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Skeletal muscle is a dynamic tissue with remarkable plasticity. Skeletal muscle growth and
regeneration are highly organized processes thus it is not surprising that a high degree of
complexity exists in the regulation of these processes. Recent discovery of non-coding
microRNAs (miRNAs) has prompted extensive research in understanding the roles of
these molecules in skeletal muscle. Research so far shows that miRNAs play a very
significant role at every aspect of muscle biology. Besides muscle growth, development,
and regeneration miRNAs are also involved in the pathology of muscle diseases and
metabolism. In this review, recent advancements in miRNA function during myogenesis,
exercise, atrophy, aging, and dystrophy are discussed.
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MiRNA BIOGENESIS
MiRNAs are short non-coding RNAs (∼22 nucleotides), involved
in the regulation of gene expression post-transcriptionally. Ever
since the discovery of Lin-4 miRNA in C. elegans, by Lee et al.
(1993), thousands of miRNAs and their targets have been iden-
tified. The advancements made in miRNA research prove that
miRNAs are crucial for development, physiology and metabolism
(Bushati and Cohen, 2007; Fineberg et al., 2009; Leung and
Sharp, 2010). Distinct miRNAs potentially target an extensive
set of mRNAs depending on their seed sequence and the tar-
get mRNA 3′ UTR sequence (Ambros, 2004; Bushati and Cohen,
2007; Bartel, 2009). MiRNAs are transcribed by Pol II or Pol
III as individual miRNAs (monocistronic) or in clusters (poly-
cistronic) from non-coding RNA genes (intergenic) or within the
protein coding genes (intragenic). Most miRNAs are transcribed
by RNA polymerase II as long primary miRNA (pri-miRNA)
transcripts, which are then processed into ∼70 nt (pre-miRNA)
hairpin like RNA duplex by Drosha (Denli et al., 2004; Han
et al., 2004, 2006). Pre-miRNAs are processed by Dicer in asso-
ciation with other RNA-binding proteins in cytoplasm giving
rise to mature miRNA (Chendrimada et al., 2005; Lee et al.,
2006). MiRNAs contribute to post-transcriptional regulation of
gene expression by gene silencing. The seed sequence (2 to 8
nucleotides on the 5′ end of miRNA sequence) of miRNA base-
pair to the target mRNAs within the 3′UTR or sometimes other
mRNA regions in association with Argonaute proteins and nor-
mally lead to mRNA translational repression or destabilization
and degradation (Meister and Tuschl, 2004; Du and Zamore,
2005; Zhao and Srivastava, 2007). Conserved seed sequence of
miRNA enables targeting multiple mRNA targets; on the other
hand a single mRNA can be targeted by more than one miRNA
(Doench and Sharp, 2004; Brennecke et al., 2005; Lewis et al.,

2005; Grimson et al., 2007; Bartel, 2009; Brodersen and Voinnet,
2009).

Several miRNAs are ubiquitously expressed where as some
are tissue specific and some are enriched in specific tissues.
MiRNAs miR-1, miR-133a, miR-133b, miR-206, miR-208, miR-
208b, miR-486, and miR-499 are Muscle enriched miRNAs so
called myomiRs (McCarthy and Esser, 2007; Callis et al., 2008).
Muscle regulatory factors (MRFs) like Myf5, Myogenin, MyoD,
and Mrf4 play a very significant role in myogenesis. MRFs are
involved in regulation of myomiR expression (Zhao et al., 2005;
Rao et al., 2006). These myomiRs are differentially regulated
during myogenesis, development, degeneration, atrophy, various
myopathies, and exercise. In addition to the myomiRs, other
miRNAs are implicated in myogenesis and muscle pathology
(Table 1); hence in this review functions of both myomiRs and
other miRNAs in skeletal muscle are discussed.

