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Background: Melanoma is highly immunogenic and therefore suitable for

immunotherapy, but the efficacy is limited by response rate. In several types of

tumor, tumor mutation burden (TMB) and immune infiltration have been reported to

predict the response to immunotherapy, although each has its limitations. In the current

study, we aimed to explore the association of TMB with immune infiltration and prognosis

in cutaneous melanoma.

Methods: The data of cutaneous melanoma used for analyses was downloaded from

The Cancer Genome Atlas (TCGA) database. The mutation data was sorted using

“maftools” R package. TMB was estimated and then patients were divided into two

groups based on TMB. The association of TMBwith prognosis and clinical characteristics

was explored. Differential analysis between two TMB groups was performed using

“DESeq2” R package to identify differentially expressed genes (DEGs). The function

enrichment analyses of DEGs were conducted to screen critical pathways. Besides,

DEGs were further filtered to identify two hub genes, based on which a risk score

model and nomogram for predicting prognosis were conducted, and the validation was

performed using three datasets from Gene Expression Omnibus (GEO) database. Finally,

CIBERSORT algorithm and TIMER database were used to assess the effect of TMB and

hub genes on immune infiltration.

Results: The most common mutation was C > T, and the top three frequently

mutated genes were TTN, MUC16, and BRAF. Higher TMB indicated better

survival outcomes and lower pathological stages. 735 DEGs were identified and

mainly involved in immune-related and adhesion-related pathways. The risk score

model and nomogram were validated using receiver operating characteristic (ROC)

curves and calibration curves, and exhibited relatively high predictive capability.

Decision curve analysis (DCA) was used to assess clinical benefit. As for

immune infiltration, the proportion was higher for macrophages M1 and M2 in

the high-TMB group, while lower for memory B cells and regulatory T cells.
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Conclusions: In cutaneous melanoma, TMB was positively correlated with prognosis.

The risk score model and nomogram can be conveniently used to predict prognosis. The

association of TMB with immune infiltration can help improve the predicting methods for

the response to immunotherapy.

Keywords: cutaneous melanoma, tumor mutation burden, immune infiltration, gene expression profile, functional

enrichment analysis, prognosis, bioinformatics analysis

INTRODUCTION

Melanoma is a malignant tumor derived from pigment-
producing melanocytes (1). In the past decades, the incidence
of melanoma has increased rapidly (2, 3). In the United States,
melanoma is now estimated as the fifth most common cancer,
and the probability of developing melanoma in a lifetime is 1
in 63 (4, 5). Early-stage melanomas have good prognosis after
surgery, but even relatively small melanomas have metastatic
potential because of the loss of cellular adhesion (6–8). Prior
to 2011, chemotherapy was regarded as the standard treatment
for metastatic melanoma, with a 5-year survival rate of 15.7%
(9). Fortunately, melanoma is one of the most immunogenic
tumors and therefore has the greatest potential for response to
immunotherapy (10), so that it has been the most important
tumor driving the development of solid tumor immunotherapy,
especially immune checkpoint inhibitors (ICIs) targeting such
as programmed cell death protein 1 (PD-1), PD-1 ligand (PD-
L1), and cytotoxic T lymphocyte antigen 4 (CTLA4) (11). ICIs
have greatly improved the survival of patients with advanced
melanoma. In recent clinical trials, the 5-year survival rate
treated with pembrolizumab and combination of nivolumab and
ipilimumab in advanced melanoma was 34 and 52%, respectively
(12, 13).

Considering the different therapeutic efficacy among patients,
it is necessary to predict the response to immunotherapy.
Although PD-L1 immunohistochemistry is the most widely
used test to estimate the treatment response to ICIs, it has
no influence on the treatment decision in most cases (14, 15).
Since melanocytes are usually exposed to a large amount of
ultraviolet radiation and the accumulated mutations, melanomas
have a higher mutational load than other tumors (16), which
may increase the efficacy of ICIs by generating and presenting
immunogenic neoantigens (17, 18). Studies have found that
predicting the response to immunotherapy through the overall
mutational load may serve as a new perspective (19, 20).

Tumor mutation burden (TMB), defined as the total
number of somatic coding errors, base substitutions, and indel
mutations per million bases (21), can effectively estimate overall
mutational load and neoantigenic load (22). Besides, many
studies discovered that TMB can be used as a biomarker to
predict the response to immunotherapy and the efficacy of ICIs
inmany cancer types includingmelanoma (23–27). However, few
studies have focused on the TMB-related immune cell infiltration
and gene signature in melanoma, so we conducted the current
study to explore the prognostic role of TMB and the association
with immune infiltration and gene signature in melanoma.

