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Peroxisomes produce hydrogen peroxide as a metabolic by-product of their many oxidase
enzymes, but contain catalase that breaks down hydrogen peroxide in order to maintain
the organelle’s oxidative balance. It has been previously demonstrated that, as cells age,
catalase is increasingly absent from the peroxisome, and resides instead as an unimported
tetrameric molecule in the cell cytosol; an alteration that is coincident with increased cel-
lular hydrogen peroxide levels. As this process begins in middle-passage cells, we sought
to determine whether peroxisomal hydrogen peroxide could contribute to the oxidative
damage observed in mitochondria in late-passage cells. Early-passage human fibroblasts
(Hs27) treated with aminotriazole (3-AT), an irreversible catalase inhibitor, demonstrated
decreased catalase activity, increased levels of cellular hydrogen peroxide, protein car-
bonyls, and peroxisomal numbers.This treatment increased mitochondrial reactive oxygen
species levels, and decreased the mitochondrial aconitase activity by ∼85% within 24 h. In
addition, mitochondria from 3-AT treated cells show a decrease in inner membrane poten-
tial. These results demonstrate that peroxisome-derived oxidative imbalance may rapidly
impair mitochondrial function, and considering that peroxisomal oxidative imbalance begins
to occur in middle-passage cells, supports the hypothesis that peroxisomal oxidant release
occurs upstream of, and contributes to, the mitochondrial damage observed in aging cells.
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INTRODUCTION
Peroxisomes are ubiquitous subcellular organelles present in
almost all eukaryotic cells and house a wide variety of indis-
pensable metabolic reactions, the majority of which produce
hydrogen peroxide (H2O2) as by-product (reviewed by Schrader
and Fahimi, 2006). Under normal circumstances, peroxisoma-
lly generated H2O2 is quickly degraded to water and oxygen
by the primary peroxisomal antioxidant enzyme, catalase. Per-
oxisomes lack DNA and translational machinery and thus all
peroxisomal membrane and matrix proteins are encoded by the
nuclear genome, synthesized in the cytosol on free polyribo-
somes and imported post-translationally (reviewed by Lazarow
and Fujiki, 1985). To accomplish this task peroxisomes pos-
sess dynamic import machinery, including cystolic receptors,
membrane docking and translocation activities, and recycling
capabilities.

Previous work has demonstrated that peroxisomes of late-
passage cells (>PDL40) display mislocalized catalase and dimin-
ished antioxidant capacity as peroxisomal import competency is
compromised (Legakis et al., 2002). Furthermore, the progressive
mislocalization of catalase has been demonstrated to occur in cells
as early as middle-passage (PDL30-40). Importantly, this leads to
the disequilibrium between H2O2 producing and clearing reac-
tions within the organelle, thus, transitioning the peroxisome into
a significant source of reactive oxygen species (ROS) and con-
tributing to the elevated levels characteristic of late-passage cells
and tissues (Terlecky et al., 2006).

While the contribution of peroxisomes to cellular aging is
a relatively new area of investigation, mitochondria have been
implicated in the Free Radical Theory of Aging since its initial
development (Harman, 1972). This is primarily because mito-
chondria are not only a constitutive source of ROS, but also
because basic mitochondrial function has a fundamental role in
overall cellular metabolism. For this reason age-associated mito-
chondrial dysfunction has been intensively investigated and is
often regarded as a pivotal factor in the aging process (Beckman
and Ames, 1998; Atamna et al., 2000; Cadenas and Davies, 2000;
Muller, 2009). As peroxisomes share many of these features with
mitochondria, the focus of the current study has been to inves-
tigate how peroxisomal oxidative imbalance may contribute to
mitochondrial dysfunction.

Peroxisomes are a potentially significant source of intracel-
lular ROS under circumstances of inadequate antioxidant pro-
tection. Furthermore, this appears to be a naturally occurring
(age-associated) event in the sense that cells exhibit a progres-
sive mislocalization of peroxisomal catalase due its endogenous
targeting signal, which possesses a relatively poor affinity for
the Pex5p cycling import receptor as demonstrated in cell cul-
ture (Legakis et al., 2002; Koepke et al., 2007). Supporting this
concept in animals, quantitative analysis of hepatic peroxisomes
comparing old rats (39 months) to young rats (2 months) revealed
a respective decrease in catalase content, yet an increase in urate
oxidase levels and peroxisome volume density (Beier et al., 1993).
Not only are peroxisomes a significant source of ROS which
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may elicit downstream effects on other cellular functions, but
they also exhibit an age-associated decline in metabolic function
and may contribute to aging and age-associated degenerative dis-
eases (Périchon et al., 1998). Peroxisomes are therefore linked to
the “Free Radical Theory of Aging” (Beckman and Ames, 1998;
Hagen, 2003). Peroxisome metabolism is particularly important
with respect to membrane composition and function and therefore
peroxisomal dysfunction is also linked to the “Membrane Theory
of Aging” (Shinitzky, 1987; Singh, 1997). Previously it has been
demonstrated that the restoration of peroxisomal catalase import
in late-passage cells via retroviral expression of catalase-SKL, a ver-
sion of the enzyme with a more effective targeting signal, results
in the rescue of many functions, including age-associated mito-
chondrial inner membrane depolarization (Koepke et al., 2007).
Together with the observations that catalase mislocalization to the
cytosol and subsequent peroxisomal oxidative imbalance begins
to occur as early as middle-passage, has lead to the hypothesis
that peroxisomally generated ROS may be an upstream initiator
of age-associated mitochondrial dysfunction.