MiRNAs IN MYOGENESIS
A cluster of myomiRs including miR-1, miR-133, and miR-206
plays a role in myogenesis, and muscle regeneration (Rao et al.,
2006). Myogenesis involves proliferation and differentiation of
myoblasts during pre- and postnatal stages. MiR-1 represses his-
tone deacetylase 4 (HDAC4), which is a transcriptional repressor
of MEF2- activated muscle gene expression, hence promotes
myoblast differentiation whereas miR-133 enhances myoblast
proliferation by targeting serum response factor (SRF), a tran-
scription factor involved in muscle differentiation (Miano, 2003;
Jian-Fu et al., 2005). On the other hand, miR-206 promoted
differentiation of myoblasts in-vitro by down-regulation of Pola
1, a subunit of DNA polymerase α (Kim et al., 2006). DNA
polymerase α is necessary for cell proliferation and thus inhi-
bition of Pola 1 by miR-206 resulted in inhibition of myoblast
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Table 1 | Over view of miRNAs differentially regulated in myogenesis, exercise, atrophy, aging, and Duchenne muscular dystrophy and their

functional roles in regulation, maintenance, and pathology of skeletal muscle.

Condition MicroRNA Function

Myogenesis miR-1 Promotes myoblast differentiation and regeneration by down regulating HDAC4 that represses MEF2-
activated muscle gene expression.

miR-23a Inhibits myogenic differentiation by silencing Myosin heavy chain 1, 2, and 4 expression.

miR-27a/b Induce skeletal muscle hypertrophy by down regulating Myostatin, an inhibitor of myogenesis.

miR-29 Enhances muscle differentiation by repressing polycomb proteins. MiR-29 also inhibits proliferation by
down regulating Akt3 in-vitro.

miR-133 Enhances myoblast proliferation by negatively regulating SRF.

miR-206 Promotes myoblast differentiation and regeneration by targeting Pax7.

miR-675-3p and
miR-675-5p

Induce myogenesis and differentiation of satellite cells during regeneration.

Exercise miRNAs in skeletal muscle and serum are differentially regulated depending on type of exercise, age
of the subjects and the duration of exercise. However, myomiRs miR-1, miR-133, miR-208, and
miR-486 are upregulated in most of the exercise regimens indicating their role in hypertrophy,
regeneration, and maintenance of healthy skeletal muscle.

Atrophy MyomiRs Myomirs, miR-1-1, miR-1-2, miR-133a, miR-133b, and miR-206 are downregulated in TWEAK induced
muscle wasting.

miR-1 Upregulated in Dex induced muscle atrophy and targets HSP70 leading to upregulation of MuRF1 and
Atrogin-1.

miR-23a Confers resistance to skeletal muscle atrophy by post-transcriptional regulation of Atrogin1 and
MuRF1.

miR-29 Reduced levels in muscle of mice with Chronic kidney diseases (CKD) lead to increased levels of YY1
protein inhibiting the satellite cell differentiation and muscle regeneration.

miR-146a Elevated expression during muscle wasting leads to downregulation of Numb and TRAF6 involved in
satellite cell activation and AKT signaling respectively resulting in impaired regeneration.

miR-486 Mimics for miR-486 rescued muscle atrophy in CKD mice by negatively regulating FoxO1 and PTEN.

Aging miR-29 Upregulated during aging, inhibits muscle regeneration by targeting IGF-1 and p85α that decreases the
overall protein translation during aging.

miR-181 Decreased levels during aging lead to higher levels of targets like TNF-α, IL-6, IL-1β, and IL-8 in the
muscle during aging.

miR-206 Increased levels in aging skeletal muscle could be conferring resistance to muscle atrophy.

Duchenne muscular
dystrophy

miR-29 Reduced levels of miR-29 result in decreased muscle regeneration and increased fibrogenesis in mdx
muscle.

miR-31 Higher levels of miR-31 augment pathology of dystrophic muscle.

miR-145 and
-133a

Increased serum levels are potential biomarkers in a mouse model of DMD.

miR-199a-5p Increased levels in dystrophic muscle affect myogenesis by targeting WNT signaling proteins
necessary for cell proliferation and differentiation.

miR-206 Elevated levels in serum are a potential biomarker for DMD.

miR-486 Reduced levels in mdx mice affect cell cycle and muscle regeneration by targeting PTEN/AKT pathway
and platelet-derived growth factor receptor β.

