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Purpose: In this study, we developed and validated a radiomics nomogram by combining

the radiomic features extracted from 18F-fluorodeoxyglucose positron emission

tomography/computed tomography (18F-FDG PET/CT) images and clinicopathological

factors to evaluate the overall survival (OS) of patients with non-small cell lung

cancer (NSCLC).

Patients and Methods: A total of 315 consecutive patients with NSCLC (221 in the

training cohort and 94 in the validation cohort) were enrolled in this study. A total of 840

radiomic features were extracted from the CT and PET images. Three radiomic scores

(rad-scores) were calculated using the least absolute shrinkage and selection operator

(LASSO) Cox regression based on subsets of CT, PET, and PET/CT radiomic features.

A multivariate Cox regression analysis was performed for each rad-score combined with

clinicopathological factors to determine the independent risk factors. The OS nomogram

was constructed based on the PET/CT rad-score and independent clinicopathological

factors. Validation and calibration were conducted to evaluate the performance of the

model in the training and validation cohorts, respectively.

Results: A total of 144 (45.71%) women and 171 (54.29%) men with NSCLC

were enrolled in this study. The PET/CT rad-score combined with the clinical model

had the best C-index (0.776 and 0.789 for the training and validation cohorts,

respectively). Distant metastasis, stage, carcinoembryonic antigen (CEA), and targeted

therapy were independent risk factors for patients with NSCLC. The validation curve
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showed that the OS nomogram had a strong predictive power in patients’ survival. The

calibration curve showed that the predicted survival time was significantly close to the

observed one.

Conclusion: A radiomic nomogram based on 18F-FDG PET/CT rad-score and

clinicopathological factors had good predictive performance for the survival outcome,

offering feasible, and practical guidance for individualized management of patients

with NSCLC.

Keywords: non-small cell lung cancer, PET/CT, radiomics, survival outcome, risk stratification

INTRODUCTION

Lung cancer is a malignant tumor with the highest morbidity and
mortality worldwide (1). Non-small cell lung cancer (NSCLC) is
the most common pathological type of lung cancer, accounting
for ∼85% of all patients with lung cancer (1, 2). Considering
that early signs and symptoms of NSCLC do not manifest in
some patients, ∼70% of patients have developed metastasis at
the time of diagnosis and thus have lost the opportunity for
surgical treatment (3, 4). The tumor-node-metastasis (TNM)
staging system is currently the most commonly used tumor
staging system worldwide and is considered to be the most
valuable method for assessing the prognosis of malignant tumors
(5–7). However, the TNM staging system still has several
limitations when used to evaluate lung cancer prognosis in
clinical practice. There are notable differences in the prognosis
of tumors in the same stage, indicating that the TNM staging
system cannot be used alone to fully evaluate the prognosis
of patients with NSCLC. Thus, a comprehensive analysis of
the TNM staging system in combination with other tumor
biological characteristics that affect the prognosis of patients
with NSCLC should be performed (8, 9). Therefore, determining
additional effective prognostic indicators other than the TNM
staging system, evaluating patients’ responses to treatment at
an early stage, and predicting the overall survival (OS) of
patients are considered important to achieve individualized
medical treatments.

With the development of genomic biology and technology,
survival-related genomic characteristics have been included
in the prognostic evaluation of several diseases, thereby
improving the accuracy of the prognostic evaluation of several
patients. However, the main limitation of these invasive
technologies is that they cannot capture comprehensive
information on the spatiotemporal heterogeneity of
tumors (10–13). Therefore, an effective method is urgently
required to comprehensively quantify the spatiotemporal
heterogeneity of tumors and to evaluate the prognosis of
several diseases. 18F-fluorodeoxyglucose positron emission

Abbreviations: C-index, Harrell’s concordance index; CEA, carcinoembryonic

antigen; HR, hazard ratio; MTV, metabolic tumor volume; NSCLC, non-small

cell lung cancer; NOS, not otherwise specified; PET/CT, positron emission

tomography/computed tomography; rad-score, radiomic score; SUVmax,

maximal standard uptake value; SUVmean, mean standard uptake value; TLG,

total lesion glycolysis; TNM, tumor-node-metastasis.