In the current study, based on the data of cutaneous
melanoma from The Cancer Genome Atlas (TCGA) database,
we explored the correlation between TMB and prognosis,
differentially expressed genes (DEGs) between high- and low-
TMB groups, the functional enrichment of DEGs, and the
association of TMB with immune infiltration. Additionally, we
constructed a risk score model according to TMB-related gene
signature, completed the verification in three Gene Expression
Omnibus (GEO) datasets, and developed a nomogram in
combination with clinical characteristics.

METHODS

Data Source and Mutation Analysis
Somatic mutation data in the “Masked Somatic Mutation” type
processed by VarScan2 (28), transcriptome profiles in HTseq-
Counts workflow type, and clinical data of skin cutaneous
melanoma (SKCM) patients were downloaded from TCGA-
SKCM project in TCGA database (https://portal.gdc.cancer.
gov/). Mutation analysis, the first step of process, was
conducted based on all available somatic mutation data of
patients without exclusion. Subsequent analyses were based
on transcriptome profiles and clinical data, so patients with
incomplete information and zero survival time were excluded.
Besides, the transcriptome profiles and clinical data of validation
sets were obtained from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/). Subsequently, we visualized the somatic
mutation data in Mutation Annotation Format (MAF) using
the “maftoools” R package, which provides a large amount of
commonly used analysis and visualization modules in cancer
genomic studies (29).

TMB Value Estimation and Prognostic
Analysis
We extracted the somatic mutation information through a Perl
script, after which TMB value can be estimated through dividing
the number of somatic mutations by the total length of exons.
Then we utilized R to merge the patient’s TMB information
and clinical information, including survival time and survival
status. The optimal cutoff value of TMB was determined using
maximally selected rank statistics from the “maxstat” R package,
which is an outcome-oriented method providing the cut-point
that correspond to the most significant relation with survival.
Each TMB value was taken in turn as the cutoff value to find the
situation with the most significant difference in survival between
two groups. After dividing the patients into high- and low-TMB
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groups based on the optimal cutoff value, we performed Kaplan–
Meier (K–M) survival analysis and log-rank test to compare the
difference of overall survival (OS) between the above two TMB
groups. Additionally, we explored the relationship between TMB
and several clinical features including age, gender, pathological
stage, and American Joint Committee on Cancer (AJCC) TNM
staging. Wilcoxon rank-sum test was employed if patients were
divided into two groups based on the clinical feature, while the
Kruskal–Wallis test was used for more than two groups.

Identification of DEGs
According to the above groups based on TMB, we performed
normalization and differential gene expression analysis using
the “DESeq2” R package. The normalization was based on
the “Relative Log Expression” method, which is specifically
implemented in the “DESeq2.” The scaling factors were
calculated using the median ratio between gene abundances and
the geometric mean. As a method for differential analysis of
transcriptome count data, DESeq2 improves the interpretability
and stability of estimation because of shrinkage estimators for
fold change (FC) and dispersion (30). The differential gene
expression analysis was conducted. Then we specified |log2FC|
> 1.5 and false discovery rate (FDR) < 0.05 as cutoffs to identify
qualified DEGs for subsequent analyses, and generated heatmap
using the “pheatmap” R package.

Functional Enrichment Analysis
After obtaining the Entrez-ID of each DEG through the
“org.Hs.eg.db” R package, we performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses and visualized the results, using the
“clusterProfiler,” “enrichplot,” and “ggplot2” R packages (31). The
interactions between significant KEGG pathways were further
visualized by Cytoscape software (version 3.8.0) (32). In addition,
gene set enrichment analysis (GSEA), which is not restricted
by DEGs, was used to understand TMB-related pathways. With
GSEA software (version 4.0.3) (http://software.broadinstitute.
org/gsea/index.jsp) (33), we utilized TMB as a phenotype label
and chose the gene set named “c2.cp.kegg.v7.1.symbols.gmt”
from Molecular Signature Database as the reference.

Protein-Protein Interaction Network
Based on the STRING database (https://string-db.org/) (34),
the protein-protein interaction (PPI) network of DEGs was
constructed, followed by importing the results into Cytoscape
software. Cytohubba plugin was used to rank nodes and identify
hub objects from the complex network by “degree ranking
method” (35). Molecular Complex Detection (MCODE) plugin
was used to detect densely connected regions and identify clusters
in the network (36). Finally, we performed functional enrichment
analyses on the subnetworks obtained fromMCODE.

