Figure 2).

Mφ exert multiple biological functions in health and disease.
Most importantly, they are instrumental in both promoting
and resolving inflammation, which are two contrasting
features. Correspondingly, Mφ are broadly classified into
two subpopulations according to their phenotype and
function: So-called “classically activated” Mφ (M1) are the
Mφ subpopulation inducing cytotoxicity and tissue injury;
conversely, “alternatively” activated (M2) Mφ comprise the other
subpopulation, which is involved in immunosuppression and
tissue repair (Mills et al., 2000; Murray and Wynn, 2011). Overall,
M1/M2 paradigm is a theoretical and oversimplified concept,
which was firstly proposed by Mills et al. based on the observation
that Mφ from mouse strains with Th 1 (e.g., C57BL/6, B10D2)
and Th2 (e.g., BALB/c, DBA/2) display distinctive activation
profiles differing in metabolic programs (Mills et al., 2000).
Correspondingly, both Mφ phenotypes were named M1 and
M2 and characterized in vitro by stimulating bone marrow or
monocyte-derived Mφ with either Th1 (e.g., LPS, Interferon γ)
or Th2 stimuli (e.g., IL-4, IL-10, IL-13) (Figure 3). In addition,

FIGURE 2 | Schematic representation of Mφ fate in embryogenesis and
adults.
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FIGURE 3 | Schematic representation of Mφ polarization in vitro.

M2-activated Mφ are further subdivided into different groups
based on the Th2 stimulus, with which Mφ are treated for M2
polarization. Of note, different M2 stimuli have distinct effects
on transcriptional profiles and cellular functions of Mφ (detailed
information in Murray et al., 2014; Chen et al., 2019).

One of the unique characteristics of Mφ is functional
plasticity. In other words, Mφ can easily change their phenotype
from one activation state to the other. Thus, in vivo Mφ are, in
reality, somewhere along the continuum between the two in vitro-
defined phenotypes (M1 and M2), and in vitro polarized Mφ

do not fully recapitulate in vivo Mφ in pathologic conditions
(Figure 3) (Geissmann et al., 2010).

As Mφ play important roles in many biological processes,
their malfunction is linked to various diseases. While Mφ-
mediated immune hyper-activation can lead to autoimmune
and inflammatory diseases, unregulated tissue homeostasis can
promote cancer growth and organ fibrosis. Accordingly, Mφ are
implicated in numerous renal diseases including lupus nephritis,
glomerulonephritis as well as in AKI (Nikolic-Paterson and
Atkins, 2001; Baek et al., 2018).

EXPERIMENTAL AKI MODELS

AKI is characterized by an abrupt loss of kidney function arising
from different events, such as (1) sepsis/septic shock, (2) ureteral
obstruction, (3) kidney ischemia, (4) hypoxia, (5) nephrotoxicity,
(6) oxidative, and (7) metabolic stress. Of note, all etiologies
share one common feature, which is the proximal tubular injury
accompanied with inflammation and immune activation (Basile
et al., 2012; Chevalier, 2016; Xu and Han, 2016). Proximal
tubular injury can be acutely detrimental to the kidney as well
as to the whole organism by impairing key kidney functions,
such as reabsorption and secretion, and can lead to long-term
problems (e.g., transitioning to CKD and increased risk of CKD
and eventual death even after a complete recovery) (Bucaloiu
et al., 2012; Jones et al., 2012). Of note, proximal tubules are
highly vulnerable to injuries due to the high demand of oxygen
consumption, which is required for multiple transport processes,

and a relative paucity of endogenous antioxidant defenses
(Chevalier, 2016). Thus, proximal tubules are the major target of
AKI, and, in line with this, clinically relevant studies demonstrate
that molecular targeting of the proximal tubule is sufficient to
induce AKI and its transition to CKD (Chevalier, 2016).

For studying AKI, a number of experimental techniques
have been developed to directly or indirectly target the kidney,
including: (1) surgical approaches – UUO, IRI, CLP (via
sepsis), etc.; (2) systemic administration of drugs or toxins
inducing nephrotoxicity – injection of cisplatin, glycerol (via
rhabdomyolysis), bacterial LPS (via sepsis) etc. (Ramesh and
Ranganathan, 2014; Ortiz et al., 2015; Rabb et al., 2016; Bao
et al., 2018; Johnson and Zager, 2018); and (3) selective depletion
of proximal tubules in genetically modified mice, i.e., injecting
mice with DT, which express human DT receptor (DTR) on
proximal tubules – Ggt1-DTR (Zhang et al., 2012, 2017; Wang
et al., 2015), Ndgr1-CreERT:iDTR (Takaori et al., 2016), etc.
Importantly, molecular mechanisms of AKI progression may
differ depending on the type of insult to the proximal tubule.
In effect, methods using (1) septic versus aseptic approaches,
(2) systemic versus local, and (3) mild versus severe insults may
involve different signaling pathways. This point is well illustrated
in studies showing that the nucleotide-binding oligomerization
domain, leucine rich repeat and pyrin domain containing 3
(NLRP3) inflammasome pathway is activated in ischemic, but not
cisplatin-induced AKI (Kim et al., 2013). As AKI is a major risk
factor for CKD progression, CKD is often assessed as a readout
for AKI, and experimental AKI models are commonly utilized
in the CKD research (detailed information in Tanaka et al.,
2014; Chou et al., 2017; Fiorentino et al., 2018). Of note, not all
experimental AKI are irreversible and lead to CKD (Chawla et al.,
2011; Basile et al., 2012). Overall, it is important to determine the
appropriate AKI model depending on the question being asked
by giving consideration to the possibility that findings may not be
transferable between experimental models. While designing the
experiment, we need to consider the pathophysiology of mouse
models and the mode of action of tested drugs and specify the
model type, functional determination and time course of tissue
collection (Ramesh and Ranganathan, 2014). Limitations and
pitfalls of animal AKI models as well as the differences between
AKI models have been recently described in several reviews. For
a comparative overview of the various AKI animal models, please
refer to the reviews: Ortiz et al. (2015), Rabb et al. (2016), and
Bao et al. (2018).