tomography/computed tomography (18F-FDG PET/CT) is
an important imaging method widely used for functional
metabolic and anatomical/morphological imaging of various
types of malignant tumors and metastatic lesions. 18F-FDG
PET/CT provides not only intuitive imaging differences through
image comparisons, but also several metabolic parameters to
distinguish metabolically active or inactive tumor tissues. In
particular, PET/CT has been widely used in clinical practice
for the establishment of diagnosis, staging, efficacy monitoring,
and prognostic evaluation of NSCLC (14–16). Several studies
have confirmed that the FDG uptake of primary tumors is an
independent risk factor for patients with early NSCLC (17, 18),
but its application value in the prognostic evaluation of NSCLC
is still controversial (19, 20). As an emerging and promising
image analysis tool, radiomics is a non-invasive quantitative
research method that can be used to convert medical images
into mineable data for the identification of tumor heterogeneity.
The integration of genetic pathology and imaging multimodality
could improve the non-invasive quantitative analysis of tumor
spatiotemporal heterogeneity and microenvironment (21, 22).
Studies have shown that radiomics may have good predictive
prognostic performance and decision support in oncology
(23, 24). In previous studies, the texture characteristics or
radiomics based on 18F-FDG PET/CT have been used to predict
the EGFR and KRAS mutation status in patients with NSCLC,
to evaluate NSCLC radiation tumor response, to predict the
prognosis of patients with NSCLC after stereotactic body
radiotherapy, and to stratify the risk of patients with poor
prognosis. The results of these studies showed that the PET/CT-
based texture characteristics or radiomics had good classification
or predictive prognostic performance. Radiomics based on
PET/CTmay provide complementary information for predicting
survival in patients with lung cancer (25–29). A nomogram is
based on multivariate regression analysis and includes important
influencing factors related to tumor prognosis. By constructing
an intuitive graph using a statistical predictive model, the
nomogram provides the numerical probability of a clinical
event. The nomogram has become the focus of interest in cancer
research in recent years and is considered a useful tool for
quantifying risk (30–32).

Therefore, this study primarily aimed to construct a predictive
model of the OS nomogram based on the radiomic features
of PET/CT combined with the clinicopathological factors to
predict prognosis and risk stratification as well as to determine
the role of radiomic features in predicting the prognosis of
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FIGURE 1 | Flowchart of patient enrollment, eligibility, and exclusion criteria of the dataset.

NSCLC. To improve the prognostic assessment of patients with
NSCLC, advancements in the areas of individualized treatment
and precision medicine are necessary.

PATIENTS AND METHODS

Patients and Clinicopathological Data
The institutional review board of Jinling Hospital, Medical
School of Nanjing University approved this retrospective study
and waived the need to obtain informed consent from the
patients. This was a retrospective study, and the medical
records of patients between October 2007 to August 2016 were
reviewed. The medical records were searched consecutively,
and 343 patients who had a lung tumor as assessed by
histopathological analysis were identified. Patients with the
following characteristics were included in the study: (a) patients
undergoing PET/CT examination within 1 month before surgery
or biopsy, (b) patients who did not receive antitumor treatment
before PET/CT examination, and (c) patients with histologically
confirmed NSCLC through surgery or biopsy. However, patients
with the following characteristics were excluded: (a) patients with
partial loss of PET or CT images (n = 15); (b) patients with
diseases not related to NSCLC (n = 2), (c) patients with unclear
tumor boundaries that could not be accurately delineated (n =

9), and (d) patients with metastases in the lung (n= 2). The final
cohort included 315 patients (Figure 1). We randomly divided
the patients into the training cohort (n= 221) and the validation

cohort (n = 94) with a 7:3 ratio. Clinicopathological data were
obtained from the patients’ medical records, which included age,
sex, family history, smoking history, histological grade, lymph
node metastasis, distant metastasis, and TNM stage (defined
according to the eighth edition of the TNM classification and
staging system by the American Joint Committee on Cancer),
histologic type (adenocarcinoma, squamous cell carcinoma, or
not otherwise specified [nos]), treatment methods (surgery,
chemotherapy, targeted therapy, and radiotherapy), thyroid
transcription factor-1 (TTF-1) level, carcinoembryonic antigen
(CEA) level, tumor location, and PET/CT metabolic parameters
were obtained (Table 1). The survival information of these
patients was obtained through telephone calls. Follow-up data
were collected from October 2007 to January 2019. The mean
and median follow-up periods were 37.99 (95% confidence
interval [CI], 35.464–40.522) and 36.00 (range, 20.00–52.00)
months, respectively. The endpoint of this study was OS, which
was defined as the period from the date of 18F-FDG PET/CT
examination to the date of telephone follow-up or the date of the
patient’s death.

PET/CT Image Acquisition and Analysis
Patients underwent PET/CT imaging (Biography 16, Siemens,
Erlangen, Germany) using 18F-FDG synthesized by the Canadian
EBCO TR19 medical cyclotron and chemical synthesis system.
All PET/CT acquisitions were carried out in free breathing
mode, and no steps were taken to correct for motion. The
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TABLE 1 | Clinicopathological factors of patients in the training and validation

cohorts.