Construction and Verification of Risk Score
Model
A list of 1,811 immune-related genes was downloaded from the
Immunology Database and Analysis Portal (ImmPort) database
(https://www.immport.org/shared/genelists/) (37, 38), followed

by intersecting the list with DEGs and further visualization
via “VennDiagram” R package. Based on the expression
level of differentially expressed immune genes, batch survival
analysis was performed to evaluate the relationship between
gene expression after log2(count+1) transformation and OS
of melanoma patients. Then the significant candidate genes
were further filtrated via least absolute shrinkage and selector
operation (LASSO) and stepwise regression. We developed a risk
score model using the product of the mRNA level of qualified
hub genes and respective regression coefficients. Subsequently,
we performed K–M analysis based on the risk score and receiver
operating characteristic (ROC) curve via the “survivalROC” R
package to evaluate the performance of the model.

As for external validation, according to the filter criteria as:
(1) patients had been diagnosed as melanoma, (2) the datasets
include complete survival information, and (3) include enough
sample sizes (n > 50), three melanoma datasets were chosen,
GSE65904 (n = 210), GSE54467 (n = 79), and GSE22153
(n = 54) as validation sets in the GEO database. We conducted
log2(count+1) transformation of the gene expression data, took
the average value when duplicate data was found, and then
verified the predictive accuracy of the risk score model using the
ROC curve and K–M analysis.

Development and Evaluation of the
Nomogram
Through univariate Cox regression analysis, we evaluated the
significance of prognostic risk score and clinical features to
predict survival outcomes, using P < 0.05 as the cutoff. Then
significant factors were further assessed by multivariate Cox
regression analysis to exclude confounding factors, followed by
performing the nomogram via the “rms” R package. To evaluate
the predictive accuracy of the nomogram in TCGA cohort,
we calculated Harrell’s concordance index (C-index) using the
“survival” R package to quantify the discrimination performance,
and plotted calibration curves of survival probability at different
years via Hosmer–Lemeshow test. ROC curves were performed
to evaluate the accuracy of the nomogram. In addition, decision
curve analysis (DCA) was conducted to assess the clinical
outcomes of different decision strategies (39).

Evaluation of Immune Cell Infiltration
As a versatile deconvolution algorithm for quantifying cell
fractions of complex tissues from gene expression profiles (40),
the CIBERSORT (R scrip v 1.03), with leukocyte signature matrix
termed LM22 as a template, can calculate the distribution of
22 types infiltrating immune cells based on the transcriptome
profiles (41). After calculation and filtration with P < 0.05, the
proportions of different immune cells in each melanoma sample
were exhibited via barplot function. As for the association with
TMB level, Wilcoxon rank-sum test was used to compare the
differences in the content of each type of immune cells between
two TMB groups, and the results were visualized using the
“vioplot” R package.

Tumor Immune Estimation Resource (TIMER) web server
(https://cistrome.shinyapps.io/timer/) pre-calculated the
abundance of six tumor-infiltrating immune subsets, including
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B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils,
and dendritic cells, in samples across 32 cancer types from
TCGA (42). The modules in TIMER were used to explore

the association of immune infiltration with gene expression
and survival outcomes in the current study. In melanoma,
for each hub gene involved in the risk score model, Somatic

FIGURE 1 | Analyses of somatic mutation profiles in melanoma samples. (A) Waterfall plot of detailed mutation information of top 30 genes in each sample, with

various color annotations to distinguish different mutation types. (B–D) According to different classification categories, missense mutation, SNP, and C > T mutation

accounted for the overwhelming majority. (E) The total mutation number in each sample. (F) Box plots of each variant classification in each sample. (G) Top 10

mutated genes in melanoma. SNP, single nucleotide polymorphism; SNV, single nucleotide variants.
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Copy Number Alterations (SCNA) module of TIMER tool was
used to compare the infiltration levels among samples with
different SCNA, including deep deletion, arm-level deletion,
diploid/normal, arm-level gain, and high amplification (43).
Furthermore, we explored the relationship between six tumor-
infiltrating immune subsets and OS. Using the Survival module
of TIMER, a Cox regression model was constructed based on the
abundance of six immune cells in melanoma.

Statistical Analysis
R software (version 4.0.0) was used for statistical analyses, and
the R packages used in each step are mentioned above. The
R codes involved in this study could be downloaded from
the link https://github.com/kkang97/TMB-melanoma. Survival
analyses were performed by the K–M method and the log-rank
test. Univariate and multivariate Cox regression analyses were
used to evaluate the significance of prognostic factors. Wilcoxon
rank-sum test and Kruskal–Wallis test were used for subgroup
differential analyses. All statistical tests were two-sided, and P <

0.05 was considered statistically significant.

