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The thalamus may be the critical brain area involved in sensory gating and the relay of
respiratory mechanical information to the cerebral cortex for the conscious awareness
of breathing. We hypothesized that respiratory mechanical stimuli in the form of tracheal
occlusions would modulate the gene expression profile of the thalamus. Specifically, it
was reasoned that conditioning to the respiratory loading would induce a state change
in the medial thalamus consistent with a change in sensory gating and the activation of
molecular pathways associated with learning and memory. In addition, respiratory loading
is stressful and thus should elicit changes in gene expressions related to stress, anxiety,
and depression. Rats were instrumented with inflatable tracheal cuffs. Following surgical
recovery, they underwent 10 days (5 days/week) of transient tracheal occlusion condition-
ing. On day 10, the animals were sacrificed and the brains removed. The medial thalamus
was dissected and microarray analysis of gene expression performed.Tracheal obstruction
conditioning modulated a total of 661 genes (p < 0.05, log2 fold change ≥0.58), 250 genes
were down-regulated and 411 up-regulated. There was a significant down-regulation of
GAD1, GAD2 and HTR1A, HTR2A genes. CCK, PRKCG, mGluR4, and KCJN9 genes were
significantly up-regulated. Some of these genes have been associated with anxiety and
depression, while others have been shown to play a role in switching between tonic and
burst firing modes in the thalamus and thus may be involved in gating of the respiratory
stimuli. Furthermore, gene ontology and pathway analysis showed a significant modulation
of learning and memory pathways. These results support the hypothesis that the medial
thalamus is involved in the respiratory sensory neural pathway due to the state change of
its gene expression profile following repeated tracheal occlusions.
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INTRODUCTION
The sensation of dyspnea, or breathlessness, is a prevalent symp-
tom in numerous pulmonary and cardiovascular diseases. This
conscious awareness of breathing requires the activation of higher
brain centers. The neural control pathway to the higher centers is
thought to be a gated process. Gating of incoming sensory infor-
mation is a way to control what and how much information will be
received by higher brain centers. Gating is thought to be a protec-
tive mechanism for humans and animals to prevent the conscious
perception of unnecessary stimuli and instead attend only to the
meaningful ones. One of the proposed brain areas functioning as
a gate for respiratory stimuli activating the cerebral cortex is the
thalamus (Chan and Davenport, 2008).

Eupneic breathing is usually not consciously perceived, mean-
ing that respiratory afferents during normal breathing are gated
out and do not reach higher brain centers. However, if ventilation
changes sufficiently or breathing is attended to, the sensation is
gated in and the animal becomes aware of its breathing (Chan
and Davenport, 2008). This awareness is usually associated with

distressing emotion (O’Donnell et al., 2007). The thalamus may
be involved in respiratory gating based on evidence from several
studies. Chen et al. (1992) showed that when respiratory drive
was stimulated as measured by increased phrenic nerve activ-
ity, previously tonically active thalamic single units switched to
rhythmic increases in firing that was associated with each res-
piration. Retrograde tracing experiments in cats indicated that
phrenic afferents activate thalamocortical projections (Yates et al.,
1994). Also, Zhang and Davenport (2003) showed that inspiratory
occlusions activated thalamic neurons in cats and rats. Positron
emission tomography (PET) studies in humans exposed to hyper-
capnia identified neuronal activation extending from the upper
brainstem, up through the midbrain, hypothalamus, and thala-
mus (Corfield et al., 1995). Other PET and functional magnetic
resonance imaging studies in humans have shown that voluntary
hyperpnea, or the behavioral modulation of breathing, activates
distinct cortical (primary sensorimotor cortices, supplementary
motor, and premotor cortex) as well as subcortical (thalamus,
globus pallidum, caudate, and cerebellum) structures (McKay
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et al., 2003). Previous studies using c-Fos, a marker for neuronal
activity, have shown that intrinsic, transient tracheal obstruction
(ITTO) in anesthetized animals activate neurons in the cerebral
cortex as well as in the medial thalamus (Vovk et al., 2006). In addi-
tion, ITTO modulated the gene expression profile of the medial
thalamus in anesthetized rats (Bernhardt et al., 2008), supporting
the role of the medial thalamus as an integral component in the
respiratory cortical neural pathway.

Respiratory information relayed through the thalamus reaches
cortical areas for recognition and discrimination, as well as the lim-
bic system for emotional processing (Davenport and Vovk, 2009).
It is the interplay between these brain areas that are responsible for
the generation of the perception of breathlessness. This feeling of
breathlessness is an aversive sensation. Animals and humans alike
modify their behavior to avoid feeling breathless. While it is known
that repeated exposure to ITTO in a conscious state changes load
compensation behavior (Pate et al., 2010), it is unknown if neuron
plasticity in the medial thalamus is induced by conscious chronic
exposure to ITTO. We hypothesized that repeated exposure to
ITTO in a conscious animal would modulate the gene expression
pattern of the medial thalamus. Repeated loading of the respira-
tory system via ITTO could change the state of thalamic gating,
such that an increase in sensory threshold would result in less
gating-in of aversive respiratory feedback.