Characteristic Training cohort

N = 221

Validation cohort

N = 94

P-value

Gender - no. (%) 1.000

Female 101 (46.0) 43 (46.0)

Male 120 (54.0) 51 (54.0)

Age-yr 62 (54.00-69.00) 64 (55.25-70.00) 0.672

Family history- no. (%) 0.487

No 211 (95.0) 92 (98.0)

Yes 10 (5.0) 2 (2.0)

T stage–no. (%) 0.879

T1 74 (33.5) 28 (29.8)

T2 74 (33.5) 34 (36.2)

T3 24 (10.9) 9 (9.6)

T4 49 (22.2) 23 (24.5)

N stage- no. (%) 0.630

N0 85 (38.5) 37 (39.4)

N1 33 (14.9) 9 (9.6)

N2 55 (24.9) 25 (26.6)

N3 48 (21.7) 23 (24.5)

M stage- no. (%) 0.439

M0 118 (53.4) 45 (47.9)

M1 103 (46.6) 49 (52.1)

Histologic type- no. (%) 0.445

Adenocarcinoma 210 (95.0) 92 (97.9)

Squamous cell carcinoma 9 (4.1) 2 (2.1)

NOS 2 (0.9) 0 (0.0)

Surgery- no. (%) 0.054

No 133 (60.2) 68 (72.3)

Yes 88 (39.8) 26 (27.7)

Chemotherapy- no. (%) 1.000

No 114 (51.6) 45 (47.9)

Yes 107 (48.4) 92 (97.9)

Targeted therapy- no. (%) 0.584

No 168 (76.0) 68 (72.3)

Yes 53 (24.0) 26 (27.7)

Radiotherapy- no. (%) 0.352

No 202 (91.4) 82 (87.2)

Yes 19 (8.6) 12 (12.8)

Smoking status- no. (%) 0.955

No 141 (64.0) 61 (65.0)

Yes 80 (36.0) 33 (35.0)

Histologic grade- no. (%) 0.982

Poorly differentiated 81 (37.0) 34 (36.0)

Moderately differentiated 102 (46.0) 43 (46.0)

Highly differentiated 38 (17.0) 17 (18.0)

Lymph node metastasis- no. (%) 0.663

No 85 (38.0) 33 (35.0)

Yes 136 (62.0) 61 (65.0)

Distant metastasis- no. (%) 0.380

No 110 (50.0) 41 (44.0)

Yes 111 (50.0) 53 (56.0)

(Continued)

TABLE 1 | Continued

Characteristic Training cohort

N = 221

Validation cohort

N = 94

P-value

Stage- no. (%) 0.847

I 52 (23.5) 22 (23.4)

II 18 (8.1) 7 (7.4)

III 36 (16.3) 12 (12.8)

IV 115 (52.0) 53 (56.4)

TTF-1- no. (%) 0.239

Negative 107 (48.0) 38 (40.0)

Positive 114 (52.0) 56 (60.0)

CEA 4.55 (2.30-17.50) 7.55 (3.33-37.55) 0.023

SUVmax 7.32 (4.85-10.04) 6.80 (4.07-9.67) 0.358

SUVmean 4.42 (2.96-6.48) 4.07 (2.51-6.12) 0.337

TLG(g) 31.12 (15.67-83.55) 32.05 (16.64-67.81) 0.812

MTV(cm3 ) 8.17 (4.93-16.33) 9.01 (5.14-18.76) 0.733

CEA, carcinoembryonic antigen; MTV, metabolic tumor volume; NOS, not otherwise

specified; SUVmax, maximal standard uptake value; SUVmean, mean standard uptake

value; TTF-1, thyroid transcription factor-1; TLG, total lesion glycolysis.

radiochemical purity was >95%. All acquisitions were carried
out in a free-breathing mode. The patients fasted for 6–8 h
before undergoing the scan. Patients were intravenously injected
with 18F-FDG (5.55 MBq/kg) and underwent a whole-body
PET/CT scan of the skull base to the upper part of the thigh,
and the data included CT and PET scans. The CT scanning
parameters were as follows: power, 120 kV; current, 140 mAs;
slice thickness and spacing, 5mm; matrix, 512×512; and tube
rotation speed, 0.8 s/r. The PET acquisition parameters were
as follows: three-dimensional at 3 min/bed; iterative algorithm;
iterations, 4; subset, 8; resolution, 4.1mm lateral, 4.6mm axial;
matrix, 128 × 128; voxel size, 5.3 × 5.3 × 5.3 mm3. These
settings were the same for all included patients. Images were
reconstructed using an iterative reconstruction method resulting
in CT, PET, and PET/CT fusion images that were transferred
to a post-processing workstation. We used Microsoft Viewer
software (version VB10, Siemens) to calculate the metabolic
parameters on the PET images. PET images were first converted
to SUV images in the software without other processingmethods.
Then, the 3-dimensional region of interest (ROI) was manually
delineated by a radiologist (W.Q.G.) to calculate the maximum
standard uptake value (SUVmax, with a threshold set to 40%),
mean standard uptake value (SUVmean), and metabolic tumor
volume (MTV). Subsequently, the total lesion glycolysis (TLG)
(TLG=SUVmean×MTV) was calculated.