While peroxisomes and mitochondria have been metaboli-
cally linked (reviewed by Schrader and Yoon, 2007; Van Veld-
hoven, 2010), and cells with defects in peroxisomal biogenesis
and/or metabolic pathways have coincident mitochondrial defects
(Baumgart et al., 2001; Dirkx et al., 2005), we sought to determine
whether these organelles were oxidatively linked as well.

MATERIALS AND METHODS
REAGENTS AND ANTIBODIES
Amplex® Red, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimida
zolyl-carbocyanine iodide (JC-1) and MitoTracker® Red CM-
H2XRos were purchased from Invitrogen/Molecular Probes
(Eugene, OR, USA). 2,7-Dichlorofluorescin diacetate was pur-
chased from Acros Organics (Fisher Scientific). The catalase
inhibitor 3-amino-1,2,4-triazole, titanium (IV) oxysulfate, and
anti-aconitase (Aco2) antibodies were obtained from Sigma-
Aldich Chemical (St. Louis). All other reagents were obtained from
standard sources.

CELL CULTURE
Hs27 diploid human fibroblasts were purchased from ATCC
(Manassas, VA, USA). Cells were grown in DMEM (Invitro-
gen/Gibco) containing 10% FBS, 1% penicillin/streptomycin, and
2 mM l-glutamine while maintained at 37˚C in 5% atmospheric
CO2. The catalase inhibitor 3-AT was added to 2 mM.

CATALASE ACTIVITY
Catalase activity was measured by its ability to degrade hydro-
gen peroxide, as previously described (Storrie and Madden, 1990;
Koepke et al., 2008). Hs27 cells grown in 60 mm culture dishes
to 90% confluency were trypsinized, pelleted, and resuspended in
2% Triton-X 100 solution on ice for at least 2 min. Cell samples
were added to a reaction mixture of 20 mM imidazole buffer (pH
7.0), 1 mg/mL BSA, and 0.01% hydrogen peroxide and incubated
on ice for 10 min. The reaction was stopped by addition of sat-
urated Titanium (IV) oxysulfate (TiOSO4) in 1M H2SO4, which
reacts with hydrogen peroxide to produce a yellow peroxotitanium
complex. Absorbance at 410 nm was measured for “cell” and “no

cell” samples, whereby the difference yielded a rate expressed as
ΔOD410/min. Rates were then adjusted for protein concentration
as determined by a BCA protein assay (Pierce Chemical), yielding
a ΔOD410/min/mg total protein.

ACONITASE ACTIVITY
Hs27 cells grown in 100 mm culture dishes until 90% confluence
were semi-permeabilized in 25 μg/mL digitonin in PBS for 10 min,
washed and scraped into 0.1% Triton-X 100 in PBS and left on
ice for an additional 5 min. Lysate samples were added to 1 mL
of aconitase reaction mix consisting of 50 mM Tris–Cl (pH 7.4),
5 mM sodium citrate, 0.6 mM manganese chloride, 0.2 mM NADP,
and 1–2 units of isocitrate dehydrogenase. Absorbance at 340 nm
was measured using a (Beckman Coulter DU 640) spectropho-
tometer over a 1 h time period. Rates of aconitase activity were
calculated as ΔOD340/min and adjusted for protein concentration
of lysate samples using a BCA protein assay (Pierce Chemical),
yielding a ΔOD340/min/mg total protein.

ROS MEASUREMENTS
2′,7′-Dichlorofluorescin diacetate (DCFH-DA) was used as pre-
viously described (Legakis et al., 2002) to visualize ROS produc-
tion in live cells. Briefly, cells growing on glass-bottomed culture
dishes (MatTech, Ashland, MA, USA) were washed with PBS and
incubated for 5 min at 37˚C with 25 μM DCFH-DA. Cells were
subsequently washed and incubated with DMEM minus phenol
red. The resultant cellular fluorescence due to oxidized DCFH was
immediately visualized by confocal microscopy using an excitation
wavelength of 488 nm.