RESULTS

Mutation Analysis
Somatic mutation profiles of 467melanoma patients downloaded
from TCGA database were analyzed and visualized via the
“maftools” R package. The waterfall plot was performed to
exhibit the detailed mutation information in each sample, with
various color annotations to distinguish different mutation
types (Figure 1A). According to further comparison, missense
mutations, single-nucleotide polymorphism (SNP), and C >

T mutation accounted for the vast majority of different
classification categories, respectively (Figures 1B–D). Counting
each sample separately, the median of mutations in the sample
was 254, and the maximum was 13,854 (Figure 1E). In addition,
we exhibited the number of each variant classification in the
different sample via box plots (Figure 1F). The top 10 mutated
genes in 467 melanoma patients are TTN (72%), MUC16
(67%), BRAF (51%), DNAH5 (49%), PCLO (44%), LRP1B (38%),
ADGRV1 (35%), RP1 (33%), ANK3 (32%), DNAH7 (32%)
(Figure 1A). Moreover, counting the multiple hits separately and
considering the total number of mutations, the top 10 genes were
different from the previous ones (Figure 1G).

Correlation of TMB With Prognosis and
Clinical Features
Since the data of somatic mutation, transcriptome profiles, and
clinical information were collected from highly overlapping
melanoma patient population, we selected 449 patients with
complete information above for subsequent analyses (Table 1),
in order to improve the credibility of the conclusions with only a
little cost of data loss. After estimated TMB, we calculated the
optimal cutoff value of 4.22 based on maximally selected rank
statistics, and divided 449 patients into high- (n = 312) and
low-TMB groups (n = 137; Figure 2A). According to the K–
M curve, the high-TMB group had significantly better survival
outcomes, with the log-rank test of P < 0.0001 (Figure 2B).

TABLE 1 | Clinical baseline of 449 melanoma patients in TCGA cohort.

Variables Number (%)

Status

Alive 234 (52.12%)

Dead 215 (47.88%)

Age 57.9 ± 15.6

Gender

Male 280 (62.36%)

Female 169 (37.64%)

Pathological stage

Stage 0 6 (1.34%)

Stage I 85 (18.93%)

Stage II 133 (29.62%)

Stage III 168 (37.42%)

Stage IV 22 (4.90%)

Unknown 35 (7.80%)

AJCC-T stage

T0/Tis 30 (6.68%)

T1 40 (8.91%)

T2 76 (16.93%)

T3 88 (19.60%)

T4 144 (32.07%)

Unknown 71 (15.81%)

AJCC-N stage

N0 221 (49.22%)

N1 73 (16.26%)

N2 48 (10.69%)

N3 54 (12.03%)

Unknown 53 (11.80%)

AJCC-M stage

M0 400 (89.09%)

M1 23 (5.12%)

Unknown 26 (5.79%)

Sample type

Primary tumor 97 (21.60%)

Satellite and in-transit metastasis 70 (15.59%)

Regional lymph node 215 (47.88%)

Distant metastasis 64 (14.25%)

Unknown 3 (0.67%)

TMB

High level 312 (69.49%)

Low level 137 (30.51%)

Besides, we explored the correlation of TMBwith clinical features
and revealed age, gender, pathological stage, AJCC-T, and N
stage, were significantly associated with TMB (Figures 2C–H).
Age over 60 years old, male, lower pathological stage, AJCC-T,
and N stage represented a higher TMB level.

Functional Enrichment Analysis and PPI
Network
According to the differential gene expression analysis, in which
high-TMB group was set as treatment group, while low-TMB
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FIGURE 2 | Association of TMB with prognosis and clinical features. (A) The optimal cutoff of 4.22 according to maximally selected rank statistics. (B) According to

survival analysis, high-TMB group correlated with better survival outcomes, with P < 0.0001. (C–G) Age over 60 years old, male, lower pathological stage, lower

AJCC-T, and N stage correlated with higher TMB level. (H) The association of TMB with AJCC-M stage was not significant. AJCC, American Joint Committee on

Cancer.

group as control group, a list of 735 DEGs with |log2FC|
> 1.5 and FDR < 0.05 was identified, including 183 genes
up-regulated and 552 genes down-regulated in the high-TMB

group (Supplementary Table 1). Top 40 DEGs ranked in the
order of FDR were visualized in the heatmap (Figure 3A).
According to GO analysis, DEGs were mainly enriched
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FIGURE 3 | Differential gene analysis and GO analysis. (A) Heatmap of top 40 DEGs between high- and low-TMB groups. (B) DEGs were mainly enriched in immune

related and cell adhesion related pathways. DEGs, differentially expression genes. BP, biological process; CC, cellular component.

in immune-related pathways such as neutrophil activation,
neutrophil degranulation, and cell adhesion-related pathways
such as cell-substrate junction, focal adhesion (Figure 3B). From
each type of pathways, we selected representative ones to perform
a chord diagram, making the connection between pathways
more intuitive (Figure 4A). Besides, we performed KEGG
pathway analysis based on DEGs (Supplementary Figure 1).
Then we selected several significant pathways of interest from the
results, such as osteoclast differentiation, tumor necrosis factor
(TNF) signaling pathway, and adherens junction, for subsequent
visualization by Cytoscape, and found the MAPK1 gene was
involved in multiple significant KEGG enrichment pathways
(Figure 4B). Furthermore, we explored the TMB-related pathway
through GSEA, using TMB level as the phenotype label, and
found that cell cycle, DNA replication, mismatch repair, and
nucleotide excision were significantly enriched in the high-TMB
group, with FDR < 0.025 (Figure 4C).