Tumor Segmentation
Our study followed and adhered to the Image Biomarker
Standardization Initiative (IBSI) guidelines (33), and the software
(Radiomics, Frontier, Siemens) used was IBSI-compliant. A
volume of interest(VOI)was drawn semiautomatically around
the tumor by a chest radiologist (Y.B., 9 years of experience) in
the lung diagnosis using the radiomics prototype (Radiomics,
Frontier, Siemens) and confirmed by another chest radiologist
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(W.Q.G., 5 years of experience). Both radiologists were blinded
to the patients’ clinical information. Firstly, we import CT
images into radiomics prototype software (Radiomics, Frontier,
Siemens). In the segmentation module, a few segmentation
tools were available for semiautomatic delineation of the tumor
in three dimensions. The segmentation was semiautomatically
produced by drawing a line across the boundary of the tumor,
then, the tool automatically find the neighboring voxels in 3D
space with the same gray level through an automatic algorithm,
and this is a Random Walker-based lesion segmentation for
solid and subsolid lung lesions (34). The first step is to obtain
a superset of voxels that may be part of the lesion. This can be
implemented efficiently as a 3 D region growing starting from
the center of the ROI. Then the thresholds can be fixed for
lesions or determined adaptively from an analysis of the density
distribution in the ROI. The region growing results in complete
lesion and additionally parts of the attached vasculature. A
morphological opening operation is applied to remove the vessels
finally (35). If the segmentation wasn’t right, the operators could
correct it manually in the 3D domain using the radiomics
prototype. The algorithm aimed at K-way image segmentation
with given seeds indicating regions of the image belonging to
the K objects(the objects to be segmented). Each seed specifies
a location with a user-defined label. The algorithm labels an
unseeded pixel by resolving the question: Given a random walker
starting at this location, what is the probability that it first
reaches each of the K seed points? It will be shown that this
calculation may be performed exactly without the simulation
of a random walk. By performing this calculation, we assign a
K-tuple vector to each pixel that specifies the probability that
a random walker starting from each un-seeded pixel will first
reach each of the K seed points. A final segmentation may be
derived from these K-tuples by selecting for each pixel the most
probable seed destination for a random walker. By biasing the
random walker to avoid crossing sharp intensity gradients, a
quality segmentation is obtained that respects object boundaries
(including weak boundaries) (36). And then in the radiomics
module to click the computer features tool to calculate the
CT radiomic features, and export the CT Masks+STL at the
same time. Then we import the PET image into the software.
If the tumor on the PET image is not at the same slice as the
CT, we manually adjust the slice of PET image. Then, the CT
Masks+STLwill be imported into the software to cover the tumor
on the PET image. If the CT Masks+STL does not cover the
tumor, two radiologists(Y.B; W.QG) manually adjusted the CT
Masks+STL through edit tools and reached a consensus to ensure
that the CT Masks+STL completely covered the tumor lesions
on the PET image as much as possible, and then use the same
method to extract PET radiomic features. So, the 3D ROI (VOI)
was delineated on CT image, and could be used by the PET image
when the PET image were transformed to the CT image space
using the transformation matrix obtained in PET-CT fusion.

Radiomic Feature Extraction
The Radiomic features from volumes of interest were then
computed with both CT and PET images on a prototype
that interfaces with the PyRadiomics library in manner similar

to the 3D slicer’s Radiomics plugin (34). The PyRadiomics
library provides a variety of options to customize image pre-
processing before feature extraction. Laplacians of Gaussian
filtering, wavelet filtering, and non-linear intensity transforms
were selected for image pre-processing. The feature classes
contain 162 first-order features, 12 shape features, and 666
texture features. We also extracted numerous features (e.g.,
wavelets) that have not yet been standardized or validated by the
IBSI. As a result, a total of 840 radiomic features were extracted
from the CT and PET images using the software (Figure 2). The
IBSI guidelines for reporting all necessary details are provided in
the Supplemental Material.

Feature Selection and Radiomics
Signature Construction
Considering the redundancy of the features and to reduce
model overfitting, feature engineering was performed using
two methods, Spearman correlation test and the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis. The Spearman correlation test was initially used to
reduce feature redundancy, and a cutoff value of 0.9 was adopted.
A ten-fold cross-validation LASSO Cox regression method,
which is suitable for the regression of high-dimensional data
in survival analysis, was conducted to select the most useful
predictive features from the training cohort. The specified step
of the LASSO Cox analysis included determining the optimized
hyperparameter λ, which ensured that the model had the least
deviance. Features with non-zero coefficients were preserved.
The rad-score was calculated via a linear combination of selected
features weighted by their respective coefficients. Three rad-
scores including the CT, PET, and PET/CT rad-scores for each
patient were calculated using PET, CT, and PET/CT features,
respectively (Figure 2).

Clinicopathological Factor Analysis
Clinicopathological factors including PET/CT metabolic
parameters were analyzed using a univariate Cox proportional
hazards regression analysis. Factors with p < 0.05 were
analyzed using the Kaplan–Meier curve and log-rank test.
These significant factors were combined into a multivariate Cox
proportional hazards regression analysis to identify independent
risk factors.