Functional significance of miRNAs in myogenesis, exercise, disease, and aging of skeletal muscle.

cell cycle. Additionally, miR-206 might indirectly down regulate
DNA-Binding Protein Inhibitor (Id1-3) and Myogenic Repressor
(MyoR), inhibitors of myogenic transcription factors like MyoD
and regulate myoblast differentiation (Kim et al., 2006). The
promyogenic activities of miR-206 and -486 were also evident in
a study by Dey et al. (2011), in which they showed that miR-206
and -486 promoted myoblast differentiation by targeting Pax7,
a paired box transcription factor that inhibits differentiation by

negatively regulating MyoD levels. Moreover MyoD was shown to
induce the expression of miR-206 and -486 (Dey et al., 2011).

MiR-23a, a ubiquitous miRNA was shown to inhibit myo-
genic differentiation by targeting the 3′ UTRs of fast Myosin heavy
chain 1, 2, and 4 transcripts (Wang et al., 2012a,b). Many studies
have suggested that miR-29 is a positive regulator of myogenesis.
Huating et al. (2008) deciphered that NF-kB repressed miR-29
through Yin Yang 1 (YY1) protein, a part of Polycomb complex
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during myoblast proliferation. During myogenesis, when NF-kB
and subsequently YY1 levels were reduced, miR-29 expression
was stimulated. MiR-29 was then able to enhance differentiation
by inhibiting YY1 in the C2C12 myoblasts. Furthermore, miR-
29 expression was downregulated in Rhabdomyosarcomas (RMS)
through epigenetic silencing and its overexpression was able to
rescue differentiation in RMS cell line (Huating et al., 2008).
Another component of Polycomb repressive complex, RING1,
and YY1 binding protein (Rybp) has the target sequence for
miR-29 in its 3′ UTR. Moreover, down-regulation of Rybp in
C2C12 and regenerating skeletal muscle coincided with myoge-
nesis indicating that Rybp inhibits C2C12 myoblast differentia-
tion and muscle regeneration. The Rybp and YY1 complex was
found to be present on many myogenic gene promoters including
miR-29 suggesting the presence of Rybp-miR-29 feedback loop.
Concomitant with increased expression of Rybp, an accumula-
tion of Enhancer of zeste homolog 2 (Ezh2) and trimethylation
of H3K27 at myogenic gene loci has been observed (Zhou et al.,
2012). These findings clearly show that miR-29 mediates the
repression of Polycomb complex consequently influencing the
chromatin of myogenic genes during skeletal muscle differen-
tiation. In a recent study, Wei et al. (2013) showed that miR-
29 inhibited myoblast proliferation and induced differentiation
through a more direct mechanism by down regulating Akt3 (a
member of the serine/threonine protein kinase family responsive
to growth factor cell signaling). Overexpression of Akt3 increased
myoblast proliferation and reduced myoblast differentiation and
resisted miR-29 mediated inhibition (Wei et al., 2013).

Skeletal muscle cell differentiation was also inhibited when
miR-186 was overexpressed in myoblasts. MiR-186 was shown
to directly target myogenin, which is a key regulator of skeletal
muscle differentiation (Antoniou et al., 2014). Recently, an inter-
esting mechanism involved in myoblast differentiation has been
reported by de la Garza-Rodea et al. (2014) whereby S1P lyase
(SPL) an enzyme that degrades sphingosine-1-phosphate (S1P)
was shown to regulate myoblast differentiation by regulating the
expression of miR-1, miR-206, and miR-486 (de la Garza-Rodea
et al., 2014). Another novel discovery is of miR-675-3p and miR-
675-5p, which are coded in the exon1 of long non-coding RNA
H19, were shown to induce myogenesis and differentiation of
satellite cells during regeneration. MiR-675-3p and miR-675-5p
target the 3′UTRs of Smads and DNA replication initiation factor
Cdc6 thus allowing the myoblasts to differentiate and regenerate
the muscle (Dey et al., 2014).

One other miRNA that has been observed to play a role
in myogenesis is miR-27a/b. MiR-27a/b negatively regulates
Myostatin, an inhibitor of myogenesis (Huang et al., 2012;
McFarlane et al., 2014). Antagonization of miR-27a/b led to
higher Myostatin expression, decreased myoblast proliferation,
and reduced satellite cell activation. While overexpression of
miR-27a/b downregulated Myostatin and induced skeletal muscle
hypertrophy (McFarlane et al., 2014).