Through the STRING database, we set the minimum
required interaction score as 0.7 and then constructed a PPI
network of DEGs (Supplementary Figure 2). Important node

genes and subnetworks were further analyzed by Cytohubba
and MCODE plugins, respectively. Ranked by the degree
method of Cytohubba, the top 10 significant node genes
were CDC42, MAPK1, POLR2B, POLR2J, CUL3, CDC27,
RNF4, FBXW11, KLHL13, and BRCA1. Meanwhile, we used
MCODE to detect densely connected regions and identify two
significant subnetworks (Figures 4D,E). GO analyses of these
two subnetworks revealed the function of the first subnetwork
was enriched in neutrophil activation and degranulation, while
the function of the second subnetwork was enriched in tumor
necrosis factor-mediated signaling pathway, regulation of Wnt
signaling pathway, and antigen processing and presentation
(Table 2, Supplementary Table 2).

Risk Score Model and Nomogram
Due to the high immunogenicity of melanoma and the
relationship between TMB and immune pathways, we considered
establishing the risk score model based on 62 differentially
expressed immune genes, namely the intersection of 735
DEGs and 1,811 immune-related genes (Figure 5A). To screen
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FIGURE 4 | Functional enrichment analysis and PPI subnetworks. (A) Chord diagram further exhibited the relationship between DEGs and GO pathways. (B) MAPK1

gene played a critical role in multiple significant KEGG pathways. (C) TMB-related pathways, explored by GSEA, including cell cycle, DNA replication, mismatch repair,

and nucleotide excision repair, with FDR < 0.025. (D,E) Two significant subnetworks of PPI network.

prognostic hub genes, we utilized batch survival K–M analysis
on candidate genes, with P < 0.001 as the cutoff. Then
LASSO regression was performed on the remaining 18 genes for
further filtration, and seven genes were identified for subsequent
analysis (Figure 5B). Finally, through stepwise regression, two

immune-related DEGs (IFNG and BIRC5) were selected as
prognosticmodeling genes. The risk scoremodel was constructed
as follows: risk score= − 0.13914 ∗IFNG expression level +

0.21596 ∗BIRC5 expression level. The positive coefficient of BIRC5
in the formula represented that its high expression indicated
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TABLE 2 | Representative GO results of two subnetworks.

ID Description Count p-value q-value

Subnetwork 1

GO:0043312 Neutrophil degranulation 8 4.55E-08 1.11E-05

GO:0042119 Neutrophil activation 8 5.58E-08 1.11E-05

GO:0007059 Chromosome segregation 5 3.02E-05 4.75E-03

Subnetwork 2

GO:0033209 Tumor necrosis factor-mediated

signaling pathway

5 2.96E-09 8.86E-08

GO:0030111 Regulation of Wnt signaling pathway 5 1.44E-07 2.69E-07

GO:0019882 Antigen processing and presentation 4 1.41E-06 1.53E-06

poor survival outcomes, while the negative coefficient of IFNG
implied an opposite association. And similar conclusions were
obtained by previous survival analyses of these two genes
(Supplementary Figures 3A,B). Besides, the distribution of risk
score and the gene expression levels in patients were analyzed and
exhibited (Figure 5C).

For 449 cutaneous melanoma patients from the TCGA
database, we calculated the risk score and identified the optimal
cutoff by maximally selected rank statistics, and divided the
patients into high- (n = 114) and low-risk (n = 335) groups.
The K–M analysis exhibited the survival outcomes of the high-
risk group were significantly worse, with P < 0.0001 (Figure 5D).
Meanwhile, we used the ROC curves of 0.5 and 1-year OS
prediction based on risk score to evaluate the predictive accuracy,
with the area under the curve (AUC) = 0.971 and 0.704,
respectively (Figure 5E). As for external validation, GSE22153,
GSE65904, and GSE54467 were chosen as validation sets. The K–
M analysis exhibited a significant shorter OS of high-risk group in
each validation set, with P= 0.0014, 0.00021, 0.0085, respectively
(Figures 6A–C). According to the different range of OS in each
validation set, ROC curves were performed for 1-, 3-, and 5-year
OS prediction, respectively, and the AUCs were 0.762, 0.668, and
0.616 (Figures 6D–F).