PROTEIN CARBONYLATION MEASUREMENTS
Oxidative damage to total cellular protein was measured using
the quantitative assay of Reznick and Packer (1994). Cells were
grown in 100 mm culture dishes, trypsinized, pelleted, and dis-
solved in 0.1% Triton-X 100 in PBS. Equal amounts of cellular
protein from treated and untreated samples, as determined by
a BCA protein assay, were then used to determine protein car-
bonyl levels. Each sample was divided into two and mixed with
either 10 mM 2,4-dinitrophenylhydrazine in 2.5 M HCl or 2.5 M
HCl alone and allowed to incubate in the dark for 1 h with vor-
tex mixing every 15 min. Trichloroacetic acid [20% (w/v)] was
then added to samples to a final concentration of 10% (w/v), left
on ice for 10 min, and then centrifuged for 5 min at 4˚C using
a table top centrifuge to collect protein precipitates. Supernatant
was discarded and a second wash with 10% (w/v) trichloroacetic
acid was performed. Samples were then washed three times in
ethanol-ethyl acetate (1:1; v/v) to remove free DNPH after which
precipitates were dissolved in 6 M guanidine hydrochloride and
left for 10 min with intermittent vortexing. Absorbance at 365 nm
was then obtained using a (Beckman Coulter DU 640) spectropho-
tometer. The difference in values from derivatized (DNPH) and
control (only HCl) subsamples were then determined. The molar
extinction coefficient of dinitrophenylhydrazine (ε of 22,000 M−1)
was then used to calculate carbonyl values (nmol/mg protein).

IMMUNOCYTOCHEMISTRY AND PEROXISOMAL QUANTITATION
Peroxisomal numbers in control and 3-AT treated cells were mea-
sured by immunostaining and imaging cells for the peroxisomal
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membrane protein, Pmp70p, as previously described (Koepke
et al., 2008). A quantitative measure of the number of peroxisomes
per square unit was performed using Image J software (NIH).
Using the digital images, cells of interest were outlined and their
image areas (in pixels) were measured. Next, these outlined cells
were analyzed for the number of particles greater than 4 × 4 pixels
they contained. These particles were the Pmp70p-positive perox-
isomes. To account for the different sizes of the cells, the number
of peroxisomes was divided by the image area, to give a measure of
the number of peroxisomes per 1000 pixels (≈1.5 μm2). Average
areas per cell were not significantly different between the treated
and control groups. The averages and SD from between 6 and 14
cells were analyzed for each time treatment and treatment group.

MITOCHONDRIAL DYE ASSAYS
Mitochondrial ROS production was measured using MitoTracker
Red CM-H2XRos dye. For these assays, cells were first grown on
coverslips in appropriate culture medium. Pre-warmed growth
medium containing 10 nM MitoTracker probe was then incu-
bated with the cells for 15 min. After staining, cells were washed
with PBS and incubated with DMEM minus phenol red. Live cells
were imaged using confocal microscopy under identical settings
between control and treated groups. Fixing cells with formalde-
hyde prior to imaging yielded a poorer signal to noise ratio, and
an altered mitochondrial morphology.

Mitochondrial membrane potential was determined using
JC-1, a cationic dye which accumulates in potential-dependent
manner in the mitochondria. Depolarization of the organelle is
observed as a fluorescence shift from the red (525 nm) J aggre-
gate (polarized mitochondria), to the green (590 nm) J monomer
(depolarized mitochondria). Thus, a decline in the red/green flu-
orescence intensity ratio is associated with depolarization of the
organelle. Cells were grown on glass bottom 30 mm culture dishes,
incubated with JC-1 dye in DMEM for 15 min at 37˚C, rinsed in
PBS, and incubated in pre-warmed DMEM minus phenol red.
Cells were then immediately imaged using fluorescent confocal
microscopy, under identical settings between control and treated
groups. Average pixel intensity of the monomeric JC-1 dye (green)
from untreated and 3-AT treated cells was obtained using Image
J analyses. Regions used for the analyses were depicted in outline
masks, with the threshold set from 34 to 255 on the grayscale, and
the lower limit for analyses were performed on objects larger than
300 pixels (≈0.4 μm2). The averages and SD from between 7 and
10 cells were analyzed for each treatment group.

STATISTICAL ANALYSES
All statistical analyses were performed using GraphPad Prism soft-
ware. For experiments with two treatment groups a two-tailed,
unpaired Student’s t -test was used. For experiments with greater
than two treatment groups a one-way ANOVA with the Tukey’s
Multiple Comparison post hoc test was employed. Differences
between groups were considered statistically significant when p
values of <0.05 were measured.