Skeletal muscle is also known for its remarkable ability to
undergo muscle regeneration by virtue of satellite cells. Satellite
cells stay quiescent in resting muscle however once stimu-
lated; enter cell cycle and differentiation program. Satellite cells
are known to express quiescence marker genes such as Pax7.

Consistently, miR-1 and miR-206 were shown to be upregulated
in satellite cells after muscle injury and induced muscle regener-
ation by targeting Pax7 (Chen et al., 2010). Recently, miR-31 was
shown to maintain satellite cells in quiescent state through the
regulation of Myf5 mRNA in mRNP granules. Once the satellite
cells were activated miR-31was degraded in the mRNP granules,
Myf5 mRNA became available for translation and Myf5 protein
levels increased in the cells to initiate differentiation (Crist et al.,
2012). This remarkable mechanism keeps the satellite cells in qui-
escent but “ready” state to enter cell cycle for muscle growth and
regeneration.

MiRNAs AND EXERCISE
Skeletal muscle is a highly contractile tissue and physical activity
is essential for maintaining muscle mass. It is apparent that exer-
cise is a potent stimulus for satellite cell activation and muscle
protein synthesis. Specifically, resistance exercise increases skele-
tal muscle mass by hypertrophy of muscle fibers (Mayhew et al.,
2009; Stepto et al., 2009; Dreyer et al., 2010). Previous studies
have indicated that exercise induces changes both at the genetic
and epigenetic levels. Several miRNAs are differentially regulated
during and after exercise, and some miRNAs are secreted in to
circulation (Baggish et al., 2011; Davidsen et al., 2011).

The expression of myomiRs miR-1 and miR-133a was upreg-
ulated in young men soon after an acute exposure to endurance
exercise (Nielsen et al., 2010). The increased expression of these
myomiRs after acute endurance exercise correlates with upreg-
ulated levels of MyoD, myogenin, and MRF4, the myogenic
transcription factors involved in myomiR expression (Kadi et al.,
2004; Sweetman et al., 2008). It is noteworthy that within a fort-
night of discontinuation of exercise, the myomiR levels were
similar to the pre-exercise levels. However, the downstream tar-
gets and the signaling mechanisms affected by the myomiRs in
this exercise regimen are yet to be confirmed. In an attempt to
understand the basis of variable response of individuals to resis-
tance exercise, differential expression of 21 abundant miRs was
determined in the muscle of men subjected to resistance train-
ing for 12 weeks (Davidsen et al., 2011). After the training low
responders did not gain any noticeable muscle mass and miR-378,
miR-29a, and miR-26a levels were reduced while miR-451 was
higher in the muscle of low responders (Davidsen et al., 2011).
Interestingly, the expression of miR-378, miR-29a, and miR-26a
was unaltered in the muscle of high responders which was alluded
to be a compensatory effect. The results of this study show a cor-
relation between the levels of miR-378 and muscle hypertrophy
induced by exercise. Russell et al. (2013) reported that miR-1,
miR-133a/b, and miR-181a were higher and miR-9, miR-23a,
miR-23b, and miR-31 were lower in the muscle of subjects after
3 h of an acute level of endurance cycling (Russell et al., 2013). The
mRNA levels of Drosha, Dicer and Exportin involved in miRNA
biogenesis were also up regulated.

It appears that exercise not only affects miRNA expression
in the muscle tissue but also in circulation. After acute resis-
tance exercise, miR-149∗ expression was more while miR-146a
and miR-221 expression was lower in circulation of the subjects
(Sawada et al., 2013). It might be that decrease in miR-146a and
miR-221 allows the muscle regeneration to proceed since these
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miRNAs affect differentiation (Cardinali et al., 2009; Kuang et al.,
2009). Aoi et al. (2013) observed that circulatory levels of miR-486
were reduced after acute and chronic exercise in young men. MiR-
486 is expressed at a higher level in muscle than other tissues and
was shown to target Phosphatase and tensin homolog (PTEN),
an inhibitor of PI3K/AKT pathway (Small et al., 2010). The
PI3K/AKT pathway is downstream of Insulin signaling therefore
miR-486 can regulate glucose uptake through PTEN in skeletal
muscle. Based on these results, Aoi et al. (2013) proposed that
miR-486 could be playing a role in exercise induced metabolic
adaptations (Aoi et al., 2013). Alexander et al. (2013a,b) analyzed
the expression profile of miRNAs and their regulatory targets in
athletes who performed 30 min of exercise followed by a rest for
30 or 60 min. It is noteworthy that circulatory miR-181a-5p and
clustered miRs miR-27a-5p and miR-24-2-5p were up regulated
immediately after exercise followed by a decrease during the relax-
ation. The expression of some of the target genes of these miRNAs
indicated that these miRNAs might be playing a role in adaptation
during exercise (Alexander et al., 2013a).