Mφ IN AKI

Infiltrating Mφ in the Initial Phase of AKI
In experimental AKI models, blood-circulating Ly6Chigh

monocytes are recruited to the inflamed kidney as early as within
1 h (Li and Okusa, 2010; Zhang et al., 2012). The migration
of Ly6Chigh monocytes to the site of inflammation occurs
through chemotactic mechanisms (e.g., via CCR2 and CX3CR1).
Therefore, deletion or blockage of chemotaxis receptors on
monocytes is found to be protective against ischemia-induced
AKI in mice (Furuichi et al., 2003; Li et al., 2008; Lu et al., 2008;
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Oh et al., 2008; Yang et al., 2019). Monocyte infiltration occurs in
the first 48 h (Lu et al., 2008) and completely ceases before day 3
of AKI. Accordingly, studies showed that the number of Ly6Chigh

monocytes and M1-like Mφ drastically declines before day 3 of
IRI (Lee et al., 2011; Lever et al., 2019) and CX3CR1-dependent
monocyte migration is not detectable at day 3 of UUO (Peng
et al., 2015). Interestingly, the peak of tubular injury [e.g.,
following IRI (Lee et al., 2011) and glycerol injection (Bussolati
et al., 2005)] timely overlaps with the maximum presence of
infiltrating monocytes, indicating a close spatial and temporal
relationship between the tissue destruction and the accumulation
of infiltrating monocytes.

Ly6Chigh monocytes differentiate into Mφ, which are
primarily skewed toward an M1 phenotype. M1 Mφ polarization
is mediated by pro-inflammatory cytokines [e.g., IFN-γ, IL-6,
IL-1β, IL-23, IL-17, C3, C5a, and C5b (Rabb et al., 2016)]
and DAMPs [e.g., high mobility group protein B1 (HMGB1),
adenosine triphosphate (ATP), uric acid, or hypomethylated
DNA (Anders, 2010; McDonald et al., 2010)] released by dying
cells or damaged ECM (Anders and Schaefer, 2014). Most
recently, soluble epoxide hydrolase was identified as a proximal
tubular factor driving M1 polarization of Mφ in IgA nephropathy
(Wang Q. et al., 2018). DAMPs activate various PRRs [e.g., TLR
families (Kulkarni et al., 2014; Leaf et al., 2017), NLRP3 and
purinergic receptors (Anders and Schaefer, 2014)] on Mφ

and parenchymal cells (Leaf et al., 2017). The importance of
DAMPs in inducing innate immune responses is highlighted by
findings that the inhibition of PRR signaling suppresses immune
responses in AKI (Kim et al., 2013; Leaf et al., 2017). Similar
mechanisms are known from acute injuries in other organs,
corroborating that DAMPs are central to the immune activation
during tissue injury (Egawa et al., 2013; Wang et al., 2014; Groves
et al., 2018). Interestingly, TLR4 activation was also shown to
induce the expression of IL-22 in Mφ, which is protective against
AKI accelerating kidney regeneration (Kulkarni et al., 2014).
M1 polarization of infiltrating Mφ is additionally supported
by parenchymal factors [e.g., Krüppel-like factor 5 (KLF5)
expressed by collecting ducts (Fujiu et al., 2011) and suppressor
of cytokine signaling 3 (SOCS3) upregulated by proximal tubules
in AKI (Susnik et al., 2014)]. Both KLF5 and SOCS3 promote M1
activation of Mφ and inhibit the expansion of M2 Mφ in AKI
(Fujiu et al., 2011; Susnik et al., 2014). M1-activated Mφ largely
produce pro-inflammatory cytokines and mediators (e.g., IL-1α,
IL-6, IL-12, IL-18, TNF-α, nitric oxide), in turn, exacerbating the
kidney inflammation (Li and Okusa, 2010).

M2 Polarization of Infiltrating Mφ in the
Resolution Phase of AKI
Inflammation following a transient insult is meant to prepare
the tissue for healing. When the inflammation escalates (before
day 3 of AKI), Mφ seek to counteract overwhelming immune
activation by skewing toward an immunosuppressive M2 Mφ

to restore tissue homeostasis (Figure 3) (Lee et al., 2011;
Baek et al., 2015). However, this only depicts the global view
of Mφ dynamics and does not resolve how individual Mφ

subtypes change during AKI. Since Mφ are highly plastic and

rapidly adapt to the tissue microenvironment, it is difficult to
trace the development of individual Mφ subtypes during AKI.
Nevertheless, we are steadily expanding our knowledge base
through genetic fate mapping studies and parabiosis experiments.
Earlier fate mapping studies revealed that Ly6Chigh monocytes
infiltrating the inflamed kidney give rise to Ly6Clow and Ly6Cint

Mφ, both phenotypically resembling tissue-resident Mφ (Lin
et al., 2009) (Figure 4). Several studies have shown that
monocyte-derived Ly6Cint and Ly6Clow Mφ populations display
transcriptionally and functionally distinct M2 phenotypes, both
implicated in immunosuppression and tissue regeneration. In
the later stages of AKI, Ly6Clow Mφ predominate over Ly6Cint

Mφ and are found to promote interstitial fibrosis (Lin et al.,
2009; Clements et al., 2016; Lever et al., 2019; Yang et al., 2019)
(Figure 4). More recent studies revealed that quiescent tissue-
resident Mφ remain in the tissue independently of monocyte-
derived Ly6Clow Mφ (Lin et al., 2009; Zhang et al., 2012; Lever
et al., 2019) and are reprogramed in AKI toward a developmental
state resembling perinatal Mφ (Schulz et al., 2012; Mass et al.,
2016), which are implicated in early kidney development (Lever
et al., 2019). These cells display a unique transcriptional profile
complying with neither canonical M1 nor M2 nor quiescent
Mφ phenotypes during the first 3 days after IRI. Interestingly,
they activate the canonical wingless-type MMTV integration
site family (Wnt) signaling by expressing Wnt ligand genes and
downstream intracellular signaling mediators, implying that they
mediate kidney healing after AKI (Lever et al., 2019). How
reprogramed kidney-resident Mφ further develop in the later
stages of AKI and whether they are related to interstitial fibrosis
following AKI deserve further investigation (Figure 4).