The risk score, age, pathological stage, and ulceration
indicator were screened as significant predictive factors by
univariate and multivariate Cox regression analyses (Table 3).
A nomogram was performed based on the above predictive
factors (Figure 7A). The C-index was 0.702, and its standard
error was 0.024. The calibration curves for the survival possibility
at 3 and 10 years exhibited the accurate prediction ability of
nomogram in both short- and long-term (Figures 7B,C). The
AUCs of ROC curves were 0.777, 0.702, 0.779 for 3-, 5-, and 10-
year OS prediction, respectively (Figure 7D). The DCA exhibited
a higher net benefit of decision based on nomogram compared to
individual predictive factors (Figures 7E,F).

Evaluation of Immune Cell Infiltration
To further explore the effect of TMB and prognostic modeling
genes on immune cell infiltration, we calculated the distribution
of 22 types of infiltrating immune cells in 449 melanoma samples
based on the CIBERSORT algorithm (Supplementary Table 3).
With P < 0.05 as the filter condition, the proportion of

immune cells in 184 samples were exhibited in a barplot
(Supplementary Figure 4). Then, for each type of immune
cell, we compared the difference of proportion between high-
and low-TMB groups using the Wilcoxon rank-sum test and
visualized the results in a violin plot. Samples with higher TMB
level had a significant decrease in the fraction of memory B cells
(P = 0.019) and regulatory T cells (Tregs) (P = 0.015), and
a significant increase in the fraction of macrophages M1 (P =

0.047) and macrophage M2 (P = 0.009) (Figure 8).
As for the relationship between prognosis-related genes

and immune cell infiltration, we explored the changes of
infiltration in the samples with copy number alteration of
IFNG and BIRC5, respectively. Overall, compared to melanoma
samples with diploid/normal expression of IFNG and BIRC5,
samples with bidirectional copy number variation of BIRC5 and
increased copy number variation of IFNG had a lower level of
immune infiltration, including B cells, CD4+ T cells, CD8+ T
cells, macrophages, neutrophils, and dendritic cells (Figure 9A).
Furthermore, we used the abundance of six immune cells and the
expression level of two prognostic modeling genes to construct
a Cox regression model. Cox analysis implied that higher levels
of CD4+ T cell (HR = 20.246, P = 0.049), macrophage (HR =

12.960, P = 0.033), BIRC5 expression (HR = 1.321, P = 0.001)
and lower levels of neutrophil (HR < 0.001, P = 0.020) were risk
factors for prognosis in melanoma patients (Table 4). Perhaps
the expression of IFNG was correlated with the abundance of
immune cells, so it was regarded as a confounding variable. Then
we performed K–M analyses on six immune cells and revealed
that higher infiltration levels of B cell, CD8+ T cell, neutrophil,
and dendritic cell were associated with better survival outcomes
(Figure 9B).

DISCUSSION

Melanoma is one of the most aggressive forms of skin cancer,
it accounts for only 5% of all skin cancer cases, but 80%
of all skin cancer deaths (44). The occurrence, development,
and evolution of melanoma are based on the accumulation of
genomic changes, including high ultraviolet-driven mutation
burdens, which makes melanoma the most immunogenic tumor
(45, 46). Therefore, for melanoma patients, immunotherapy is
used as adjuvant therapy after surgical resection in AJCC stage
III melanoma, as well as in unresectable and metastatic cases
(47). However, not all patients respond well to immunotherapy,
thus biomarkers that predict treatment response are necessary
to optimize patient benefit. According to previous studies, TMB
and immune cell infiltration are both predictors of response
to immunotherapy, but each has its own limitations (48–51).
Consequently, further study of the association may help to
identify hub genes and critical functional pathways, thereby
constructing a more accurate combined biomarker model to
predict the response in melanoma.

In the current study, we analyzed the somatic mutation
profiles in cutaneous melanoma samples. The C > T mutations
accounted for the vast majority, consistent with ultraviolet
exposure leading to the formation of pyrimidine dimers (52). The
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FIGURE 5 | Construction of risk score model. (A) Intersection of 735 DEGs and 1811 immune-related genes. (B) Seven genes were identified from 18 candidate

genes using LASSO regression. (C) The distribution of risk score and gene expression levels among patients. (D) High-risk group Correlated with poor survival

outcome, with P < 0.0001. (E) ROC curves of 0.5- and 1-year survival prediction, with AUC = 0.971 and 0.704, respectively. FC, fold change.
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FIGURE 6 | Validation of risk score model. (A–C) High-risk group correlated with poor survival outcomes in three validation sets, with P = 0.0014, 0.00021, 0.0085,

respectively. (D–F) ROC curves were used to evaluate the predictive accuracy of the risk score model in three validation sets.