RESULTS
INHIBITION OF PEROXISOMAL CATALASE
3-AT has previously been demonstrated to be an irreversible
inhibitor of catalase from a number of eukaryotes (Sheikh et al.,

1998). While we have previously demonstrated the inhibition of
catalase in human cultured Hs27 cells over a broad range of con-
centrations and times (Koepke et al., 2007), we sought to study
the inhibitory effects of intermediate levels of 3-AT (2 mM) over
a 24 h time course. Results (Figure 1) indicated that ∼80% of
the initial catalase activity in Hs27 cell cultures was lost after
4 h of treatment with 2 mM 3-AT. The time for half of the ini-
tial activity to be inhibited was estimated to be just less than
1 h of incubation in the presence of 2 mM 3-AT. No further
decrease in catalase activity, beyond that seen at 4 h, was observed
at 24 h.

To characterize catalase recovery after 3-AT treatment, wash
out experiments were performed after 24 h exposure to 3-AT;
thereafter cells were allowed to recover in the absence or pres-
ence of 100 μg/mL of cycloheximide, an inhibitor of protein
synthesis. Removal of aminotriazole permitted a 50% recovery
of catalase activity within 24 h (Figure 2), a result originally
observed by Hayflick and colleagues (Mellman et al., 1972).
As expected, this restoration was repressed by treatment with
cycloheximide; indicating synthesis of new protein is required
for recovery to occur, owing to the covalent and irreversible
interaction of 3-AT with catalase protein (Margoliash et al.,
1960).

INHIBITION OF CATALASE RESULTS IN INCREASED LEVELS OF
INTRACELLULAR ROS, PROTEIN CARBONYLS, AND PEROXISOMAL
NUMBERS
Inhibition of peroxisomal catalase would be expected to result in
increased levels of hydrogen peroxide, generated by the peroxiso-
mal oxidase enzymes. As hydrogen peroxide is capable of passing
through biological membranes (Bienert et al., 2006; Koopman
et al., 2010), we would expect to observe elevated levels of hydro-
gen peroxide within the cell. As Figure 3 depicts, increased levels
of hydrogen peroxide, as measured by 2,7-DCF staining, could

FIGURE 1 | 3-AT inhibits catalase activity. Hs27 fibroblasts were treated
with 2 mM 3-AT for varying durations. Catalase activity was determined by
adding cell lysates to a 1 mM H2O2 solution. The difference in absorbance at
410 nm was due to the remaining H2O2 being converted to a yellow
peroxotitanium complex by addition of TiSO4 following the 10 min
incubation. Within ∼4 h of 3-AT treatment catalase activity was reduced to
∼15% that observed in untreated cells. The residual catalase activity did
not diminish between 4 and 24 h of 3-AT treatment.
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FIGURE 2 | Recovery of catalase activity requires protein synthesis.

Hs27 cells were treated with 2 mM aminotriazole for 24 h followed by a
24 h recovery period (in the absence of aminotriazole) with or without
100 μg/mL of cycloheximide, an efficient inhibitor of protein synthesis.
Results indicate that aminotriazole is an irreversible inhibitor of catalase,
and for cells to recovery activity, synthesis of new catalase protein must
occur. Determination of catalase activity is described in Section “Materials
and Methods.” Letters represent values significantly different from the
control and/or each other based on ANOVA analysis where p < 0.05.

be observed in 3-AT treated cells within 24 h of treatment. In
addition, subcellular structures with mitochondrial morphology
(arrowheads) were observed with high levels of 2,7-DCF staining
in many of the treated cells. This observation was explored in more
detail in Figure 5.

We have previously demonstrated oxidative damage to cellular
components following treatment of cells with low levels (250 μM)
of 3-AT for extended periods of time (Koepke et al., 2007). As
can be seen in Figure 4, a quantitative measure of protein car-
bonyls demonstrated a greater than 25% increase in the levels of
cellular protein carbonyls in 3-AT treated cells, when compared to
untreated fibroblasts.