Previously, we observed that, with ITTO in anesthetized rats,
the serotonin receptor HTR2A was up-regulated (log2 fold change
>1, p < 0.05; Bernhardt et al., 2008). Serotonin, as well as its recep-
tors and transporter have been implicated in the stress response,
anxiety, and depression (Graeff et al., 1996; Weisstaub et al., 2006;
Heisler et al., 2007; Harada et al., 2008). Chronic exposure to tra-
cheal occlusions in conscious rats is stressful and may show greater
modulation of serotonin and/or its targets in the thalamus. In
the present study, it was hypothesized that 10 days of exposure to
10 min trials of ITTO in chronically instrumented, conscious rats
would induce state gene expression changes in the medial thala-
mus; specifically, up-regulation of genes that are associated with
sensory gating and genes that have been implicated in the response
to stress, anxiety, and/or depression.

MATERIALS AND METHODS
ANIMALS
Eight male Sprague-Dawley rats (299 ± 43.05 g, Harlan Labs) were
housed two per cage in a temperature-controlled room (72˚F) on
a 12:12 light:dark cycle, and with free access to food and water.
All animal experiments were approved by the Institutional Animal
Care and Use Committee of the University of Florida. Rats were
divided into an experimental group (n = 4) and a control group
(n = 4). All rats underwent surgery for placement of the tracheal
occluder.

PLACEMENT OF TRACHEAL OCCLUDER
Rats were anesthetized using inhaled isoflurane gas (2–5% in O2).
Buprenorphine (0.01–0.05 mg/kg BW) and carprofen (5 mg/kg
BW) were administered preoperatively via subcutaneous injection.
The eyes were coated with petroleum ointment to prevent drying.
Incision sites were shaved and sterilized with povidone–iodine
topical antiseptic solution. The trachea was exposed ventrally in

the neck via a skin incision and blunt dissection of surrounding
connective tissues. An expandable cuff was sutured around the tra-
chea, two cartilage rings caudal to the larynx. The actuating tube
was routed subcutaneously and externalized, between the scapu-
lae. The tube was anchored to the skin using the closing sutures.
The neck incision was then closed using an interrupted suture
pattern.

ANALGESIA AND POSTOPERATIVE CARE
Preoperative analgesia consisted of buprenorphine (0.01–
0.05 mg/kg BW) and carprofen (5 mg/kg BW) administered via
subcutaneous injection. Following surgical instrumentation rats
were administered warm normal saline (0.01–0.02 ml/g BW) to
ensure proper hydration. Postoperative analgesia was provided for
at least 3 days using buprenorphine (0.01–0.05 mg/kg BW given
every 12–24 h) and carprofen (5 mg/kg BW given every 24 h). Rats
were closely observed for any signs of distress or pain.

EXPERIMENTAL PROTOCOL
Rats were placed in a plethysmograph and the externalized occlude
actuator was connected to a saline-filled syringe (Figure 1). Data
collection for the control group consisted of 15 min of recording
with no experimental manipulation. For the experimental group
the syringe was used to inflate and deflate the cuff bladder. Infla-
tion of the cuff compressed the trachea completely, occluding the
airway during both inspiration and expiration. Deflation restored
the trachea back to its original condition to allow unobstructed
breathing. The experimental group received a 2.5-min background
control recording period, followed by a 10-min experimental ses-
sion of ITTO, and ended with a 2.5-min post-test control period.
During the experimental session the rats underwent repeated
trials of occlusions lasting for 3–10 breaths (duration of occlu-
sion approximately 2.5–10 s) followed by approximately 30 s of
recovery (deflation of cuff), so that the trachea was occluded at
least 20 times within the 10-min trials (Figure 2). The control
group animals were surgically prepared, handled and placed in the
plethysmograph for the same duration as the experimental group
except the control animals were not exposed to the ITTO. Exper-
imental and control sessions were performed for 10 days (2 weeks
of 5 days/week) at approximately the same time of day. On day
10, the rats were sacrificed via overdose of anesthetic. The medial
thalamus was quickly excised, frozen in liquid nitrogen, and stored
at −80˚C until further use.