MyomiRs miR-1, miR-133a and cardiac miR-208a were
robustly upregulated in the circulation of subjects soon after aer-
obic exercise like marathon and regressed to normal levels 24 h
after the marathon. On the other hand, the proteins involved in
skeletal muscle injury, cardiac damage, and inflammation were
upregulated after marathon and continued to be higher 24 h after
marathon. These results suggest that circulatory miRNAs may be
indicators of real-time changes induced by exercise and oxida-
tive ability of muscles (Baggish et al., 2014; Mooren et al., 2014).
Recently, Nielsen et al., 2014 compared the expression of miR-
NAs after acute and endurance exercise and discovered a pattern
of miRNAs, which was unique to each type of exercise (Nielsen
et al., 2014).

MiRNAs IN MUSCLE ATROPHY
Muscle atrophy is characterized by loss of muscle mass. The
loss of muscle mass is due to either enhanced degradation of
muscle proteins and or reduced protein synthesis in skeletal
muscle. Enhanced degradation of muscle sarcomeric proteins,
myosin heavy chains (MyHC) is mediated through E3 ubiqui-
tin ligases Atrogin-1 and MuRF1 (Lecker et al., 2004; Sacheck
et al., 2007; Lokireddy et al., 2012; Sriram et al., 2014). Several
muscle atrophy-inducing stimuli have been reported to stim-
ulate these ubiquitin ligases. Recently, post-transcriptional reg-
ulation of Atrogin-1 and MuRF1 through miR-23a has been
observed (Wada et al., 2011) indicating that miR-23a is a reg-
ulator of muscle atrophy. Indeed, overexpression of miR-23a in
myotubes and skeletal muscle resulted in resistance to gluco-
corticoid Dexamethasone (Dex) induced muscle atrophy (Wada
et al., 2011). MiR-23a was also found to be downregulated due to
reduced calcineurin/NFAT signaling in the muscle of Dex treated
mice (Hudson et al., 2014). Dex treatment was also found to
enhance its exosomal packaging.

High doses of Dex or Myostatin induce severe skeletal muscle
atrophy. In our recent publication we described the role of miR-1
in Dex-mediated atrophy (Kukreti et al., 2013). In this study we
have shown a novel miR-1-mediated mechanism through which
Dex promotes skeletal muscle atrophy by targeting the protective

protein HSP70. We showed glucocorticoid receptor mediated
miR-1 upregulation after both Dex and Myostatin treatment
in C2C12 myotubes and animal models of Dex-induced mus-
cle atrophy. Inhibition of miR-1 in C2C12 myotubes attenuated
the Dex-induced increase in atrophy related proteins confirm-
ing a role for miR-1 in atrophy. Increased miR-1 during atrophy
reduced HSP70 levels, which resulted in decreased phosphory-
lation of AKT, due to loss of HSP70 bound pAKT. The loss of
pAKT lead to decreased phosphorylation, and thus, enhanced
activation of Forkhead box O3 (FoxO3) and upregulation of
MuRF1 and Atrogin-1. Thus, we proposed a model whereby Dex
and Myostatin mediated atrophic signals were integrated through
miR-1, which then directly or indirectly, inhibited the proteins
involved in resisting atrophy.

Chronic kidney diseases (CKD) are associated with muscle
wasting. Besides the mechanisms of protein degradation and
reduced protein synthesis, reduced muscle satellite cell (stem cell)
function also plays a role in muscle atrophy. Several genetic and
epigenetic processes that affect satellite cell function have been
recognized previously. Not so long ago, Wang et al. (2012a,b)
demonstrated that satellite cell function is impaired in the mus-
cles of CKD mice. The differentiation of these satellite cells was
impaired due to an increase in YY1 protein, a well-established
inhibitor of myogenesis. YY1 protein was found to be upregu-
lated in the satellite cells of CKD muscle. Microarray analysis of
the muscle from mice with CKD revealed that miR-29 expres-
sion was downregulated in the satellite cells. One of the targets
of miR-29 is YY1; hence reduction in miR-29 expression released
the repression on YY1 and caused poor muscle differentiation
and regeneration. Overexpression of miR-29 in the C2C12 cells
enhanced the differentiation and rescued the repression in YY1
overexpressing cells indicating miR-29-mediated regulation of
YY1 and myoblast differentiation.