Construction and Validation of OS
Nomogram
Before constructing the OS nomogram, the performance of each
rad-score was evaluated using the concordance index (C-index).
The largest rad-score integrated with the independent factors was
used to construct the nomogram. The prognostic ability of the
nomogram was evaluated in the training cohort and validated
in the validation cohort. The discrimination performance of
the nomogram was assessed using Harrell’s C-index. The C-
index ranges between 0.5 and 1.0, with 0.5 indicating a random
distribution of data and 1.0 indicating the outcome of the model
perfectly predicting the observed survival information. The
calibration curves of the nomogram were subsequently drawn
for the patients’ 5-year OS. The calibration curves were used
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FIGURE 2 | The workflow in developing a radiomic overall survival nomogram. Computed tomography (CT) and positron emission tomography (PET) images were

segmented semiautomatically using the Siemens radiomics prototype. Features including histogram features, shape features, texture features, and wavelet features

were extracted from CT and PET images using the software. Three rad-scores were calculated using the least absolute shrinkage and selection operator Cox

regression based on subsets of CT, PET, and PET/CT radiomic features. The predictive ability of CT, PET, and PET/CT rad-scores on overall patient survival was

evaluated. The overall survival nomogram was constructed based on the PET/CT rad-score and clinicopathological factors.

to determine the independent risk factors and also illustrated
both survival probabilities predicted by the nomogram and the
observed probabilities.

Statistical Analysis
R software (version 3.5.0, www.Rproject.org) was used for
statistical analysis in this study. LASSO was conducted using
the “glmnet” package, while the “hdnom” package was used for
the survival analysis. All statistical tests were two-sided, with
a significance level of 0.05. Finally, a decision curve analysis
was conducted using the “rmda” package to determine the
clinical usefulness of radiomics nomogram by quantifying the net
benefits at different threshold probabilities (37).

RESULTS

Clinical Characteristics of Patients
The study patients were divided into two groups: the training
cohort with 221 patients (120 men and 101 women) and a
validation cohort with 94 patients (51 men and 43 women).
There were no significant differences in sex, family history,
smoking status, histological grade, lymph node metastasis,
distantmetastasis, TNM stage, and TTF-1 level (p= 0.054–1.000)
between the training and validation cohorts. CEA levels were
significantly different between the training and validation cohorts
(p = 0.023). Other clinicopathological characteristics are shown
in Table 1.

Establishment of Multivariate Cox
Proportional Hazards Model
Before constructing the final model, we used a multivariate Cox
regression analysis to test the hazard ratio (HR) of each parameter
and to determine its significance in the probability of death.
The results were as follows: distant metastasis (HR, 1.94 [95%
CI, 1.17–3.21]), (HR, 1.71 [95% CI, 0.81–3.61]); stage (HR, 3.24

TABLE 2 | HR analysis for the different independent clinicopathological factors for

clinical model.

Training cohort Validation cohort

HR p value 95% CI for HR HR p value 95% CI for HR

Lower Upper Lower Upper

Distant metastasis 1.94 0.010 1.17 3.21 1.71 0.162 0.81 3.61

Stage 3.24 <0.001 1.74 6.02 8.34 0.001 2.28 30.56

CEA 1.12 0.007 1.03 1.21 1.18 0.035 1.01 1.37

Targeted therapy 0.35 <0.001 0.22 0.56 0.41 0.023 0.19 0.89

CEA, carcinoembryonic antigen; HR, hazard ratio.

[95% CI, 1.74–6.02]), (HR, 8.34 [95% CI, 2.28–30.56]); CEA (HR,
1.12 [95% CI, 1.03–1.21]), (HR, 1.18 [95% CI, 1.01–1.37]) and
targeted therapy (HR, 0.35 [95% CI, 0.22–0.56]), (HR, 0.41 [95%
CI, 0.19–0.89]) were the independent risk factors in the training
and validation cohorts, respectively (Table 2).

Important Radiomic Features Selection
and Calculation of the Rad-Score: Model
Construction and Comparison
We performed a selection using the LASSO regression
model on the PET/CT features, as shown in Figures 3A,B.
To calculate the rad-score, the following six important
features were selected from the 840 radiomic features,
as shown in Figure 3C: PET_wavelet_HLH_glcm_Inverse
Variance, CT_wavelet_LLL_glrlm_Long Run Low Gray Level
Emphasis,PET_wavelet_LHL_firstorder_Maximum,CT_wavelet_
LHL_firstorder_Mean, PET_wavelet_HLL_firstorder_Kurtosis,
and CT_original_glszm_Small Area High Gray Level Emphasis.
Subsequently, the rad-scores were calculated. The PET/CT
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FIGURE 3 | (A,B) Radiomic features were selected using the ten-fold cross-validation least absolute shrinkage and selection operator Cox regression model in the

training cohort (number of patients: 221). The following two steps were included: determining the hyperparameter/lambda with a partial likelihood deviance as the

criterion (top row) and using the optimized/lambda (the vertical dashed line) to select features with nonzero coefficients (bottom row). (C) A total of six important

radiomic features were selected.

rad-score was determined using the following formula: Rad-
score=0.19×CT_original_glszm_SmallAreaHighGrayLevel
Emphasis+0.07×CT_wavelet_LHL_firstorder_Mean+0.017×
CT_wavelet_LLL_glrlm_LongRunLowGrayLevelEmphasis+
0.028×PET_wavelet_HLH_glcm_InverseVariance+0.104×PET_
wavelet_HLL_firstorder_Kurtosis+0.05×PET_wavelet_LHL_first
order_Maximum−0.019.