TOTAL RNA ISOLATION
Total RNA was isolated from medial thalamic tissue with RNA
Stat-60 (Tel-test, Friendswood, TX, USA). About 10–20 mg of the
frozen tissue was homogenized in Stat-60 and chloroform added.
The mixture was vortexed for 15 s and centrifuged at 12,000 g for
15 min at 4˚C. The upper aqueous phase containing the RNA was
carefully extracted. The extraction step was repeated and the RNA
precipitated with isopropanol. Following another centrifugation
at 12,000 g for 40 min at 4˚C, the pellet was washed twice with
80% ethanol and air dried. To inactivate RNases, the pellet was
resuspended in 40 μl RNA secure (Ambion, Austin, TX, USA) fol-
lowing the manufacturer’s protocol. A total of 10 μg of RNA was
treated with DNase to avoid contaminating DNA using DNA-
free (Ambion, Austin, TX, USA) following the manufacturer’s
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FIGURE 1 | Schematic of the experimental preparation for repeated ITTO conditioning in conscious rats. Rats were placed in a plethysmograph and the
actuator tube of the tracheal cuff was connected to a saline-filled syringe.

FIGURE 2 | Representative plethysmograph pressure traces for one occlusion trial on day 10. The period of occlusion is indicated on the plethysmograph
pressure. The large deflection of the signal at the beginning of occlusion is ascribed to a movement artifact due to the rat’s withdrawal reflex at the onset of
occlusion.

protocol. A total of 10 μg of RNA was treated with DNase to avoid
contaminating DNA using DNA-free (Ambion, Austin, TX, USA)
following the manufacturer’s protocol. The quality of total RNA
was assessed with the Agilent 2100 BioAnalyzer (Agilent Tech-
nologies, Palo Alto, CA, USA) and the quantity was determined
on a NanoDrop spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA).

MICROARRAY HYBRIDIZATIONS AND ANALYSIS
Rat whole genome microarrays (Amadid: 014879) were pur-
chased from Agilent Technologies (Palo Alto, CA, USA). The

Agilent one-color microarray hybridization protocol (One-Color
Microarray-Based Gene Expression Analysis, version 5.7, Agilent,
Palo Alto, CA, USA) was used for microarray hybridizations fol-
lowing the manufacturer’s protocol and recommendations. One
microgram of total RNA was used for all hybridizations. Com-
plementary cDNA synthesis, cRNA labeling, and hybridizations
were performed following the manufacturer’s kits and proto-
cols (QuickAmp Labeling Kit; Agilent Technologies, Palo Alto,
CA, ,USA). An Axon GenePix®4000B Microarray Scanner (Mol-
ecular Deviced Inc., Concord, ON, Canada) was used to scan
the microarrays. Data were extracted from microarray images
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using Agilent Feature Extraction software (Agilent Technologies,
Palo Alto, CA, USA). Consistent with the minimum informa-
tion about a microarray experiment (MIAME) standards (Brazma
et al., 2001), text versions of the raw data from this study have
been deposited at the Gene Expression Omnibus website and
are accessible through GEO series accession number GSE25152
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25152).

Linear models were firstly used to assess differential expression
(Smyth et al., 2005), then an empirical Bayes method was used to
moderate the SE. T -test for the samples was performed on normal-
ized log2 transformed signal ratios of each probe individually, fol-
lowed by multiple testing correction using a Benjamini–Hochberg
approach (Benjamini and Hochberg, 1995). Genes were consid-
ered differentially expressed if the p-value was ≤0.05 and the log2

fold change was ≥ ± 0.58, corresponding to a 1.5-fold down- or
up-regulation.

GENE ONTOLOGY AND PATHWAY ANALYSIS
Gene ontology (GO) annotations were derived from similarity
searches of the NCBI gene database. A blastn search for each of the
44,000 probes was performed to retrieve the GO annotation. Once
the GO annotations were retrieved, a GO tree was built follow-
ing the hierarchical structure for the whole array. Then, another
GO tree for the significant regulated genes was built. The two
trees were compared at each node by running a Fisher’s exact test
(p ≤ 0.05) when traversing the tree branches. Significantly over-
represented GO categories were identified by the Fisher’s p-value
and the false discovery rate was determined. Some of the genes
that showed significant modulation were scanned against the Path-
way Studio ResNet database (Ariadne Genomics, Rockville, MD,
USA). This database uses published information and catalogs the
relationships between biological entities. Pathway Studio® (Ari-
adne Genomics) was used to identify and graphically display the
functional interactions between the selected genes (Nikitin et al.,
2003).