To circumvent the CKD induced atrophy, Jing et al. (2012)
used miR-486 mimic and transfected in the muscle of mice with
CKD. They observed that miR-486 mimic was able to rescue the
atrophy phenotype despite CKD. Two important targets of miR-
486 are Forkhead box O1 (FoxO1) and PTEN. PTEN is known
to dephosphorylate AKT and dephosphorylation of AKT leads to
dephosphorylation of FoxO1 and thus its nuclear translocation.
Furthermore, miR-486 inhibits FoxO1 at the protein level. These
two mechanisms combined together effectively render the FoxO1
mediated atrophy signaling inactive in miR-486 mimic treated
CKD affected muscle and Dex treated myotubes (Jing et al., 2012).

Several cytokines play a role in inducing atrophy in skeletal
muscle. Newly found cytokine TNF-like weak inducer of apop-
tosis (TWEAK) belongs to TNF family and has been shown to
cause muscle wasting (Panguluri et al., 2010). One of the mech-
anisms proposed for induction of muscle wasting by TWEAK
is via regulation of differential expression of several miRNAs
in myotubes. Myomirs including miR-1-1, miR-1-2, miR-133a,
miR-133b, and miR-206 were downregulated while miR-146a and
miR-455 were upregulated upon treatment of myotubes with
TWEAK protein. Panguluri et al. (2010) suggested that reduced
levels of Myomirs would affect myogenesis during muscle wasting
and increased levels of miR-146a would target genes like Numb
and TRAF6. Numb is involved in satellite cell activation and
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downregulation of numb by miR-146a would negatively affect
muscle regeneration. TRAF6 has been shown to activate AKT
signaling that is known to enhance protein synthesis and thus
hypertrophy signaling.

Muscle atrophy is also associated with fiber type changes
consistent with slow to fast fiber type switching (Baldwin and
Haddad, 2002). The fiber type change is manifested through
the downregulation of slow twitch beta-myosin heavy chain (β-
MyHC) and an increase in fast twitch MyHC (Type IIb and IIx)
(Stevenson et al., 2003). Earlier, transcription factors, Purα, Pur
β, and SP3, which regulate β-MyHC expression during atrophy,
were identified. Recently miR circuitry regulating β-MyHC at the
post-transcriptional level has been discovered. Introns of Myh6
(α-MHC), Myh7, and Myh7b encode miR-208a, -208b, and -499
respectively and these miRs have been shown to regulate MyHC
levels. Mir-208a has been shown to target a thyroid hormone
receptor cofactor (Thrap1), which is known to repress β-MyHC
levels indicating that miR-208a activates β-MyHC gene expres-
sion indirectly (Van Rooij et al., 2008). The same group has also
reported that miR-499 was instrumental in inducing fast-to-slow
muscle fiber switching phenotype by reducing the expression
of Sox6 transcription factor. Sox6, a repressor of β-MyHC gene
expression increased during atrophy. Additionally, miR-208a and
b can regulate the expression of miR-499 through its host gene
β-MyHC gene expression by repressing the transcription factor,
e.g., Sox6. These miRNAs are an excellent example of circuitry
(McCarthy et al., 2009).

In another study, levels of miR-696 were up regulated in
the muscles of mice subjected to hind limb immobilization
while levels of PGC-1alpha, a target of miR-696 were decreased.
Consistent with this observation miR-696 over expressing
myocytes showed a decrease in PGC-1alpha, which is involved
in mitochondrial function and metabolism (Liang and Ward,
2006). Furthermore, the expression of miR-696 was reduced
in the muscles of mice after exercise and the levels of PGC-1
alpha were increased. These results indicate the importance of
miR-696 in skeletal muscle atrophy, metabolism and adaptations
(Aoi et al., 2010).