Beneficial Effects of M2-Activated Mφ in
AKI
Beneficial effects of M2-activated Mφ in AKI are supported
by many findings: (1) M2 Mφ clear intraluminal debris (e.g.,
by apoptosis inhibitor of Mφ [AIM]-dependent mechanisms)
(Arai et al., 2016); (2) secrete tissue-reparative factors, which

FIGURE 4 | Schematic representation of Mφ subtypes throughout different
stages of AKI.
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limit cell cycle arrest (Lin et al., 2010) or apoptosis (Lin et al.,
2010; Sola et al., 2011) or which support proliferation in tubular
cells (Schmidt et al., 2013) [e.g., Wnt-7b (Lin et al., 2010),
lipocalin-2 (Sola et al., 2011), breast regression protein 39
(BRP-39) (Schmidt et al., 2013)]; (3) secrete anti-inflammatory
cytokines, which suppress effector T cells or activate regulatory
T cells (e.g., IL-10, TGF-β) (Chen et al., 2019); and (4) reduce
neutrophil infiltration by downregulating intracellular adhesion
molecule-1 (ICAM-1) (Karasawa et al., 2015) and potentially
also by sequestering the tissue damage through “cloaking”
mechanisms as found in the peritoneal serosa (Uderhardt et al.,
2019) etc. As M1 Mφ are converted into M2 Mφ in the
resolution phase of AKI, a number of studies have focused
on identifying stimuli driving Mφ phenotypic switch during
AKI. These stimuli include: (1) paracrine factors released from
parenchymal and immune cells; (2) systemic factors, which
are released into the blood circulation; and potentially (3)
(tissue micro)environmental changes [e.g., apoptotic neutrophils
(Filardy et al., 2010; Lee et al., 2011), oxygen (Raggi et al., 2017),
and nutrient availability (Geeraerts et al., 2017)].

Paracrine Factors Released by Proximal
Tubules
As mentioned above, proximal tubules are the main locale of
the inflammation and potent producers of cytokines in AKI.
Therefore, it would not be surprising if they substantially
contributed to the phenotypic switch of Mφ in AKI. In proximal
tubule/Mφ co-culture experiments (proximal tubules and Mφ

physically separated), quiescent proximal tubules are capable
of polarizing both non- and M1-activated Mφ toward an M2
Mφ phenotype in a paracrine manner, similarly as known
from mesenchymal stem cells (Lee et al., 2011; Huen et al.,
2015). Unfortunately, the proximal tubular mechanisms of M2
polarization are still largely elusive, and it is also unclear whether
the contribution of proximal tubules or proximal tubule-derived
factors is indispensable for M2 Mφ polarization in the resolution
phase of AKI. Several studies suggest that proximal tubule-
derived Mφ survival factors (e.g., CSF-1, -2, IL-34) drive M2 Mφ

polarization, but these results remain controversial as discussed
in the following paragraph. Proximal tubule-derived factors
identified to polarize Mφ toward an M2 phenotype are Wnt
ligands and netrin-1, which are both upregulated during AKI
(Reeves et al., 2008; Grenz et al., 2011; Ranganathan et al., 2013;
Feng et al., 2018a,b). It has been shown that the blockade of
Wnt/β-catenin signaling diminishes M2 Mφ polarization also
reducing interstitial fibrosis in AKI (Feng et al., 2018a,b). Netrin-
1 deficiency was found to aggravate AKI, whereas the adoptive
transfer of netrin-1-treated Mφ was protective against AKI
(Reeves et al., 2008; Grenz et al., 2011; Ranganathan et al., 2013).
Proximal tubules also express both transforming growth factor
β (TGF-β) and its receptors at high levels. While TGF-β with
its pleiotropic effects acts on various cell types, it is known to
polarize Mφ toward an anti-inflammatory (Wang et al., 2005)
and pro-fibrotic phenotype (Braga et al., 2015). However, it is
unclear how beneficial the Mφ-specific effects of TGF-β are on
AKI as TGF-β can signal directly to proximal tubules and induce

proximal tubular apoptosis (Nath et al., 2011; Gewin et al., 2012).
In addition, TGF-β may promote the persistence of fibrotic M2
Mφ and mediate interstitial fibrosis (Martinez et al., 2009; Lech
and Anders, 2013; Chung et al., 2018).

Controversial Roles of Mφ Survival
Factors in Mφ Polarization
CSF-1 and -2 are produced and up-regulated by proximal tubules
during AKI. Many studies have pinpointed Mφ survival factors,
CSF-1 (Menke et al., 2009; Alikhan et al., 2011; Zhang et al.,
2012; Wang et al., 2015) and -2 [also known as granulocyte-
Mφ CSF (GM-CSF)] (Huen et al., 2015), as factors driving the
phenotypic switch toward an M2 phenotype, but this feature
of Mφ survival factors is highly controversial. CSF-1 and -
2 are commonly used for generating in vitro Mφ from bone
marrow or blood monocytes, both being sufficient for Mφ