As a response to a decrease in catalase activity, either in late-
passage cells (Legakis et al., 2002; Ivashchenko et al., 2011),
diseased cells (Wood et al., 2006), or cells treated with 3-AT
(Sheikh et al., 1998; Koepke et al., 2008), cells demonstrate an
increase in the number of peroxisomes, although not with a cor-
responding increase in peroxisomal enzyme activities. In order to
determine whether this increase in peroxisomal number occurred
shortly after inactivation of catalase with 3-AT, we immunos-
tained control and treated cells for the peroxisomal membrane
protein pmp70 after 24 and 48 h of treatment with 3-AT. We
employed Image J software to count the number of peroxisomes
within cells and normalized the numbers of peroxisomes per
1000 pixels of cell area (≈1.5 μm2). The results (Table 1) indi-
cate that, while there was no significant increase in peroxisomal
numbers after 24 h of 3-AT treatment, there was a statistically
significant increase in peroxisomal numbers of ∼25% after 48 h
of 3-AT treatment. While this increase in peroxisomal num-
bers is less than previously reported, these results demonstrate
that cells lacking catalase activity are eliciting a compensatory
response very shortly after the levels of hydrogen peroxide begin
to increase.

FIGURE 3 | Catalase inhibition increases cellular 2,7-DCF staining. Hs27
fibroblasts were grown in the presence (top two panels) or absence
(bottom panel) of 2 mM 3-AT for 24 h, after which they were treated with
the ROS-sensitive dye 2,7-DCF (Invitrogen/Molecular Probes). Cells were
live-imaged using confocal microscopy and FITC optics. Images are
representative of numerous fields, imaged under identical conditions.

INHIBITION OF PEROXISOMAL CATALASE RESULTS IN OXIDATIVE
DAMAGE TO MITOCHONDRIA
Having confirmed that treatment of human fibroblasts with 3-
AT resulted in the increase in peroxisomally derived ROS and
subsequent cellular oxidative damage, we sought to determine the
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downstream effects of 3-AT treatment on mitochondria. Results
presented in Figure 3 demonstrate that following the inhibition
of peroxisomal catalase activity with 3-AT, 2,7-DCF stained struc-
tures with mitochondrial morphology appear in treated cells. In
order to confirm whether these ROS staining structures were
mitochondria, we double-stained cells following 48 h of 3-AT
treatment, staining living cells for both general cellular ROS with
2,7-DCF, and mitochondrial ROS with MitoTracker Red Ros. The
results confirmed that the 2,7-DCF staining structures observed

FIGURE 4 | Catalase inhibition results in increased protein

carbonylation. Hs27 fibroblasts were grown in the presence or absence of
2 mM 3-AT for 4 days and protein carbonylation was determined. A
quantitative spectrophotometric assay involving the derivatization of
carbonyl groups with 2,4-dinitrophenylhydrazine was used, as described in
Section “Materials and Methods.” An ∼7% increase in total cellular
carbonyls was observed in cells treated with 3-AT (p < 0.05).

following the inhibition of peroxisomal catalase were indeed
mitochondria (Figure 5). Thus, the peroxisomal oxidative imbal-
ance generated by inhibiting catalase was yielding downstream
oxidative effects on mitochondria.

Time course experiments (Figure 6), staining for mitochon-
drial ROS with MitoTracker Red Ros demonstrated increased
staining in treated cells beginning 24 h after 3-AT treatment. As
was also observed in Figure 5, an increased mitochondrial ROS
staining was observed at 48 h of 3-AT treatment, this staining
appeared to be increased following 5 days of 3-AT treatment. Thus,
there appeared to be a progressive accumulation of mitochon-
drial ROS, beginning ∼24 h after the inhibition of peroxisomal
catalase.

INHIBITION OF MITOCHONDRIAL ACONITASE ACTIVITY
In order to determine whether the increase in mitochondrial ROS
was reflected in the inhibition of mitochondrial enzyme activities,
we chose to study the effects of 3-AT-induced catalase inhibition on
mitochondrial aconitase. One of the Krebs Cycle enzymes, aconi-
tase possesses an iron–sulfur cluster at its active site, and as such is
very sensitive to inactivation in an oxidizing environment (Gard-
ner et al., 1994). The inhibition of peroxisomal catalase resulted in
a greater than 90% inhibition in aconitase activity within 24 h of
treatment of cells with 3-AT (Figure 7). In order to confirm that
3-AT was not inhibiting aconitase directly, lysates from untreated
cells were assayed for aconitase in the presence of 3-AT (Figure 8).
No decrease in aconitase activity was observed in treated cell lysates
when compared with untreated controls. Thus the inhibition of

FIGURE 5 | Catalase inhibition increases mitochondrial DCF

staining. Hs27 fibroblasts were grown in the presence (top row) or
absence (bottom row) of 2 mM 3-AT for 48 h, after which they were
treated with the ROS-sensitive dye 2,7-DCF (left column) and the
mitochondrial ROS-sensitive dye MitoTracker Red CM-H2XRos (center

column). Cells were live-imaged using confocal microscopy employing
FITC optics for DCF and Texas Red optics for MitoTracker Red. Right
column is a false-color overlay of the DCF and MitoTracker images.
Images are representative of numerous fields, imaged under identical
conditions.

www.frontiersin.org April 2012 | Volume 3 | Article 108 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Walton and Pizzitelli Peroxisomal catalase and mitochondrial function

Table 1 | Effects of 3-AT treatment on pmp70-positive peroxisome

numbers per unit area of cell.