MiRNAs IN SKELETAL MUSCLE AGING
Naturally occurring muscle wasting during aging is known as sar-
copenia. Sarcopenia starts from the age of forty years in humans
and gets worse with each decade. Even though it is known to exist,
the mechanisms behind sarcopenia are not fully known. With
increasing understanding of miRs, it is apparent that miRs also
a play a role during aging.

Drummond et al. (2008) analyzed the expression of myomirs,
miR-1, miR-133, and miR-206 in the skeletal muscle of old
and young humans subjected to exercise and administration of
leucine rich amino acid solution. The results indicated that basal
expression of pri-miRNA-1-1, -1-2, -133a-1, and -133a-2 was
higher in older compared with young men. Furthermore, these
primary miRNAs were downregulated at 6 h after exercise only
in the young men. Finally, it was inferred that an increased
primary miRNA expression occurs during aging; the effect of
anabolic stimulus on miRNA levels was perturbed in older men.
Interestingly, the expression of primary miR-206 continued to be

higher in older men even after anabolic stimulus however the
expression of mature miR-206 did not alter (Drummond et al.,
2008).

Subsequently, Hamrick et al. (2010) carried out a microarray
analysis in the muscles of 12 and 24 month old mice and observed
that miR-206, -698, and -468 increased during aging and miR-
434, -455, -382, -181a, and -221 were reduced (Hamrick et al.,
2010). Clop et al have demonstrated the role of miR-206 in skele-
tal muscle hypertrophy previously (Clop et al., 2006), therefore
the assumption for the action of miR-206 during aging is to pro-
tect muscle from atrophy. The targets for miR-698 and -468 have
not been validated in skeletal muscle yet; Hamrick et al. predicted
that cardiotrophin1 could be the target for miR-698 in skeletal
muscle since cardiotrophin1 was found to inhibit myogenic regu-
latory factors during differentiation (Miyake et al., 2009). In line
with the protective roles of some of the miRs in skeletal mus-
cle during aging, miR-221 also fits in that role. Higher levels of
miR-221 inhibit differentiation of myoblasts and during normal
course of myoblast differentiation its expression is reduced. Taken
together, these miRNAs are helping skeletal muscle to maintain
the differentiation phenotype during aging. Mir-455 has been
shown to be involved in brown adipocyte differentiation (Walden
et al., 2009) and how its downregulation in aging skeletal muscle
would affect the muscle function is a matter of speculation.

A recent RNA sequencing study by Mercken et al. (2013)
revealed differential expression of miRs in the skeletal muscles
of old and young rhesus monkeys. They observed an increase in
the expression of several novel miRNAs including miR-744-5p in
the old skeletal muscle. The expression of myomir, miR-181a was
downregulated and calorie restriction was able to revert the levels
of miR-181a in the old muscle. Based on the earlier reports show-
ing Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6),
Interleukin-1beta (IL-1β), and Interleukin-8 (IL-8) as the tar-
gets of miR-181a Hutchison et al. (2013); Xie et al. (2013) and
Mercken et al. (2013) proposed that decrease in miR-181a could
be responsible for an increase in the mentioned inflammatory
cytokines in the muscle during aging.