differentiation and maturation. Since CSF-1 and -2 mature and
induce expression of distinct patterns of functional genes after
a sufficient culture period, researchers have been incited to
determine the polarization potential of CSF-1 and -2 and were
led to propose that CSF-1 give rise to a more M2-like and CSF-
2 to more M1-like expression patterns in Mφ in vitro (Lacey
et al., 2012). Nevertheless, it is important to understand that the
translatability of in vitro data is limited as CSF-1 and -2 show
in vitro M2 polarization potential only at high concentrations
(Lutz et al., 2000; Hume and MacDonald, 2012; Huen et al.,
2015) while being efficient at maintaining Mφ already at low
concentrations (Hamilton et al., 1988; Lutz et al., 2000; Meshkibaf
et al., 2014). Whereas a number of studies have claimed that
both CSF-1 and -2 drive M2 skewing of Mφ in mice with AKI
(Zhang et al., 2012; Huen et al., 2015; Wang et al., 2015), it was
controversially found that IL-34, another ligand for CSF-1R, does
not polarize Mφ in murine AKI (Baek et al., 2015) and lupus
model (Wada et al., 2019), indicating that CSF-1R signaling is
dispensable in M2 Mφ polarization. Supportive of this data, other
studies have shown that: (1) increased CSF-1 expression in the
resolution phase of AKI is not sufficient to prevent Mφ from M1
polarization when Mφ are exposed to an M1 stimulus or when
they are deprived of an M2 stimulus during AKI (Fujiu et al.,
2011; Susnik et al., 2014; Chiba et al., 2016); (2) quiescent and
M2 Mφ in the resolution phase of AKI differ in transcriptional
profiles and functions (Lever et al., 2019; Yang et al., 2019);
and (3) the sustained blockage of CSF-1R or the constitutive
deletion of CSF-1 ameliorates AKI (Lenda et al., 2003; Ma et al.,
2009; more discussion in Assessing Mφ functions by depleting Mφ

section). Nevertheless, what is consistent throughout all studies
(Zhang et al., 2012; Baek et al., 2015; Huen et al., 2015; Wang
et al., 2015; Chiba et al., 2016) is that the deficiency in Mφ survival
factors reduces the number of Mφ (including that of M2 Mφ

predominating in the resolution phase of AKI). It is interesting to
note that the deletion of proximal tubule CSF-1 or the blockade
of CSF-2 in AKI leads to a reduction in expression of M2 Mφ-
specific genes, which appears modest (<30%; except regarding
Arg1 expression), which may have resulted from the altered
ratio of infiltrating and kidney-resident Mφ, as blood-circulating
Mφ are not affected by the deletion of proximal tubule CSF-1
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or the blockade of CSF-2 (Huen et al., 2015; Wang et al.,
2015). The observation that clodronate-induced Mφ depletion
increased initial AKI and reduced recovery in the absence of
proximal tubule CSF-1 (Wang et al., 2015) provided additional
evidence that CSF-1 is not required or sufficient for M2 Mφ

polarization (also commented in Perry and Okusa, 2015). Taken
together, CSF-1, -2 and IL-34 are likely not sufficient to polarize
Mφ toward M2 phenotype, but promote the expansion of M2
Mφ post-AKI (Chiba et al., 2016). It would be interesting
for future work to explore whether Mφ survival factors have
only redundant functions and, if not, what the unique, non-
overlapping, functions of these Mφ survival factors are.

Other Factors Inducing M2 Polarization
of Mφ
Th2 cytokines, IL-4, -10, and -13, are detected in the resolution
phase of AKI, but they are not functionally expressed in proximal
tubules (Andres-Hernando et al., 2017; Zhang et al., 2017). IL-
4 and -13 are produced by Th2 T cells, basophils, mast cells,
and granulocytes, whereas IL-10 is produced by regulatory T
cells (Liu et al., 2011), B cells as well as Mφ, induced by
prostaglandins, glucocorticoids, apoptotic cells, and G protein-
coupled receptor ligands (Zhang et al., 2017). IL-10, which
is part of negative feedback response to inflammation and
expressed along with pro-inflammatory cytokines, is released
into the local tissue and blood circulation and contributes to
the suppression of AKI (Deng et al., 2001; Wan et al., 2014;
Greenberg et al., 2015; Zhang et al., 2015). Circulating pentraxin-
2, also known as serum amyloid P, is found to facilitate the uptake
of apoptotic cells and to bind to Fcγ receptors by opsonizing
apoptotic cells. This process triggers IL-10 expression and M2
polarization in infiltrating Mφ (Castano et al., 2009). IL-4 and
-13 activate IL-4Rα and its downstream signaling molecule
STAT6 and mediate tissue repair and IL-10 immunosuppression
(Zhang et al., 2017). IL-4-stimulated Mφ, not M1-stimulated
Mφ, promote tubular cell proliferation (Lee et al., 2011). Locally
synthesized RA, most likely produced by peritubular Mφ,
represses M1 Mφ and activates RA signaling in the injured
tubular epithelium, which, in turn, promotes M2 polarization,
thereby reducing Mφ-dependent injury post-AKI (Chiba et al.,
2016). As mentioned above, the proximal tubular mechanisms of
M2 Mφ polarization are only partially understood and deserve
more investigation in the future.