Time of treatment (h) 3-AT Peroxisomes per 1000 pixels

24 − 1.52 ± 0.50

24 + 1.70 ± 0.32

48 − 1.64 ± 0.44

48 + 2.04 ± 0.36

Average numbers of peroxisomes per unit area were not different between

treated and control groups at 24 h (p = 0.45), but were significantly different at

48 h (p < 0.05).

FIGURE 6 | Effects of treatment with 2 mM 3-AT on mitochondrial ROS

staining. Control Hs27 cells (left column) demonstrate less mitochondrial
ROS staining than 3-AT treated cells (right column) after 24 h (top row), 48 h
(middle row), and 5 days (bottom row). In addition, staining in 3-AT treated
cells appeared homogeneous throughout the mitochondria. Live cells were
imaged under identical conditions, and are representative of numerous
fields viewed and imaged.

mitochondrial aconitase was secondary to the effects of 3-AT on
peroxisomal catalase.

The recovery of mitochondrial aconitase activity following
removal of 3-AT paralleled the recovery of catalase activity,
with the restoration of control levels of aconitase activity being
observed after 24 h (Figure 7). However, in the presence of cyclo-
heximide, aconitase activity failed to recover following the removal
of 3-AT. While one possible explanation for these results is that the
peroxisomal catalase activity must be restored in order to correct
the cellular oxidative balance and thus the mitochondrial aconitase

activity, however, inhibition of aconitase by oxidation is known to
occur by both reversible and irreversible methods (Bulteau et al.,
2003). Therefore, it is also possible that the oxidatively damaged
aconitase protein must be replaced in order for the activity to be
restored.

EFFECTS OF PEROXISOMAL CATALASE INHIBITION ON
MITOCHONDRIAL FUNCTION
We have previously demonstrated the age-dependent decrease in
mitochondrial inner membrane potential in late-passage human
fibroblasts, which could be restored to normal, early-passage levels
by the introduction of catalase bearing the more efficient – SKL
peroxisomal targeting signal (Koepke et al., 2008). In light of this
correction of mitochondrial function, we sought to determine
whether the inhibition of peroxisomal catalase decreased the mito-
chondrial inner membrane potential in early-passage cells. Results
presented in Figure 9 indicate an increase in the monomeric form
of the JC-1 dye, indicative of a decrease in mitochondrial inner
membrane potential following treatment of cells with 3-AT, over
the 4-day time course. As we have previously observed the loss
of mitochondrial inner membrane potential in late-passage cells
(Koepke et al., 2007), and in cells treated with 3-AT over 20 popula-
tion doublings (Koepke et al., 2008), our present results imply that
the beginnings of the loss of inner membrane potential begins only
a few days following the loss of peroxisomal oxidative homeostasis.

DISCUSSION
Our interest in the order of the formation of cellular oxi-
dants is predicated on two previous observations. First, the
process described as “peroxisomal senescence,” that being the age-
dependant decrease in the import of peroxisomal proteins (Legakis
et al., 2002), particularly of catalase, begins in middle-passage
cells, before they demonstrate mitochondrial or other peroxi-
somal dysfunctions. Secondly, the restoration of mitochondrial
inner membrane potential that occurs following the targeting of
catalase-SKL to peroxisomes in late-passage cells (Koepke et al.,
2007) provides strong support to the hypothesis that oxidative
damage of peroxisomal origin occurs upstream of that derived
from mitochondria. In an attempt to address this order, we sought
to determine the effects of the inhibition of peroxisomal catalase
on mitochondrial functions in early-passage cells.

The catalase inhibitor, 3-amino-1,2,4-triazole, has been previ-
ously demonstrated to make a covalent bond with catalase during
its first reactive cycle (Margoliash and Novogrodsky, 1958; Mar-
goliash et al., 1960), forming an irreversible inhibitory complex.
This inhibition of catalase activity has been exploited in a num-
ber of ways, including the biochemical functioning (Middelkoop
et al., 1993) and structure of the enzyme (Kirkman and Gaetani,
1984), and the cellular effects of this inhibition (Sheikh et al., 1998;
Koepke et al., 2008). While it remains possible that 3-AT possesses
other, direct effects on other mammalian cellular constituents, no
effects similar to the direct binding and inhibition of catalase have
been reported. Thus, being cognisant of other potential effects of
3-AT, we employed this molecule to study the downstream effects
of catalase inhibition on mitochondrial function.