TABLE 3 | Univariate and multivariate Cox regression analyses of clinical features and risk score with OS.

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

Gender (Male/Female) 1.102 0.829–1.466 0.502

Age 1.024 1.015–1.034 <0.001 1.016 1.004–1.028 0.010

Pathological stage (III–IV/I–II) 1.630 1.216–2.184 0.001 2.006 1.414–2.847 <0.001

Ulceration indicator (Yes/No) 2.153 1.535–3.019 <0.001 1.552 1.087–2.215 0.016

Risk score (High/Low) 2.718 1.957–3.776 <0.001 2.622 1.737–3.960 <0.001

HR, hazard ratio; CI, confidence interval.

three most frequently mutated genes were TTN (72%), MUC16
(67%), BRAF (51%). TTN, mutations of which are often detected
in solid tumors, is associated with increased TMB and better
response to ICIs, and patients with mutant TTN have a better
prognosis (53). MUC16, the coding gene of mucin 16, promotes
the proliferation and metastasis of cancer cells and may also have
immunosuppressive effects (54, 55). Meanwhile, cancer antigen
125 (CA125), as an epitope present on mucin16, is the most
famous biomarker to monitor the serous ovarian cancer (56).
The BRAF mutation is obviously the most common carcinogenic

driver in melanoma, by activating the mitogen-activated protein
kinase (MAPK) pathway, which is a pivotal regulator of cellular
growth and proliferation (57–59).

Based on the mutation profiles, the correlation of TMB with
prognosis and clinical features was further analyzed. Patients in
the high-TMB group had significantly better survival outcomes.
In previous studies, even without immunotherapy, higher TMB
represented a better prognosis from adjuvant chemotherapy
in patients with colorectal cancer and resected non-small-cell
lung cancer (60, 61), but the correlation was not significant
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FIGURE 7 | Construction and validation of nomogram. (A) Nomogram constructed based on age, stage, ulceration indicator, and risk score as predictive factors to

predict 3-, 5-, 10-year survival probability. (B,C) Calibration curves for the survival probability at 3 and 10 years. (D) ROC curves for 3-, 5-, 10-year prediction of the

nomogram. (E,F) DCA curves to evaluate the clinical utility of different decision strategies, and the red line represented the combined nomogram.

in melanoma (62). Besides, our research found that older
patients and male patients have higher TMB levels, which is
consistent with the significant trend of TMB increasing with
age, with a 2.4-fold difference between age 90 and age 10
years (63). As for the difference between genders, perhaps
due to the poor ability of men to clear the mutation-rich
population of tumor cells, resulting in the accumulation of
TMB (64).

TMB-related DEGs were identified, and the functional
enrichment analysis and PPI analysis revealed that these DEGs
were mainly associated with immune-related and cell adhesion-
related pathways. It can be found that TMB is closely related
to tumor immune infiltration and tumor microenvironment.
Moreover, abnormal adhesion of tumor cells is associated with
tumor progression and metastasis (65). In addition to the
above, DEGs were also related to pathways such as osteoclast
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FIGURE 8 | Comparisons of abundance of infiltrating immune cells between low-TMB and high-TMB groups.

differentiation, which is involved in the bone metastasis of breast
cancer (66, 67), TNF signaling pathway, and Wnt signaling
pathway, which are related to the progression and metastasis of
melanoma (68, 69).

The risk score model was constructed based on the expression
level of two genes, IFNG and BIRC5. IFNG played a protective
role, while BIRC5 increased the risk. According to the AUCs
of ROC curves in the TCGA cohort and three validation sets
from the GEO database, the model exhibited a relatively good
predictive accuracy, but there was still room for improvement,
thus need further confirmation and modification in larger
sample researches.

IFNG is the coding gene of interferon-gamma (IFN-γ).
IFN-γ is a cytokine, which is critical for promoting immune
response and anti-tumor immunity (70). As targets of ICIs,
higher expression levels of PD-L1 and CTLA-4 in melanoma
often represent better clinical response and therapeutic efficacy
(71, 72). Moreover, the expression of PD-L1 can be upregulated
by IFN-γ, and the absence of IFN-γ signaling pathway in tumor
cells leads to the resistance to CTLA-4 targeting therapy, so
that IFN-γ is a novel biomarker to predict the response to ICIs
(73, 74). Perhaps the expression of IFNG can be combined with
TMB and PD-L1 to construct a more accurate prediction model
for immunotherapy in melanoma.