M2 Mφ in the Progression of CKD
AKI is reversible as long as the cause has been eliminated and
the tissue has not been structurally damaged (Chawla et al.,
2011; Basile et al., 2012). So far, it is largely unknown which
mechanisms determine full recovery versus subsequent CKD
after AKI. For a full recovery after AKI, two conditions regarding
Mφ need to be fulfilled: (1) re-transforming and/or removal of
pro-fibrotic M2 Mφ; and (2) the decline in Mφ numbers to the
basal level. Importantly, Mφ numbers during AKI are supposed
to be strictly controlled across all stages, and uncontrolled hyper-
proliferation or inadequate removal of M2 Mφ in the resolution
phase of AKI may cause a non-resolving inflammation and

chronic pathology as we observe in other disease areas (e.g.,
in muscle inflammation (Iwata et al., 2012; Baek et al., 2015;
Baek et al., 2017). So far, virtually nothing is known about
the fate of Mφ after the tubular repair is complete, and this
needs to be investigated in the future (Huen and Cantley, 2017).
Since M2 Mφ are considered to be protective in AKI, there is
a growing interest to use M2 Mφ and Mφ-modulating agents
as therapeutic tools to treat patients with AKI. However, it
is to note that M2 Mφ are considered to be instrumental in
the development of pathological fibrosis and the progression of
CKD (Duffield, 2010; Anders and Ryu, 2011). Especially, several
studies have identified monocyte-derived Ly6Clow Mφ, which
predominate over Ly6Cint Mφ in the later stages of AKI, as
direct or indirect contributors to interstitial fibrosis (Lin et al.,
2009; Anders and Ryu, 2011; Clements et al., 2016; Lever et al.,
2019; Yang et al., 2019) and as a hallmark of CKD progression
post-AKI. In line with this, CX3CL1-CX3CR1-mediated survival
of Ly6Clow Mφ correlates with interstitial fibrosis in obstructed
kidneys (Peng et al., 2015). M2 Mφ may take an important pro-
fibrotic role (1) by promoting the formation of a provisional ECM
(containing fibrin, fibrinogen, and fibronectin), which mediates
the recruitment of fibrocytes, giving rise to myofibroblasts (= the
effector cells in fibrosis, which, in turn, produce large amounts
of ECM components); (2) by expressing matrix metalloproteases,
some of which serve as essential drivers of fibrosis; and (3) by
secreting large amounts of pro-fibrotic factors, which activate
and differentiate resident fibroblasts and infiltrating fibrocytes
into myofibroblasts [e.g., TGF-β1 and PDGF, vascular endothelial
growth factor (VEGF), insulin-like growth factor 1 (IGF1),
Galactin-3] (Vernon et al., 2010; Lech and Anders, 2013; Braga
et al., 2015; Wynn and Vannella, 2016); and potentially (4) by
directly transitioning into myofibroblasts to mediate interstitial
fibrosis via a mechanism named “Mφ-myofibroblast transition
(MMT)” (Nikolic-Paterson et al., 2014; Meng et al., 2016;
Wang et al., 2016; Wang Y.Y. et al., 2017; Liang et al., 2018;
Tang et al., 2018).

ASSESSING Mφ FUNCTIONS BY
DEPLETING Mφ

As discussed in detail above, Mφ are highly implicated in AKI and
in the progression of CKD, and Mφ have versatile functions and
are like double-edged swords being both tissue-destructive and -
suppressive depending on circumstances. To successfully develop
Mφ-based therapeutic approaches for AKI and its outcomes, we
need to precisely understand the role of Mφ and Mφ subtypes in
AKI. To assess Mφ functions in AKI, a number of studies have
addressed how AKI is affected if global Mφ or individual Mφ

subtypes are removed or reduced throughout different stages of
AKI (Figure 1).

Acute kidney injury encompass both an injury phase and a
resolution phase (Huen and Cantley, 2017). Mφ change their
functional phenotype throughout different stages of AKI: Mφ are
predominantly skewed toward M1 phenotypes at early stages of
inflammation and toward M2 phenotypes in the resolution phase
of AKI. As the phenotypic change of Mφ during AKI has been
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well characterized and is known to be a time-controlled process,
the role of an individual Mφ subtype can be assessed by depleting
the individual Mφ subtype by deleting the global Mφ pool at a
selected time point (i.e., when the Mφ subtype predominates).
A number of studies respectively pinpointed the role of M1 and
M2 Mφ using various Mφ depletion strategies during and after
the induction of AKI, including: (1) systemic administration of
Mφ-depleting clodronate or (2) neutralizing CSF-1R antibody;
and (3) DT injection in mice expressing DTR on Mφ. We note
that in these studies investigators could not limit their depletion
strategies to only M1 or M2 Mφ as the time-specific removal of
individual Mφ subtypes only relates to the change in the relative
abundance of the M1/M2 phenotypes at different time points.
Of note, there may be a discrepancy between experimental AKI
models in disease kinetics and reversibility and also a discrepancy
between Mφ depletion methods. In line with this, a study showed
that Mφ depletion by clodronate at a single dose effectively
reduces blood monocytes, but not completely depletes tissue-
resident Mφ and depleted tissue-resident Mφ are completely
replenished within 72 h (Puranik et al., 2018). Other studies
suggested that Mφ depletion by anti-CSF-1R primarily depletes
activated resident monocytes, not affecting the numbers of pro-
inflammatory monocytes (MacDonald et al., 2010) and the injury
(Wynn and Vannella, 2016).

Impact of Global Mφ Depletion on AKI
and Its Outcomes
To determine the role of global Mφ, regardless of polarization
state, in AKI, studies have been performed using depletion
methods based on: (1) repeated administration of Mφ-
depleting agents (clodronate, small molecule CSF-1R inhibitors,
neutralizing anti-CSF-1R antibodies, etc.); (2) genetic deletion of
Mφ survival factors (CSF-1, IL-34 or CSF-1R deficiency) (Lenda
et al., 2003; Ma et al., 2009; Baek et al., 2015). In general,
a (partial) global depletion of Mφ was revealed to mitigate
AKI in UUO and IRI experiments resulting in reduced tubular
apoptosis (Lenda et al., 2003; Kitamoto et al., 2009; Ma et al.,
2009; Baek et al., 2015) and interstitial fibrosis (Ma et al., 2009;
Baek et al., 2015; Liu et al., 2018) (Table 1). In an experimental
model of hypertension, the sustained depletion of global Mφ

was shown to attenuate hypertensive renal injury and fibrosis as
well as to lower blood pressure (Huang et al., 2018). Much to
our surprise, the reduced number of M2 Mφ in Il34−/− mice
did not show a delay in the kidney recovery, but prevented
kidney fibrosis, being clearly beneficial to the injured kidney
(Baek et al., 2015). Remarkably, a UUO experiment showed
that the global depletion of Mφ reduces tubular apoptosis,
but does not affect interstitial fibrosis (Ma et al., 2009), but
this may be due to the specificity of UUO, where the renal
insult is irreversible and the suppression of the injury driving
the fibrotic response is more difficult than in other models
(Nikolic-Paterson et al., 2014).