Similarly, microarray analysis of miRNAs in muscles from
young (4 months) and old (28 months) rats was shown to alter
(Hu et al., 2014a,b). Several miRNAs were up or down reg-
ulated. MiR-29 has been seen to be consistently upregulated
during sarcopenia, senescence, or aging. In the aged rat muscle,
miR-29 was shown to target Insulin like Growth Factor-1 (IGF-
1), Phosphatidylinositide 3-kinase p85 alpha regulatory subunit
(p85α) and Myeloblastosis-related protein B (B-myb) transcripts.
By targeting IGF-1 and p85α proteins, miR-29 inhibited mus-
cle protein synthesis and myogenesis since IGF-1 and p85α are
well established signaling molecules for protein translation and
a decrease in these proteins was observed during muscle atrophy
including sarcopenia (Owino et al., 2001; Barbour et al., 2005;
Park et al., 2009; Smith et al., 2012). Overexpression of miR-29
in skeletal muscle also resulted in an increase in cell cycle arrest
proteins, Cyclin-Dependent kinase inhibitor 2A, (p16Ink4A) and
Retinoblastoma protein (pRB) in agreement with the increased
expression of these proteins in aged muscle (Hu et al., 2014a,b).
Thus, miR-29 regulates the levels of various proteins directly or
indirectly eventually resulting in muscle atrophy during aging.
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MiRNAs IN DUCHENNE MUSCULAR DYSTROPHY
Duchenne muscular dystrophy (DMD) is caused by mutations in
dystrophin gene leading to progressive muscle wasting. In DMD
pathology muscle tissue undergoes severe cellular and molecu-
lar changes. Several studies have determined the expression of
myomiRs, miR-1, -133, and -206 levels in serum of DMD patients
and found that these myomiRs were upregulated. Consistently,
miR-206 correlates with DMD pathology and thus could be a use-
ful biomarker for DMD along with creatine kinase (Cacchiarelli
et al., 2011; Mizuno et al., 2011; Vignier et al., 2013; Zaharieva
et al., 2013; Hu et al., 2014a,b; Roberts et al., 2014). Furthermore,
miR-145 and miR-133a were shown to be potential biomarkers in
a mouse model of DMD (Endo et al., 2013).

Microarray analyses of miRNAs have been conducted in the
muscles from DMD patients and dystrophic animal models.
There have been some inconsistencies in the results due to the
type of muscle used and animal model itself. Intriguingly, the
miRNAs expressed in diaphragm of X chromosome-linked mus-
cular dystrophy (mdx) mice were not significantly different from
the wild type diaphragm (Greco et al., 2009; Thomas et al., 2012).
MyomiR-486 expression was reduced in mdx muscle. MiR-486
was shown to regulate PTEN/AKT pathway and platelet-derived
growth factor receptor β thus affecting the cell cycle and mus-
cle regeneration in mdx muscle (Alexander et al., 2011). Mdx
mice also showed reduced levels of miR-29 (Eisenberg et al., 2007;
Greco et al., 2009). MiR-29 has been shown to positively regulate
myogenesis and reduce fibrogenesis (Lijun et al., 2012). Indeed,
overexpression of miR-29 in mdx muscle increased regeneration
concomitant with decreased fibrosis (Lijun et al., 2012). Increased
expression of miR-31 was reported in DMD patients and mdx
mice (Greco et al., 2009; Thomas et al., 2012; Roberts et al., 2014).
MiR-31 has been shown to regulate the dystrophin levels by tar-
geting the 3′ UTR of dystrophin. Hence, Cacchiarelli et al. (2011)
have proposed that inhibition of miR-31 would improve dys-
trophin expression during treatment of dystrophy through exon
skipping. MiR-199a-5p levels were increased in human dystrophic
skeletal muscle. MiR-199a-5p regulates the proteins of WNT sig-
naling pathway namely Frizzled 4 (FZD4), Jagged1 (JAG1), and
WNT2. These proteins play a role in cell proliferation and differ-
entiation thus downregulation of these proteins by miR-199a-5p
would affect myogenesis in dystrophic muscle (Alexander et al.,
2013b).

PERSPECTIVE
It is evident that miRNAs are a critical component of regula-
tory mechanisms in muscle (Table 1). MiRNAs also appear to
be versatile in their function for example miR-1 has a role in
myogenesis as well as muscle atrophy. These findings also suggest
that miRNAs could have context specific function. It is fascinat-
ing to note that miRNAs are not simply regulating their targets
post-transcriptionally but also in many instances their own tran-
scription via various circuitries. Many miRNAs are involved in
disease conditions therefore strategies for usage of miRNAs or
antagonists could be developed for therapeutic purposes. Indeed,
mimics for miR-34a are being tried in a Phase I trial by Mirna
Therapeutics to increase expression of miR-34a in tumors and
Miravirsen (Santaris Pharma), a LNA-modified oligonucleotide

inhibitor of miR-122 has been tried in humans for the treat-
ment of Hepatitis-C (Hydbring and Badalian-Very, 2013). As per
these results, utility of miRNA-based therapeutics appears to be
encouraging. Furthermore, the fact that expression of miRNAs
can be regulated by external cues such as exercise, incorpora-
tion of such external cues in therapeutic approaches needs to be
considered.
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