We constructed three rad-scores based on CT features, PET
features, and PET/CT combined features. The C-index of the
rad-scores is shown in Table 3. Among these three rad-scores,
the CT rad-scores were 0.685 and 0.658 in the training and
validation cohorts, respectively. The PET rad-score had a lower
C-index (0.662 and 0.611 for the training and validation cohorts,
respectively) than the CT rad-score. The PET/CT rad-score had
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TABLE 3 | Harrell’s concordance index of different modalities.

Modality Training cohort Validation cohort

C-index 95% CI C-index 95% CI

CT 0.685 (0.654–0.716) 0.658 (0.593–0.723)

PET 0.662 (0.609–0.715) 0.611 (0.540–0.682)

PET/CT 0.706 (0.663–0.749) 0.661 (0.540–0.682)

Clinical model 0.730 (0.691–0.769) 0.774 (0.707–0.841)

TNM stage 0.552 (0.504–0.072) 0.531 (0.435–0.144)

Tumor volume 0.607 (0.554–0.080) 0.644 (0.560–0.127)

TNM stage and tumor volume 0.618 (0.568–0.076) 0.635 (0.548–0.132)

Radiomics nomogram (PET/CT

combined with Clinical model)

0.776 (0.741–0.811) 0.789 (0.724–0.854)

PET/CT, positron emission tomography/computed tomography.

the best C-index (0.706 and 0.661 for the training and validation
cohorts, respectively). The C-index values of the clinical model
with clinicopathological factors were 0.730 and 0.774 in the
training and validation cohorts, respectively (Table 3). The C-
index values of the TNM stage and tumor volume (0.618
and 0.635 for the training and validation cohorts, respectively)
were significantly higher than that of the TNM stage (0.552
and 0.531, respectively) or tumor volume (0.607 and 0.644,
respectively) alone (Table 3). A rad-score was combined with the
clinicopathological factors to construct a nomogram based on
LASSO, as shown in Figure 4A. The C-index (0.776 and 0.789 for
the training and validation cohorts, respectively) of the PET/CT
rad-score combined with the clinical model was higher than
that of the clinical model without the rad-score (Table 3). The
validation of the nomogram showed that it had good predictive
performance, as shown in Figures 4B,C. The calibration curve
showed that the predicted probability was significantly close to
the actual survival time of patients, as shown in Figures 4D,E.
We also analyzed the association of PET/CT rad-score, OS
nomogram, tumor volume, stage, and clinical model with the
survival time of patients with NSCLC using a Kaplan-Meier
analysis. Figures 5A–E shows the survival probability of the
patients in the high-risk or low-risk cohorts. The results of
the log-rank test indicate significant discrimination between the
two groups.

To determine the clinical usefulness of the radiomics
nomogram model, a decision curve analysis was performed. The
decision curve analysis showed that the radiomics nomogram
had a higher overall net benefit than 4 other clinical models
(tumor volume, TNM stage, TNM stage, and tumor volume, and
clinical model) across the majority of the range of reasonable
threshold probabilities as shown in Figure 6.

DISCUSSION

In this study, we used 18F-FDG PET/CT radiomics to investigate
the prognosis of patients with NSCLC. We extracted radiomic
features from CT and PET, constructed a radiomics signature,
and calculated the rad-score. Subsequently, we compared the

predictive performance of CT, PET, and PET/CT rad-scores to
determine the prognosis of patients with NSCLC. Considering
that PET/CT has the best predictive performance among
the three modalities, we further combined the PET/CT
rad-score with the clinicopathological factors to predict
the prognosis of patients with NSCLC. In addition, we
performed Cox proportional hazards regression analysis on the
clinicopathological risk factors and selected the independent risk
factors related to the patient’s prognosis. Finally, we constructed
two prediction models based on LASSO: clinical models with
and without the rad-score. In addition, 3 other clinical models
were established (TNM stage, tumor volume, and tumor volume)
to predict the prognosis of patients with NSCLC. Our results
showed that the OS nomogram had good predictive performance
for prognosis and could successfully stratify patients into
high-risk and low-risk groups.