When AKI was induced by cell-specific depletion of proximal
tubules in Ggt1-DTR mice, global depletion of Mφ led to opposite
results, aggravating AKI. In this specific AKI model, global
depletion of Mφ resulted in reduced survival of mice (Zhang

TABLE 1 | Impact of global Mφ depletion on AKI and its outcomes.

AKI model Depletion method Outcomes

Impact of global Mφ depletion on AKI and its outcomes: beneficial

UUO Clodronate (before and at
day 2 and 4 of UUO)

Reduced tubular apoptosis
and fibrosis (Kitamoto et al.,
2009)

UUO Small molecule CSF-1R
inhibitor (Fms-I; starting
before UUO and 2× daily)

Reduced tubular apoptosis;
no change in fibrosis (Ma
et al., 2009)

UUO CSF1 deficiency
(knockout)

Reduced tubular apoptosis
(Lenda et al., 2003)

Unilateral IRI IL-34 deficiency
(knockout)

Improved kidney function;
reduced fibrosis (Baek
et al., 2015)

Hypertension (high
dose angiotensin II
injections)

Clodronate (before and
every 3 days till the end
of the experiments)

Reduced renal injury and
fibrosis; lowered blood
pressure (Huang et al.,
2018)

UUO Clodronate (every 2 days
starting day 1 before
UUO)

Reduced fibrosis (Liu et al.,
2018)

Impact of global Mφ depletion on AKI and its outcomes: harmful

DT-induced depletion
of Ggt1-expressing
proximal tubules

Clodronate or DT-induced
depletion of CD11c+ cells

Reduced survival (Zhang
et al., 2012)

DT-induced depletion
of Ggt1-expressing
proximal tubules or
unilateral IRI

Proximal tubule-specific
CSF1 deficiency
(conditional knockout)

Delayed
functional + structural
recovery from AKI;
increased fibrosis (Wang
et al., 2015)

et al., 2012), delayed functional and structural recovery from AKI
and increase in interstitial fibrosis (Wang et al., 2015) (Table 1).
However, it is important to mention that this AKI model does not
involve a prominent Mφ infiltration as seen in other IRI models
(Figure 6 in Zhang et al., 2012), indicating that the initial injury
is independent of M1 Mφ and depletion of global Mφ mainly
targets the resident Mφ-derived M2 pool.

Overall, these studies indicate that (partial) general depletion
of Mφ is rather beneficial than harmful to the injured kidney,
especially in AKI settings where Mφ infiltration and M1 Mφ are
prominent features (e.g., IRI and UUO models). The significance
of Mφ in tissue repair after AKI is unquestioned as Mφ are
known as extremely potent phagocytes supposed to accelerate
the tissue recovery by clearing debris. However, studies showed
that the kidney epithelium possess its own mechanisms to self-
heal, e.g., by producing autocrine factors, which mediate tubular
regeneration [CSF-1 (Menke et al., 2009), TGF-β1 (Gewin et al.,
2012) etc.], and Mφ may not be the only phagocytes in the injured
tissue. So far, we do not know whether Mφ are indispensable in
tissue repair after AKI.

Impact of M1 Mφ Depletion on AKI and
Its Outcomes
To examine the impact of M1 Mφ on AKI and its outcomes,
Mφ were depleted by injecting clodronate into mice before the
induction of AKI by either uni- or bilateral IRI (Day et al., 2005;
Jo et al., 2006; Vinuesa et al., 2008; Lee et al., 2011;
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Ferenbach et al., 2012; Lu et al., 2012) or glycerol injection (Kim
et al., 2014) (Table 2). All of these experiments demonstrated
that reducing M1 Mφ prevents immunopathology and improves
kidney function in injured kidneys. In one of these studies, the
depletion of M1 Mφ paradoxically showed a reduced tubular
regeneration at day 3 of bilateral IRI (Vinuesa et al., 2008);
but, this may reflect that tubules were less damaged due to
the depletion of M1 Mφ. Independently, M1 Mφ removal by
immunotoxin (Fet et al., 2012) or neutralizing anti-CSF-1R
antibody (Clements et al., 2016) prior to IRI uncovered similar
findings including improved kidney function (Fet et al., 2012;
Clements et al., 2016) and pathology and reduced oxidative stress
(Fet et al., 2012) (Table 2). On the other hand, the reduction
of M1 Mφ by clodronate injection (Lu et al., 2008) and by
DT injection in Cd11b-DTR mice (± clodronate) did not show
any effect on cisplatin- and ischemia-induced AKI, respectively
(Ferenbach et al., 2012; Lu et al., 2012) (Table 2). Interestingly,
Mφ depletion by clodronate injection improved AKI in the same
IRI study (Ferenbach et al., 2012), indicating that DT-induced
depletion of CD11b+ cells in Cd11b-DTR mice may have affected
a larger variety of immune cells including immunosuppressive
cell types. Overall, the impact of M1 Mφ depletion on AKI and
its outcomes can be considered as protective in AKI.