REAL-TIME POLYMERASE CHAIN REACTION
A total of six differentially expressed genes were confirmed by real-
time polymerase chain reaction (RT-PCR). The genes tested were
HTR1A (serotonin receptor 1A, NM_012585), CCK (cholecys-
tokinin, NM_012829), CRHBP (corticotropin releasing hormone
binding protein, NM_139183), HTR2A (serotonin receptor 2A,
NM_017254), PRKCG (protein kinase C gamma, NM_012628),
and GAD1 (glutamic acid decarboxylase 1, NM_017007), using
18S (NR_003286) as a control. TaqMan Probes were obtained from
Applied Biosystems (Foster City, CA, USA). A TaqMan® RNA-to-
CT

™ 1-Step Kit was used following the manufacturer’s protocol
(Applied Biosystems, Foster City, CA, USA). Briefly, 500 ng of
total RNA was added to each well and nuclease-free water up to
a total volume of 8.5 μl. The master mix was prepared as recom-
mended by the manufacturer adding TaqMan® RT-PCR Mix (2×),
TaqMan® Gene expression assay, and TaqMan® RT Enzyme mix
(40×) up to a volume of 20 μl. All reactions were run in a 384-well
plate. The plate was briefly centrifugated and run in the ABI 7900
(Applied Biosystems, Foster City, CA, USA) using the following
conditions: RT step for 15 min at 48˚C, enzyme activation step for
10 min at 95˚C, annealing step for 1 min at 60˚C, for 40 cycles.

Data was analyzed using the ��Ct method (Applied Biosystems,
Foster City, CA, USA).

RESULTS
MODULATION OF GENE EXPRESSION PROFILE FOLLOWING ITTO
Statistical analysis of the microarray data showed that a total of
661 genes were altered (p < 0.05, log2 fold change ≥0.58) following
the 10-day occlusion protocol, with 250 down-regulated and 411
up-regulated (Supplementary Material). Table 1 shows some of
the significantly differentially modulated genes. These genes were
chosen based on their potential role thalamic neuron functioning,
as well as their implication in stress, anxiety, and depression. The
glutamic acid decarboxylase subtypes 1 and 2 (GAD1 and GAD2),
corticotrophin releasing hormone binding protein (CRHBP), and
the serotonin receptor subtypes 1A and 2A (HTR1A and HTR2A)
were found to be significantly down-regulated. Up-regulated genes
included short stature homeobox 2 (SHOX2), cholecystokinin
(CCK), protein kinase C (PRKCG), metabotropic glutamate recep-
tor subtype 4 (GRM4), and a potassium inwardly rectifying
channel (KCNJ9).

GENE EXPRESSION CONFIRMATION BY RT-PCR
Six genes were confirmed by RT-PCR. Both the statistical signifi-
cance and fold change direction for the six genes were confirmed
by RT-PCR. Table 2 shows the results from RT-PCR compared to
the microarray results.

Table 1 | Candidate genes significantly differentially regulated

following chronic ITTO.

Log fold

change

p-value Gene

symbol

Description

−2.14 0.0043 GAD1 Glutamic acid decarboxylase 1

−1.61 0.0256 GAD2 Glutamic acid decarboxylase 2

−1.38 0.0039 CRHBP Corticotropin releasing hormone

binding protein

−0.78 0.0396 HTR1A Serotonin receptor 1A

−0.59 0.0023 HTR2A Serotonin receptor 2A

+1.37 0.0009 SHOX2 Short stature homeobox 2

+1.36 0.0402 CCK Cholecystokinin

+1.22 0.0040 PRKCG Protein kinase C, gamma

+1.09 0.0085 GRM4 Glutamate receptor, metabotropic 4

+1.07 0.0060 KCNJ9 Potassium inwardly rectifying channel

Table 2 | RT-PCR and Microarray results comparison (p < 0.01).

Log fold

change

microarray

Log fold

change

RT-PCR

Gene

symbol

TaqMan® Assay

−2.14 −2.25 GAD1 Rn00690300_m1

−1.38 −3.54 CRHBP Rn00594854_m1

−0.78 −2.35 HTR1A Rn00561409_s1

−0.59 −2.07 HTR2A Rn00568473_m1

+1.36 +1.14 CCK Rn00563215_m1

+1.22 +1.01 PRKCG Rn00440861_m1
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GENE ONTOLOGY AND PATHWAY ANALYSIS
Table 3 shows GO categories for biological processes that were
significantly over-represented among the regulated genes (Supple-
mentary Material). Neurotransmitter signaling and learning and
memory were differentially modulated processes.

Pathway Studio was used to visualize changes of gene expression
following tracheal occlusions. The balance between the activi-
ties of up- and down-regulated genes involved in these pathways
determines the response. Figure 3 shows the significantly regu-
lated genes and pathways involved in learning and/or memory.
The up-regulated KCJN and GRM genes promote learning and/or
memory, while the down-regulated HTR and GAD genes inhib-
ited these pathways. Counteractive interactions between up- and
down-regulated genes exist between the HTR and KCNJ pathways.