We extracted 840 radiomic features from CT, PET, and
PET/CT images. To avoid redundancy and overfitting caused
by the small sample size and additional radiomic features, we
used the LASSO method to select important radiomic features.
LASSO can be used to select biomarkers from high-dimensional
radiomic features to overcome the problem of a small sample
size and to select features that are most relevant to survival
time (38). In addition, the LASSO method with cross-validation,
as presented in this study, can be used to elegantly address
issues of overfitting, collinearity, and multiple-hypothesis testing
in feature selection. The LASSO method was also used to
select radiomic features related to prognosis that were consistent
with previous reports (39, 40). Furthermore, our prediction
performance after using the LASSO method was better than
the prediction performance of previous studies (38, 41, 42).
Finally, we selected a total of six important radiomic features to
construct CT, PET, and PET/CT radiomics signatures. The rad-
scores were subsequently calculated for the three modalities to
compare their predictive performances, revealing that PET/CT
had the best predictive performance. Hence, we further studied
the PET/CT modality, and combined the PET/CT rad-score
with the clinicopathological factors that acquired good predictive
performance with the C-index (0.776 and 0.789 for the training
and validation cohorts, respectively). Our results showed that
TNM staging was inconsistent with prognostic assessment;
therefore, the prognosis cannot be predicted well. Radiomics
can be used to comprehensively and quantitatively assess the
spatiotemporal heterogeneity of tumors, and when combined
with clinicopathological factors, the predictive performance of
prognosis may be improved. According to Kirienko et al. (43),
the Cox proportional hazards regression model was established
based on CT, PET, and PET/CT radiomic signatures to predict the
disease-free survival of patients with NSCLC. The results showed
that the Cox proportional hazards regression models including
radiomic features for the CT, PET, and PET/CT images had areas
under the curve (AUCs) of 0.75, 0.68, and 0.68, respectively.
The addition of clinicopathological risk factors to the Cox
proportional hazards regression models resulted in AUCs of 0.61,
0.64, and 0.65 for the CT, PET, and PET/CT images, respectively.
Mattonen et al. (44) constructed a Cox proportional hazards
model that included stage and an MTV plus penumbra texture

Frontiers in Oncology | www.frontiersin.org 8 July 2020 | Volume 10 | Article 1042

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. PET/CT Radiomics to Predict the Survival of NSCLC

FIGURE 4 | (A) Establishment of a comprehensive nomogram by combining the positron emission tomography/computed tomography (PET/CT) rad-score and

clinicopathological factors for predicting the 5-year overall survival of patients with non-small cell lung cancer. (B,C) A validation analysis of the nomogram showed
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FIGURE 4 | that the area under the curve (AUC) at five time points was obtained on the training and validation cohorts. The AUC for predicting the prognosis from 1–5

years was >0.7. With the extension of follow-up time, the predicted AUC gradually increased, indicating that the nomogram has a good performance in predicting

prognosis. (D,E) The calibration curve was used to estimate the 5-year overall survival predicted using a nomogram. The diagonal gray line represents an ideal

evaluation, and the blue line represents the performance of the nomogram. The calibration curves for the training and validation cohorts showed the calibration of two

cohorts in terms of the agreement between the estimated and observed 5-year outcomes.

feature to predict recurrence/progression in NSCLC based on
the LASSO method. The results showed that the C-index of the
training and validation sets of this multivariate model were both
0.74. Wang et al. (45) used the consensus clustering method to
automatically select the stable and prognostic radiomic features
and subsequently constructed a multivariate Cox proportional
hazards model that incorporated CT radiomic, clinical, and
hematological features. These were found to be more predictive
with a C-index of 0.792 and retained a C-index of 0.743 in the
cross-validation analysis, therefore outperforming the radiomic,
clinical, or hematological models. In addition, Dissaux et al.
(27) and Oikonomou et al. (28) used PET/CT-based radiomics
to predict the prognosis of patients with lung cancer who
were treated with stereotactic body radiotherapy (SBRT). The
results showed that radiomic features derived from PET/CT were
associated with local control in patients with NSCLC undergoing
SBRT, and can be used as predictors of OS, disease-specific
survival, and regional control. Radiomics on PET/CT provided
complementary information for the prediction of control and
survival in patients with SBRT-treated lung cancer and could be
helpful in clinical decision-making. The above studies showed
that radiomic features were related to prognosis and had good
prognostic predictive performance. Although some of the studies
were multi-center studies, the sample sizes were generally small;
therefore, the prediction model may have been overfitted. Our
prediction model has better predictive performance and our
sample size was much larger compared to previous studies. Our
results indicated that the rad-score from the CT, PET, or PET/CT
group has a favorable predictive power for survival. Moreover,
the PET/CT rad-score had the best performance among the three
rad-scores and could improve the predictive performance of the
PET/CT models when combined with the clinicopathological
factors. Hence, we believe that more tumor details are contained
in the PET/CT entity model compared to an individual CT
or PET entity model, a finding consistent with the findings of
previous studies.