Impact of M2 Mφ Depletion on AKI and
Its Outcomes
It may be easy to assume that the expansion of reparative
M2 Mφ in the resolution phase of inflammation would be
beneficial to the injured tissue, but, in reality, M2 Mφ can
be both friends and foes in AKI (Braga et al., 2015). Indeed,
studies focusing on evaluating the effect of M2 Mφ depletion
in AKI have led to controversial results. On the one hand,
depletion of M2 Mφ (e.g., by clodronate injection or DT-
mediated conditional ablation of CD11b+ cells) was found to
decrease kidney fibrosis (Lin et al., 2009; Kim et al., 2015;
Yang et al., 2019), improve the kidney function and reduce
the production of inflammatory and pro-fibrotic cytokines in
some IRI and UUO experiments (Ko et al., 2008). In addition,
M2 Mφ depletion starting as early as at day 1 after UUO
showed an improvement of the immunopathology limiting tissue
injury (Yang et al., 2019) (Table 3). Notably, renal fibrosis was
found to be reduced in all experiments where M2 Mφ depletion
improves the renal pathology after AKI, indicating that the
most undesirable feature of M2 Mφ in Mφ-based therapeutic
approaches for AKI and CKD is the capability to promote renal
fibrosis. Some IRI and septic AKI experiments, on the other
hand, led to completely opposite results suggesting that M2
Mφ depletion is harmful to injured kidneys (Table 3). In these
experiments, M2 Mφ depletion worsened AKI (Li et al., 2018)
or delayed the recovery from AKI (Jang et al., 2008; Lee et al.,
2011); increased tubular damage and apoptosis (Jang et al., 2008;
Menke et al., 2009; Clements et al., 2016) and oxidative stress
(Jang et al., 2008); and impaired of kidney function (Menke
et al., 2009; Lee et al., 2011; Karasawa et al., 2015; Li et al.,
2018). In one study, M2 Mφ depletion by DT-mediated ablation
of CD11b+ cells even aggravated kidney fibrosis following IRI,

TABLE 2 | Impact of M1 Mφ depletion on AKI and its outcomes.

AKI model Depletion method Outcomes

Impact of M1 Mφ depletion on AKI and its outcomes: beneficial

Bilateral IRI Clodronate (before IRI) Reduced tubular necrosis,
apoptosis; reduced
inflammation (Day et al.,
2005; Jo et al., 2006)

Bilateral IRI Clodronate (before IRI) Reduced tubular injury;
improved kidney function;
but also reduced tubular
regeneration (at day 3 of
IRI) (Vinuesa et al., 2008)

Unilateral IRI plus
contralateral
nephrectomy

Clodronate (before IRI) Reduced tubular injury;
improved kidney function
(Lee et al., 2011)

Unilateral IRI plus
contralateral
nephrectomy

Immunotoxin H22(scFv)-ETA
(at 6 h of IRI)

Improved histology; less
oxidative stress; improved
kidney function (Fet et al.,
2012)

Unilateral IRI Clodronate (before IRI) Improved kidney function;
reduced tubular apoptosis
(Ferenbach et al., 2012; Lu
et al., 2012)

Glycerol injection Clodronate (before injection) Reduced tubular apoptosis;
reduced inflammation (Kim
et al., 2014)

Bilateral IRI Neutralizing anti-CSF1R
antibody (before + at 30 min)

Improved kidney function
(Clements et al., 2016)

Impact of M1 Mφ depletion on AKI and its outcomes: none

Cisplatin injection Clodronate (before + at day 1) None (Lu et al., 2008)

Unilateral IRI Conditional (DT/DTR) ablation
of CD11b+ cells ± clodronate
(before IRI)

None (Ferenbach et al.,
2012; Lu et al., 2012)

which was contrary to the observations previously mentioned
(Menke et al., 2009). In addition, DT-mediated depletion of
CD169+ cells, which represent tissue-resident M2 Mφ, markedly
worsened the kidney injury and increased the lethality in mice
after IRI, which, but, could be rescued by the adoptive transfer
of Ly6C− monocytes (Karasawa et al., 2015). Notwithstanding
of all above, there was also a study showing that M2 Mφ

depletion (by conditional ablation in CD11b- or CD11c-DTR)
does not have any impact on the development of fibrosis after
unilateral IRI (Kim et al., 2015) (Table 3). In summary, the
impact of M2 Mφ depletion on AKI and its outcomes was not
consistent throughout the experiments, illustrating that M2 Mφ

can be both beneficial and harmful to the injured kidney. These
controversial results from AKI studies focusing on elucidating
the role of M2 Mφ corroborate the dual nature of M2 Mφ. It
is interesting to note that M2 Mφ can to be rather disturbing
than useful in the recovery process after AKI depending on the
conditions given.

Mφ-BASED THERAPEUTIC STRATEGIES

Mφ are instrumental in maintaining immune homeostasis and
mediating inflammation. Therefore, modulation of Mφ functions
is widely considered as a promising approach for various kidney
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TABLE 3 | Impact of M2 Mφ depletion on AKI and its outcomes.

AKI model Depletion method Outcomes

Impact of M2 Mφ depletion on AKI and its outcomes: beneficial

Unilateral IRI plus
contralateral
nephrectomy

Clodronate (starting on day 3) Improved kidney function;
reduced production of
inflammatory and
pro-fibrotic cytokines (Ko
et al., 2008)

UUO Conditional (DT/DTR) ablation
of CD11b+ cells (at day 7–9)

Reduced fibrosis (Lin et al.,
2009)

Unilateral IRI Clodronate (starting on day 3) Reduced fibrosis (Kim
et al., 2015)

Unilateral IRI Clodronate (starting on day 1) Improved histology;
reduced kidney injury;
reduced fibrosis (Yang
et al., 2019)

Impact of M2 Mφ depletion on AKI and its outcomes: harmful

Bilateral IRI Clodronate (at day 6) Increased tubular damage;
increased oxidative stress;
delayed recovery from AKI
(?) (Jang et al., 2008)

Unilateral IRI plus
CSF-1 injection

Conditional (DT/DTR) ablation
of CD11b+ cells (at day 1–3)

Increased fibrosis;
decreased kidney function;
increased apoptosis
(Menke et al., 2009)