Modulated pathways for cellular processes are depicted in
Figure 4. Cell proliferation is positively regulated by the down-
regulated HTR and GAD genes and negatively regulated by the
up-regulated GRM4, suggesting that this pathway could be less
active following chronic exposure to ITTO. Cell differentiation
appears to be promoted due to the positive regulation by DLH4
and the inhibition by GAD2. Several genes are involved in neu-
roprotection but the exact regulation is unknown. Cell death is
inhibited by HTR1A and CRHBP but also by CCK, complicating
a prediction on the direction of regulation on this pathway.

Figure 5 demonstrates the modulated pathways for cell sig-
naling. Most up-regulated genes, except for GRM4, positively
regulate calcium (Ca2+) export, membrane polarization, and
synaptic transmission. The up-regulated DLG4 inhibits HTR1A,
which was found to be down-regulated. HTR1A and HTR2A have
opposing effects on long term synaptic potentiation, membrane
polarization, and synaptic transmission.

DISCUSSION
The results of this study show ITTO modulation of gene expression
in the medial thalamus. Thalamic gene difference between control
rats and animals exposed to ITTO conditioning for 10 days had sig-
nificant up-regulation of 250 and down-regulation of 411 genes
in th medial thalamus. These results support out hypothesis that
repeated exposure to ITTO in a conscious animal would modulate
the gene expression pattern of the medial thalamus. In addition,
using pathway and GO analyses, we observed a change in the stress,
anxiety, and depression gene pathways and also modulation of

Table 3 | Significantly modulated gene ontology biological processes.

Name No. of

entities

Overlap p-value

Synaptic transmission 247 17 2.19 e−12

Learning and/or memory 42 5 1.11 e−5

Neurotransmitter transport 62 5 7.55 e−5

Neurotransmitter secretion 48 4 3.60 e−4

Regulation of neuronal synaptic

plasticity

26 3 7.85 e−4

Regulation of neurotransmitter

secretion

27 3 8.79 e−4

Learning 31 3 1.32 e−3

the learning and/or memory, cellular processes, and cell signaling
gene pathways. Hence we supported our hypothesis that 10 days
of exposure to 10 min trials of ITTO in chronically instrumented,
conscious rats would induce state gene expression changes in the
medial thalamus, specifically in gene pathways mediating, stress,
learned conditioned responses, and neural tissue remodeling.

THALAMIC FIRING MODE AND SENSORY GATING
Transmission in the thalamic relay neurons occurs via one of two
neuronal firing modes, tonic and burst (Ramcharan et al., 2000).
This response depends on the cells’ membrane potential and the
activity of T- (transient) and L- (long-lasting) type Ca2+ chan-
nels (Sherman and Guillery, 2002; Cheong et al., 2008). Tonic
firing occurs at relatively depolarized membrane potentials when
the T-channels are inactivated, and the firing of single action
potentials is dependent on suprathreshold activation. Burst fir-
ing occurs when the membrane is hyperpolarized. The T-channels
are de-inactivated and the next suprathreshold depolarization
activates the channels to produce an inward Ca2+ current. This
results in a low-threshold, all-or-none voltage spike that is usually
large enough to fire a high frequency cluster of action poten-
tials. L-type Ca2+ channels are involved in the production of
after-hyperpolarization, an important factor in determining the
firing rate of neuronal cells. Specifically, Cheong et al. (2008) have
shown that increased Ca2+ influx via these channels augments
after-hyperpolarization, which leads to both decreased tonic-firing
rates in thalamic relay neurons and increased gating of pain
stimuli.

It has been proposed that switching between firing modes
occurs in order to gate-out from the cerebral cortex extrinsic sen-
sory noise (McCormick and Bal, 1994), or to assist the animal
to attend to a specific stimulus (Sherman, 1996, 2001; Sherman
and Guillery, 2002). During tonic firing each depolarization from
a sensory stimulus produces one action potential. This linear
relationship results in an accurate transmission of information
through the thalamus to the cortex. Burst firing, on the other
hand, is non-linear because spontaneous activity can occur in the
absence of a stimulus. This high signal-to-noise ratio improves
the initial detectability of a stimulus. Sherman and Guillery (2002)
thus hypothesized that thalamic relay cells fire in burst mode when
an important stimulus is detected, after which the cell switches to
tonic mode for accurate relay of that input. A finding support-
ing this hypothesis is that tonic firing is increased the more alert
the animal is (Ramcharan et al., 2000; Swadlow and Gusev, 2001).
Furthermore, increased bursting and decreased tonic firing of thal-
amic neurons has been shown to reduce pain responses, suggesting
that burst firing is associated with gating out of afferent sensory
signals (Cheong et al., 2008).