BIRC5 encodes a survivin protein that belongs to a class of
inhibitors of apoptosis protein, which is critical in the regulation

of apoptosis and mitosis (75, 76). The BIRC5 is rarely expressed
in normal tissues but overexpressed in most types of tumors
including melanoma, and the expression level is correlated
with aggressive disease progression and poor clinical outcomes
(77–79). Therefore, BIRC5 and survivin are considered as
tumor diagnostic and prognostic biomarkers, and inhibitors and
immunotherapies targeting them have been developed (80, 81).

Based on the risk score model and clinical features, a
nomogram was performed to predict the survival possibility
in melanoma. Among the significant factors, in addition to
age and pathological stage, there is a specific predictor of
melanoma, ulceration indicator, which is a major prognostic
factor according to the AJCC melanoma staging system (82).
Although the C index of 0.702 and calibration curves exhibited
relatively accurate prediction ability, further modifications and
improvements are still necessary based on researches with more
complete clinical information.

The association of immune cell infiltration with TMB
was explored. The proportion of macrophages M1 and
macrophages M2 in the high-TMB group was higher, while
memory B cells and Tregs abundance in the low-TMB
group was higher. The function of macrophages in the
tumor is complex and two-sided. Macrophages M1 initiate
the production of cytokines in the tumor microenvironment
and promote the destruction of tumor cells (83), while
macrophages M2, especially the tumor-associated macrophages
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FIGURE 9 | Association of immune infiltration with hub genes and prognosis. (A) Comparisons of immune infiltration between sample with copy number alteration and

diploid of IFNG and BIRC5. (B) High infiltration level of B cell, CD8+ T cell, neutrophil and dendritic cell were associated with better survival outcomes.·P < 0.01; *P <

0.05; **P < 0.01; ***P < 0.001.
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TABLE 4 | Multivariate Cox regression analyses of immune cells and hub genes

with OS.

Variables Coef HR 95% CI P-value

B cell −1.934 0.145 0.004–5.234 0.291

CD8+ T cell 0.218 1.243 0.091–16.902 0.870

CD4+ T cell 3.008 20.246 1.012–404.962 0.049

Macrophage 2.562 12.960 1.232–136.312 0.033

Neutrophil −7.836 0.000 0.000–0.285 0.020

Dendritic −0.757 0.469 0.080–2.768 0.403

IFNG −0.101 0.904 0.665–1.227 0.516

BIRC5 0.278 1.321 1.125–1.551 0.001

Coef, coefficients; HR, hazard ratio; CI, confidence interval.

(TAMs), play an important role in tumor growth and
metastasis (84, 85). TAMs provide a promising target for
immunotherapy, and TAMs targeting can enhance the response
to other immunotherapies when used synergistically (86, 87).
Tregs maintain the immune homeostasis via suppressing
the immune response and inhibit the anti-tumor effect in
the tumor microenvironment (88). Therefore, Tregs targeted
immunotherapy, such as the depletion of Tregs, can enhance the
therapeutic efficacy of ICIs (89).

Moreover, according to survival analyses, higher infiltration
levels of B cell, CD8+ T cell, neutrophil, and dendritic cell
represented better survival outcomes. Tumor infiltrating B cells
play a critical role in regulating the anti-tumor immune response
in melanoma, and the absence of B cells is associated with a
poor response to ICIs (90, 91). CD8+ T cells constitute an
important part of the immune response to tumors and play a
critical role in killing tumor cells (92). The abundance of CD8+
tumor infiltrating cells is positively correlated with the prognosis
of patients with melanoma (93). Dendritic cells are involved in
the processing and presentation of tumor antigens to naive T
cells, which then stimulate T cell proliferation and induce the
specific immune responses (94). Recently, tumor vaccines based
on dendritic cells have gradually become the focus of research
and has been used for the clinical treatment in melanoma (95).
As for neutrophil, although there are relatively few studies on
neutrophils alone, the neutrophil-to-lymphocyte ratio (NLR) is
regarded as a novel biomarker, and a lower NLR is associated with

better prognosis, better response to ICIs, and less recurrence in
melanoma (96–98).

However, there are still some limitations in the current study
that must be considered. In further studies, a large sample clinical
cohort is required to verify the impact of TMB on prognosis, the
accuracy of the risk scoremodel, and nomogram.Moreover, basic
experiments are required to verify the relationship between TMB
and immune infiltration.

CONCLUSIONS

In cutaneous melanoma, higher TMB was associated with better
survival outcomes. TMB-related DEGs were mainly involved
in immune-related and cell adhesion-related pathways. The
risk score model and nomogram had relatively high predictive
capability on survival outcomes. The relationship between
TMB and immune infiltration, especially the abundance of
macrophages and Tregs, can provide a reference for further
advanced prediction model of response to immunotherapy.
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