Unilateral IRI plus
contralateral
nephrectomy

Clodronate (at day 2 and 3) Less improvement in
glomerular filtration;
impaired tubular
regeneration (Lee et al.,
2011)

Unilateral
IRI ± contralateral
nephrectomy

Conditional (DT/DTR) ablation
of CD169+ cells (24–36 h
before IRI)

Lethality, failed kidney
function, increased
inflammation (Karasawa
et al., 2015)

Bilateral IRI Neutralizing anti-CSF1R
antibody (at day 1–3)

Increased apoptosis
(Clements et al., 2016)

CLP Clodronate Worsening AKI; decreased
kidney function (Li et al.,
2018)

Impact of M2 Mφ depletion on AKI and its outcomes: none

Unilateral IRI Conditional (DT/DTR) ablation
of CD11b+ or CD11c+ cells
(starting on day 3)

No change in fibrosis (Kim
et al., 2015)

diseases. Different Mφ-based strategies have been suggested for
the treatment of AKI, including: (1) adoptive transfer of ex vivo
Mφ that are M2-activated via (a) treatment with M2 stimuli
(Wang et al., 2007; Cao et al., 2010; Ranganathan et al., 2013;
Geng et al., 2014) or (b) genetic manipulation (Wilson et al.,
2002; Ferenbach et al., 2010; Jung et al., 2012, 2016); (2) adoptive
transfer of immunomodulatory cells (such as bone marrow-
derived mesenchymal stem cells, umbilical cord-derived stromal
cells (Li et al., 2013; Geng et al., 2014; Rota et al., 2018) and type
2 innate lymphoid cells (Huang et al., 2015; Cao et al., 2018);
(3) systemic administration of M2-polarizing agents (Cao et al.,
2011; Chen et al., 2017; Wang Q. et al., 2017; Wang S. et al., 2017;
Barrera-Chimal et al., 2018) [for more detailed information on
this topic, please refer to the comprehensive review (Chen et al.,
2019)]. Of note, most of these proposed strategies are based on
the modulation of Mφ functions favoring M2 anti-inflammatory

state. In such a strategy, the risk of triggering renal fibrosis with
M2 Mφ can be a critical issue (Braga et al., 2015). Thus, studies
have also focused on developing genetic modification of ex vivo
Mφ to suppress the development of kidney fibrosis. It has been
found that the adoptive transfer of Mφ overexpressing neutrophil
gelatinase-associated lipocalin-2 (NGAL) (Guiteras et al., 2017)
or lacking legumain (Wang D. et al., 2018) can attenuate renal
interstitial fibrosis.

Interestingly, the reduction in the number of global and
M2 Mφ can be beneficial to the injured kidney and a
promising approach to treatment of AKI. Actually, Mφ-depleting
clodronate and anti-CSF-1R neutralizing antibodies are used in
different clinical areas (Frediani and Bertoldi, 2015; Peyraud
et al., 2017; Frediani et al., 2018; Goldvaser and Amir, 2019).
A potential target for depleting Mφ is CSF-1R signaling.
Csf1r−/− mice and mice deficient in functional CSF-1 (Csf1op/op

mice) completely lack Mφ, but also exhibit other severe non-
Mφ-related physiological abnormalities (Wei et al., 2010),
illustrating that spatiotemporal expression of CSF-1 is crucial
to many important biological processes. It has been found that
genetic deletion of IL-34 partially removes Mφ in injured kidneys
and is beneficial in AKI (Baek et al., 2015) as well as in lupus
nephritis (Wada et al., 2019). As Il34−/− mice show no gross
phenotype in steady state (Greter et al., 2012; Wang et al., 2012),
targeting of IL-34 appears to be more tolerable than that of CSF-
1R or CSF-1. IL-34 may be useful for the partial removal of global
Mφ throughout all stages of AKI or for reducing M2 Mφ in the
later stages of AKI.

CONCLUSION AND OUTLOOK

This review has provided insights into the net effect of versatile
Mφ functions in AKI by Mφ removal studies (Figure 1).
Interestingly, several studies suggest that the (partial) depletion
of global Mφ in AKI can be beneficial to the injury kidney. In
addition, this review has assessed the current literature on the
impact of the depletion of individual Mφ subtypes on AKI and
its outcomes and found that M1 Mφ depletion has been shown
to be generally protective against AKI, whereas M2 Mφ depletion
has led to controversial results.

How can we translate findings from animal AKI models into
clinical practice? M1 Mφ instantly enter the tissue within an
hour after AKI and phenotypically switch to M2 Mφ within
a couple of days. In most AKI cases, the onset cannot be
predicted (e.g., unless patients are scheduled for a kidney
transplant or other relevant surgery) and precedes the diagnose.
Thus, therapeutic intervention via targeting of M1 Mφ can
be challenging. As M2 Mφ can resolve inflammation, there
is a growing interest to use M2 Mφ and Mφ-modulating
agents as therapeutic tools to treat patients with AKI (Chen
et al., 2019); however, we may not underestimate that M2 Mφ

can contribute to interstitial fibrosis and facilitate the AKI-to-
CKD transition. Overall, M2 Mφ act as double-edged swords
being both beneficial and harmful to the inflamed kidney
tissue (Braga et al., 2015), and the dual nature of M2 Mφ

is well recapitulated in the results from M2 Mφ depletion
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studies. As uncontrolled hyper-proliferation or inadequate
removal of Mφ in the resolution phase of inflammation can
cause chronic inflammation and eventual organ failure, we
need to simultaneously consider two avenues, when developing
therapeutic approaches targeting Mφ, including: (1) modulation
of Mφ activation and functions and (2) removal of excess Mφ.
Previous studies investigating the role of Mφ in AKI mostly
focused on the mechanism of Mφ survival, proliferation and
polarization, we do not understand by which mechanisms Mφ

disappear in the resolution phase of inflammation. Future studies
need to investigate the fate of individual Mφ subtypes after the
tissue repair is completed.
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