Switching between firing modes requires a shift in membrane
potential that is sufficiently sustained to inactivate or de-inactivate
the T-channels. The slow metabotropic receptors are most likely
responsible for the sustained voltage change. Specifically, stud-
ies have demonstrated that depolarization (inactivate T-channels)
occurs through metabotropic glutamate receptors from the cor-
tex and hyperpolarization (de-inactivate T-channels) through
GABA receptors from reticular and/or interneuronal inputs
(Sherman, 1996, 2001; Sherman and Guillery, 2002). Several
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FIGURE 3 | Pathway analysis of transcripts (p < 0.05) involved in the biological processes of learning and/or memory.

FIGURE 4 | Pathway analysis of transcripts (p < 0.05) involved in cell processes.

neurotransmitters, such as serotonin, glutamate, acetylcholine,
and norepinephrine, have been shown to facilitate the transition
between thalamic firing modes (McCormick and Bal, 1994). In the
present study, several genes were found to be significantly modu-
lated following chronic ITTO and that could be important in the
thalamic firing and thus gating activity.

KCNJ9 (or GIRK channel or Cir3 channels, potassium inwardly
rectifying channel, subfamily J, member 9)
G-protein inwardly rectifying potassium (GIRK) channels medi-
ate the synaptic actions of numerous neurotransmitters in the

mammalian brain and play an important role in the regulation of
neuronal excitability in most brain regions through activation of
various G-protein-coupled receptors (Saenz del Burgo et al., 2008).
Activation of GIRK channels causes membrane hyperpolarization,
and thus the channels play an important role in the inhibitory reg-
ulation of neuronal excitability (Kobayashi et al., 2004). GIRK
channels are widely expressed in brain nuclei and are co-expressed
with serotonergic,GABAergic,glutamatergic, and cholinergic neu-
rons throughout the brain (Saenz del Burgo et al., 2008). Thus,
the interplay between the neurotransmitters and GIRK channels
in addition to hyperpolarization could result in switching of the
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FIGURE 5 | Pathway analysis of transcripts (p < 0.05) involved in cell signaling.

thalamic firing mode. GIRK2-deficient mice have been shown to
exhibit reduced anxiety and elevated motor activity (Kobayashi
et al., 2004); thus an up-regulation in GIRK as found in this
study suggests increased anxiety which may be related to decreased
sensory gating (Chan and Davenport, 2010).

GRM4 (or mGluR4, metabotropic glutamate receptor 4)
Glutamatergic neurotransmission is involved in most aspects of
normal brain function and can be perturbed in many neuropatho-
logic conditions (Niswender and Conn, 2010). l-glutamate is the
major excitatory neurotransmitter in the central nervous sys-
tem and activates both ionotropic and metabotropic glutamate
receptors (Kew and Kemp, 2005). Grm4 belongs to group III
metabotropic glutamate receptors. Agonists of group III mGluRs
have been shown to exert antidepressant-like effects, possibly due
to a decrease in excitatory glutamatergic neurotransmission (Klak
et al., 2007). A recent study in protein lipase C-knockout mice
demonstrated that switching between tonic and burst firing in
thalamic neurons occurs through the simultaneous modulation of
T- and L-type Ca2+ channels possibly through a transduction cas-
cade that includes metabotropic glutamate receptors and protein
kinase C (Cheong et al., 2008). These mice, which show decreased
visceral pain responses, exhibited increased bursting and decreased
tonic firing in thalamic neurons, suggesting that burst firing acts
as an inhibitor of pain signal transmission to the cortex. Thus, the
increase in GRM4 may be related to increased aversive affective
responses to ITTO similar to human increased response to threat
of load (Lang et al., 2010).

PRKCG (protein kinase C, gamma)
Protein kinase C (PRKC) is a family of serine- and threonine-
specific protein kinases that can be activated by Ca2+ and the
second messenger diacylglycerol (Huang, 1989). These molecules
phosphorylate a wide variety of protein targets and are involved in
diverse cellular signaling pathways. The gamma subunit of PRKC
is expressed solely in neurons in the brain and spinal cord (Saito
and Shirai, 2002). This specific kinase has been implicated in sev-
eral neuronal functions, including long term potentiation and long
term depression (Saito and Shirai, 2002). It has also been shown to
associate directly with the GluR4 AMPA receptor subunit; GluR4
phosphorylation would allow for regulation of synaptic function
and plasticity (Correia et al., 2003). As mentioned above, PRKC is
involved in switching between burst and tonic firing. Specifically,
down-regulation of PRKC activity in thalamic relay neurons has
been attributed to reduced pain responses, or increased sensory
gating (Cheong et al., 2008). In the present study, we found an
up-regulation of PRKC, suggesting that chronic exposure to ITTO
results in decreased gating in the thalamus.