Additionally, we performed univariate Cox regression analysis
on the clinicopathological factors to test the HR of each
parameter and to determine its significance in the probability of
death. The results showed that distant metastasis, stage, CEA, and
targeted therapy were independent risk factors; We subsequently
constructed a nomogram by combining the PET/CT rad-score
and clinicopathological factors. The calibration curve showed
that the predicted probability was significantly close to the
actual survival time of patients. The validation of the OS
nomogram showed that with the extension of follow-up time,
the AUC for predicting prognosis gradually increased, and our
results indicated that the OS nomogram had good predictive
performance. We also evaluated the reliability of the PET/CT
rad-score, OS nomogram, tumor volume, stage, and clinical

model in predicting patient survival using a Kaplan–Meier
analysis. The results of the Kaplan–Meier analysis demonstrated
that the OS nomogram can clearly divide the patients into
high-risk and low-risk groups, indicating that our nomogram
had a strong predictive power in patients with high and low
risks. Thus, it is considered significantly robust and reliable,
and can be used as evidence for additional treatment and close
follow-up in patients with poor prognosis, which is consistent
with the research results of Dessroit et al. (29). In addition,
the decision curve analysis demonstrated that the radiomics
nomogram was superior to 4 other clinical models (tumor
volume, TNM stage, TNM stage and tumor volume, and clinical
model) across the majority of the range of reasonable threshold
probabilities, which indicated that the radiomics nomogram
added incremental value to the traditional staging system and
other clinicalpathologic factors for individualized estimations.
We believe that with the combination of the rad-score and
clinicopathological factors to construct an OS nomogram, the
predictive performance was largely improved, suggesting that the
rad-score played an important role in the predictive accuracy
of the OS of patients with NSCLC, a result that was consistent
with the results of previous studies (46, 47). It is worth
nothing that because of variations in technical parameters or
inconsistent imaging parameters, a limited sample size, and
heterogeneous patient characteristics, radiomic features may
be insignificant in predicting prognosis in certain situations.
Therefore, cohorts and validation datasets need to be evaluated,
methodologies need to be standardized, and data on studies
that evaluate radiomic features need to be harmonized in
future studies, especially those with retrospective multi-centric
datasets (48, 49).

Our study has some limitations, including the relatively small
sample size and single-center cohort, the retrospective nature
of the data, and the lack of external validation, which may
have introduced selection bias, thereby resulting in poor model
generalization and capacity. However, we plan to rapidly expand
the sample size, and multi-center cohorts should be recruited
for validation in the near future. Secondly, in this study, all
texture matrices using 26-connectivity to find the neighboring
voxels with distance 1 and 13 angles. Finally, the value of a
feature is calculated for each angle separately, after which the
mean of these values is used. However, it has been shown
this strategy leads to less informative features compared to
extracting the feature from as single matrix implementing all
13 directions, so, strategy should be implemented to merge
the angle specific features into the texture matrix in future
studies. Thirdly, We measured four metabolic parameters in
a different way (different volume, different software) than the
other radiomic features. It may lead to a bias in the comparison
of the potential value of these four metrics with respect to
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FIGURE 5 | (A–E). Predictive performance of the PET/CT rad-score, overall survival nomogram, tumor volume, stage, and clinical model Kaplan-Meier survival

analysis of the patients in the high- and low-risk groups in the training cohort. Kaplan-Meier analysis for the PET/CT rad-score (A), overall survival (OS) nomogram (B),

tumor volume (C), stage (D), and clinical model (E). The patients were stratified into high- and low-risk groups based on PET/CT rad-score (A, p < 0.0001, log-rank

test), OS nomogram (B, p < 0.0001, log-rank test), tumor volume (C, p < 0.0001, log-rank test), stage (D, p < 0.0001, log-rank test), and clinical model (E, p <

0.0001, log-rank test).
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FIGURE 6 | Decision curve analysis for each model. The y-axis denotes the

net benefit, which was calculated using true-positive and false-positive results.

The radiomics nomogram model has the highest net benefit at the threshold

from 0.1 to 0.9 among all positive predictions (line labeled “All”), all negative

prediction (line labeled “None”), and another 4 clinical models (line labeled

“Tumor volume, tumor-node-metastasis [TNM] stage, TNM stage and tumor

volume, and clinical model”).

all other features calculated by pyradiomics. And the stability
and repeatability of the MTV and TLG values derived from
a volume determined through a fixed threshold at 40% of
maximum intensity are still controversial. So, we will try to
use a consensus of several manual delineation instead of fixed
thresholding to calculate tumor metabolic volume in the near
future study (50, 51). In addition, all PET/CT acquisitions were
carried out in free breathing mode, and no steps were taken
to correct for motion may lead to extraction of features might
have been suboptimal in the case of small lesions affected by
motion, but also in some larger heterogeneous uptakes affected
by motion blur.

In conclusion, the identified radiomic signature based on
PET/CT can be potentially used as a biomarker for risk
stratification of the OS in patients with NSCLC. The OS
nomogram combining radiomics and clinicopathological factors
for individualized OS estimation may provide more precise
guidance for the accurate diagnosis and treatment of NSCLC in
clinical practice.
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