We observed the time and concentration dependent inhibi-
tion of peroxisomal catalase, as has been reported in other studies
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FIGURE 7 | Inhibition of peroxisomal catalase results in the inhibition

of mitochondrial aconitase. Hs27 cells were grown in the presence or
absence of 2 mM 3-AT for 24 h. Aconitase activity was determined using a
linked assay, as described in Section “Materials and Methods.” For
recovery experiments, Hs27 cells were treated with 3-AT for 24 h followed
by a 24 h recovery period (in the absence of 3-AT) with or without

100 μg/mL of cycloheximide, an inhibitor of protein synthesis. Results
indicate the inhibition of the peroxisomal antioxidant enzyme, catalase,
results in significant inhibition of the oxidatively sensitive mitochondrial
enzyme, aconitase (p < 0.05). While aconitase activity recovers following
the removal of 3-AT, this activity fails to recover and was undetectable in
the presence of cycloheximide.

FIGURE 8 | 3-AT does not directly inhibit aconitase activity. Untreated
Hs27 cell lysates were assayed for aconitase activity in the presence of
absence of 2 mM 3-AT. No significant decrease in aconitase activity was
observed in treated cell lysates when compared with untreated controls.

(Sheikh et al., 1998). The inhibition of catalase resulted in the accu-
mulation of ROS within the cells, and the subsequent formation
of cellular oxidative damage, including protein carbonyls.

Importantly, we observed oxidation-based changes to mito-
chondria in the treated cells. We have previously reported
increased mitochondrial oxidative changes, as indicated by
MitoROS staining, in cells treated with lower levels of 3-AT for
longer periods of time (Koepke et al., 2008). However, in this
study we demonstrate that the increase in mitochondrial oxidative
damage and the decrease in mitochondrial function occur very
rapidly following the inhibition of peroxisomal catalase. Within
24 h increases in mitochondrial ROS can be observed, and an

inhibition of the oxidation sensitive mitochondrial protein aconi-
tase can be measured. Thus, we demonstrate a linkage between
the loss of the peroxisomal oxidative balance and the loss of oxi-
dation sensitive components of the mitochondria. This places
peroxisomal dysfunction upstream of subsequent mitochondrial
effects. Recent results from Fransen and coworkers (Ivashchenko
et al., 2011) have employed redox sensitive probes and demon-
strated that excess ROS generated within peroxisomes disturbs
mitochondrial redox balance within a few minutes.

It has been established that the inhibition of catalase with
3-AT for 20 cell passages results in elevated levels of ROS, cre-
ating an oxidizing intracellular environment (Koepke et al., 2008).
Early-passage treated cells exhibited increased staining for the
ROS-sensitive dye, 2,7-DCF, as well as increased general levels of
protein carbonylation both of which are in agreement with pre-
vious long-term results reported by Koepke et al. (2008). A novel
finding of the present study was the observation that 3-AT treated
cells displayed not only a general increase in 2,7-DCF staining but
also specific sub-cellar regions of intensified staining which resem-
bled mitochondrial morphology. These structures were confirmed
as mitochondria by co-staining with 2,7-DCF and the MitoTracker
Red CM-H2XRos probe. Thus, these data support the hypothe-
sis that peroxisomally derived ROS elicited a downstream effect
causing an increase in mitochondrial ROS production or accumu-
lation. Indeed, mitochondria of 3-AT treated cells were shown to
accumulate ROS. This chain-reaction like effect is potentially sig-
nificant as it demonstrates how the uncoupling of antioxidant
defense of one cellular organelle, the peroxisome, leads to the
uncoupling of another, the mitochondria. 3-AT treated mouse
embryonic fibroblast cells have also been demonstrated to show
a dysregulation in mitochondrial redox status (Ivashchenko et al.,
2011). How exactly this effect is taking place is currently unclear
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FIGURE 9 | Effects of treatment with 2 mM 3-AT for 4 days on

mitochondrial inner membrane potential. Control Hs27 cells (upper two
rows) and 3-AT treated cells (lower two rows) were incubated with JC-1 dye
and imaged for the presence of the aggregate (left column, red) and the
monomeric (center column, green) forms of the dye. Live cells were imaged

under identical conditions, and are representative of numerous fields viewed
and imaged. The increase in the monomeric, green form of the dye is
indicative of a depolarization of the mitochondrial inner membrane. Treated
cells had a 30% higher mean pixel intensity than control cells (143 ± 14 vs.
110 ± 10) in the monomeric form of the dye (p < 0.05).