CCK (cholecystokinin
Cholecystokinin is one of the most abundant neuropeptides in
the brain and acts as a neurotransmitter and neuromodula-
tor of dopamine, serotonin, endogenous opioids, GABA, and
excitatory amino acids (Harro and Vasar, 1991). These char-
acteristics support an important role in regulation of many
behavioral phenomena, including anxiety (Moran and Schwartz,
1994) and learning and memory (Gulpinar and Yegen, 2004).

www.frontiersin.org May 2011 | Volume 2 | Article 24 | 7

www.frontiersin.org
http://www.frontiersin.org/respiratory_physiology/archive


Bernhardt et al. Tracheal occlusion conditioning

Indeed, CCK agonists have been shown to be anxiogenic and
CCK antagonists are anxiolytic in a variety of animal species
(Harro et al., 1993; Rotzinger and Vaccarino, 2003). CCK has
also been demonstrated to have close interaction with GABAer-
gic inhibitory neurotransmission, mediated probably through
CCK-B receptors, which could be the neurochemical substrate
for anxious behavior (Harro and Vasar, 1991).Whole-cell patch
clamp experiments have shown that CCK depolarizes somatosen-
sory cortex neurons long-lastingly and thus may lead to pro-
longed discharge of these corticothalamic glutamatergic neu-
rons and slow depolarization of thalamocortical neurons, shift-
ing the firing mode from burst- to tonic-firing mode, thus
being critical in sensory information processing (Chung et al.,
2009). In the present study, ITTO conditioning up-regulated the
CCK gene suggesting a shift in burst to tonic activity in the
thalamus.

CHRONIC EXPOSURE TO ITTO MODULATES GENES INVOLVED IN
STRESS, ANXIETY, AND DEPRESSION
Chronic airway occlusion, as occurs in diseases such as chronic
obstructive pulmonary disease, has been implicated in an
increased incidence of anxiety and depression (Di Marco et al.,
2006; Omachi et al., 2009). In the present study, several genes were
found to be significantly altered following tracheal occlusions that
play important roles in the development of depressive and other
psychological disorders.

GAD1 (or GAD67, glutamate decarboxylase) and GAD2 (or GAD65)
GAD1 and GAD2 are two isoforms of glutamate decarboxylase.
These enzymes catalyze the reaction to synthesize GABA from
glutamate and are responsible for keeping cortical GABA levels at
steady state (Soghomonian and Martin, 1998). Thus, a reduced
expression of GAD1 and GAD2 may lead to decreased GABA lev-
els and less inhibition of downstream targets. Decreased GAD67
expression has been implicated in schizophrenia and bipolar
disorder with psychosis (Guidotti et al., 2000).

CRHBP (corticotrophin releasing hormone binding protein)
CRHBP is an important modulatory protein that negatively reg-
ulates corticotrophin releasing hormone (CRH) activity. CRHBP
binds to CRH and thus reduces the ability of CRH to activate the
CRHR1 and CRHR2 receptors (Jahn et al., 2002). CRHBP is a
physiologically relevant reservoir of endogenous CRH, as 40–60%
of human brain CRH is bound by CRHBP (Behan et al., 1995).
CRH is released in response to stress (Holsboer and Ising, 2010).
The reduction in CRHBP in our ITTO conditioned rats could lead
to less binding of CRH and more free CRH which can then activate
its receptors and elevate the stress response. In a CRHBP-deficient
mouse model, Karolyi et al. (1999) have demonstrated increased
anxiogenic behavior as tested on the elevated plus maze and open
field. A decrease in CRHBP has also been suggested to play a role
in the pathogenesis of major depressive disorder by inhibiting the
function of CRH (Van Den Eede et al., 2005).

HTR (serotonin receptors)
The serotonin system has been shown to play a critical role
in a variety of human psychopathological conditions, particu-
larly mood and anxiety disorders (Hensler, 2006). Antidepressant

treatment has thus focused on modulating serotonergic neuro-
transmission (Jones and Blackburn, 2002). One of the challenges
of the serotonin system is the complexity of the pathway with 14
known receptor varieties categorized into seven receptor subtypes
(Hoyer et al., 2002).

The HTR1A subtype exists on pre-synaptic neurons in raphe
nuclei as well as on post-synaptic neurons in other brain regions,
such as the hippocampus and the thalamus. Agonists have dif-
ferent effects depending on the location of the receptors, in that
agonists to pre-synaptic receptors result in anxiolytic behaviors
while agonists to post-synaptic receptors lead to anti-depressive
behaviors (Schreiber and De Vry, 1993). Kennett et al. (1987)
have demonstrated that the 5-HTR1A agonist 8-hydroxy-2-(di-n-
propylamino) tetralin (8-OH-DPAT) may have rapid antidepres-
sant properties. Partial HTR1A agonists may also be effective in the
treatment of generalized anxiety disorder (Jones and Blackburn,
2002) and schizophrenia (Millan, 2000). HTR1A knockout mice
show elevated anxiety levels in open field, elevated-zero maze, and
novel-object assays (Heisler et al., 1998) and are less reactive, more
anxious, and possibly less aggressive than the wild-types (Ramboz
et al., 1998). Dysfunction of this receptor has been suggested to also
play a role in the genesis of major depressive disorder in humans
(Savitz et al., 2009). PET studies in patients with posttraumatic
stress and panic disorders (Neumeister et al., 2004) and depres-
sion (Drevets et al., 1999) have shown reduced HTR1A receptor
binding potential and reduced receptor availability (Nash et al.,
2008).

In an acute ITTO study in anesthetized rats we have shown
that the serotonin receptor HTR2A was up-regulated following
one 10 min occlusion trial (Bernhardt et al., 2008). This is in gen-
eral agreement with the suggestion that anxiety is the result of
a hypersensitive serotonin system (Heisler et al., 1998). However,
contrary to the acute ITTO response, in the present study we found
10 days of chronic exposure to ITTO down-regulated HTR2A and
HTR1A receptor genes. Thus, chronic ITTO conditioning down-
regulation of HTR1A and HTR2A suggests serotonergic receptor
expression may be reduced either as a result of excessive release if
serotonin or an adaptive hyposensitivity response of thalamic neu-
rons with 10 days of ITTO conditioning. The down-regulation of
serotonin receptors may therefore be related to anxiety (Heisler
et al., 1998) or impulsivity and depression (Schreiber and De Vry,
1993).

CHRONIC EXPOSURE TO ITTO MODULATES PATHWAYS INVOLVED IN
LEARNING AND MEMORY, CELL PROCESSES, AND CELL SIGNALING
Ten days of ITTO resulted in a behavioral adaption in order to
cope with the stress of the occlusion trials. These adaptations were
characterized by decreased exploratory behavior, increased sub-
missive state, and even breath holding (Pate et al., 2010). This
finding is consistent with learned helplessness. Memory of previ-
ous occlusion trials may, thus, alter molecular pathways of learning
and/or memory. Indeed, in the present study, most of the genes
that were found to be up-regulated have been shown to increase
learning and/or memory, while the ones that were down-regulated
decrease these pathways (Figure 3). The modulation of the learn-
ing/memory gene pathway suggests a behavioral conditioning
effect of ITTO in response to 10 days of occlusion exposure.
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Modulated cellular processes included cell proliferation, differ-
entiation, neuroprotection, and cell death. A common trend in
the analysis of these pathways was the inhibitory regulation of
cell death by up-regulated genes, while neuroprotection was pos-
itively regulated. Cell proliferation seemed to be down-regulated
because the genes that are activating this process showed decreased
expression. However, cell differentiation appeared to be increased,
both by positive regulation of up-regulated genes as well as by
inhibitory regulation of down-regulated ones suggesting thalamic
neural remodeling in response to chronic exposure to ITTO.

Differentially regulated genes involved in cell signaling were
Ca2+ transport, membrane polarization, synaptic potentiation,
and transmission. Involvement of these genes is less clear and often
in opposite directions. The balance of up- and down-regulation
of genes in these pathways may be important in determining the
final outcome behaviors. The GO category synaptic transmission
was one of the most significantly modulated biological processes
(Table 3) suggesting thalamic neuronal functional reconfiguration
in response to 10 days of ITTO conditioning.

CONCLUSION
This study identified 661 genes in the medial thalamus signifi-
cantly modulated by repeated exposure to ITTO in conscious rats.
Thalamic genes related to anxiety, depression, and sensory infor-
mation processing were significantly changed. These results are
consistent with the thalamus gating respiratory mechanosensory

information to the somatosensory and affective cortices. We also
found the pattern of gene expression with chronic ITTO differ-
ent from acute (10 min) exposure to ITTO. Chronic ITTO has a
conditioning effect on behavioral responses of rats (Pate et al.,
2010). The ITTO elicited changes in the state gene expression
profile of the medial thalamus suggests modulation of the learn-
ing and/or memory, cellular processes and cell signaling gene
pathways. Modulation of these pathways may provide a neuromol-
ecular foundation for respiratory afferent information processing.
A change in processing of information to higher brain centers
may be the functional basis for the somatosensory and affective
behavioral responses to ITTO respiratory conditioning. The res-
piratory load compensation response has been shown to be altered
in conscious rats following 10 days of repeated ITTO (Pate et al.,
2010). This alteration may be due to a change in thalamic neu-
ronal function that, in part, regulates the behavioral control of
breathing.
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