but a straightforward explanation may simply be that the mito-
chondrial antioxidant defense system becomes overwhelmed in
the presence of additional oxidative burden contributed by per-
oxisomally derived ROS. In particular, H2O2, expected to be the
dominant species of ROS generated through catalase inhibition
is freely diffusible across biological membranes and thus capable
of “spilling” out into other cellular compartments (Bienert et al.,
2006; Koopman et al., 2010). Hydrogen peroxide is not only dif-
fusible through biological membranes, regulated in part by lipid
composition, but may also pass through aquaporin (8) channels
present in the plasma and mitochondrial membranes (Bienert
et al., 2006). Hydrogen peroxide is also the enzymatic product
of superoxide dismutase. Therefore the accumulation of hydrogen

peroxide may be altering this reaction’s equilibrium, according to
the Le Chatelier’s Principle, resulting in an increase in mitochon-
drial superoxide concentration. It has also been suggested that
oxidative damage to the mitochondrial inner membrane proteins
that comprise the electron transport chain alters their efficiency
in electron transfer. This is proposed to lead to increased leakage
in electron flow to the terminal electron acceptor cytochrome C,
thus resulting in an increase in O−

2 and hydrogen peroxide genera-
tion (Bandy and Davison, 1990). Indeed it has been demonstrated
that Complex I deficiency results in a 2- to 10-fold increase in
hydroxyl radical production under basal conditions (Luo et al.,
1997). Furthermore, complexes I and IV show selectively dimin-
ished activities in aged rat brain and liver (Navarro, 2004) and
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are known to be dysfunctional in various age-associated neuro-
logical disorders (Navarro and Boveris, 2007). Experiments in
transgenic mice have demonstrated that targeting catalase to the
mitochondria increases the lifespan of these animals (Schriner
et al., 2005). Our results indicate that this localization of catalase
may ameliorate the mitochondrial effects of the excess hydrogen
peroxide.

Based on previous and current work, the following model as
to how peroxisomes may contribute to mitochondrial dysfunc-
tion in the cellular aging process is proposed. In this scenario
the relatively weak affinity of the PTS1 import cycling recep-
tor, Pex5, for the divergent (-KANL) targeting signal of catalase
leads to a pre-disposed disequilibrium between the import of
catalase and more effectively targeted, – SKL bearing, oxidases.
As the organelle slowly loses the ability to clear generated ROS,
the peroxisomal import machinery situated within the organelle’s
membrane becomes compromised. With the reduced function-
ing of the import machinery catalase import becomes even more
dramatically affected perpetuating a “negative spiral-like” effect.
This is supported by the observation that PTS1 import shows
reduced functionality in late-passage cells and while – SKL medi-
ated import is maintained (albeit with reduced efficiency) catalase
import is practically non-existent (Legakis et al., 2002; Koepke
et al., 2007). This progressively transitions the peroxisome into a
significant source of intracellular ROS, contributing to elevated
levels observed in late-passage cells. As the primary peroxisomal
ROS, hydrogen peroxide, is freely diffusible, it elicits oxidative
damage throughout the cell and in particular to mitochondria.
The resulting excessive oxidative burden may overwhelm the
mitochondrial antioxidant defense system and/or decrease the

efficiency of ETC complexes causing it to generate more ROS.
At the same time the oxidatively sensitive mitochondrial enzyme,
aconitase, becomes inactive as its active site is disassembled by
oxidative attack. This negative effect of peroxisome-derived oxi-
dants on mitochondrial function occurs within a very short time
course, certainly within a few hours. This is potentially detrimental
in two ways; the first being that loss of aconitase activity may com-
promise functionality of the tricarboxylic acid cycle which may
contribute to mitochondrial dysfunction over sufficient time and
secondly that its inactivation may result in an increase in free iron,
which is capable of escalating oxidative insult by catalyzing the
production of the more reactive hydroxyl radical through the Fen-
ton reaction. After prolonged incubation this process is believed
to culminate in the loss of mitochondrial inner membrane poten-
tial and subsequent impaired oxidative phosphorylation, which is
characteristic of late-passage and aged cells as well as certain age-
related pathologies. The loss of peroxisomal oxidative balance may
also mitigate some of the important protective “anti-aging” mito-
chondrial functions, as reviewed by Titorenko and Terlecky (2011).
Coupled with the long-term effects of catalase inhibition on mito-
chondrial function (Koepke et al., 2008) and the restoration of
mitochondrial inner membrane potential observed in late-passage
cells expressing peroxisomally targeted catalase-SKL (Koepke et al.,
2007) our present short-term results support the hypothesis that
peroxisomal oxidative damage is upstream of, and contributes to,
the mitochondrial damage observed in the aging process.
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