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Objectives: This study aimed to explore the predictive value of MRI-based

radiomic model for progression-free survival (PFS) in nonmetastatic nasopharyngeal

carcinoma (NPC).

Methods: A total of 327 nonmetastatic NPC patients [training cohort (n = 230) and

validation cohort (n = 97)] were enrolled. The clinical and MRI data were collected. The

least absolute shrinkage selection operator (LASSO) and recursive feature elimination

(RFE) were used to select radiomic features. Five models [Model 1: clinical data, Model 2:

overall stage, Model 3: radiomics, Model 4: radiomics+ overall stage, Model 5: radiomics

+ overall stage + Epstein–Barr virus (EBV) DNA] were constructed. The prognostic

performances of these models were evaluated by Harrell’s concordance index (C-index).

The Kaplan–Meier method was applied for the survival analysis.

Results : Model 5 incorporating radiomics, overall stage, and EBV DNA yielded the

highest C-indices for predicting PFS in comparison with Model 1, Model 2, Model 3,

and Model 4 (training cohorts: 0.805 vs. 0.766 vs. 0.749 vs. 0.641 vs. 0.563, validation

cohorts: 0.874 vs. 0.839 vs. 836 vs. 0.689 vs. 0.456). The survival curve showed that

the high-risk group yielded a lower PFS than the low-risk group.

Conclusions: The model incorporating radiomics, overall stage, and EBV DNA showed

better performance for predicting PFS in nonmetastatic NPC patients.

Keywords: radiomics, prediction, progression-free survival, nasopharyngeal carcinoma, magnetic resonance

imaging
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) has obvious geographical
distribution characteristics, especially in the south of China
(1). Unfortunately, only 72.9% of patients with locoregionally
advanced NPC have a 2-year progression-free survival (PFS) (2).
Therefore, it is very important to improve the outcome of those
patients. Individualized treatment based on precise stratification
of PFS can improve the prognosis of NPC patients. This has
led to a search for PFS prognostic factors, including clinical and
image biomarkers.

To date, the American Joint Committee on Cancer/Union
for International Cancer Control TNM staging system has been
widely used to predict PFS for patients with NPC. Only the
anatomy information including tumor size, lymph node status,
and metastasis status were reflected by the TNM staging system
(3). However, the latest eighth edition failed to accurately
differentiate the PFS of stage II and III NPCs (4).

Plasma Epstein–Barr virus (EBV) DNA before treatment
reflected the spread of tumor, and it has been used as a prognostic
marker for PFS in patients with NPC (5–7). However, the
accuracy of plasma EBV DNA is affected by a number of
factors including DNA extraction, purification and stabilization
methods, instruments, primers, and probes (8, 9).

Radiomics characterizes tissue heterogeneity by extracting
and analyzing a large number of advanced CT, MRI, and PET
imaging features (10). The radiomic features extracted from
medical images can be used to predict the prognosis of tumors
(11–14). In terms of NPC, a recent study showed that MR
radiomics can significantly improve the efficacy of traditional
TNM staging and clinical data in predicting PFS of patients with
advanced NPC (15). Since the NPC is an EBV-related disease,
the EBV DNA status is also taken into consideration in a study
to develop multidimensional nomogram for predicting PFS in
patients with advanced NPC (2). These studies indicated that
MRI-based radiomic features and clinical characteristics may be
valuable factors for predicting the PFS in advanced NPC patients.
However, the MRI-based radiomic features including low-stage
NPC patients for predicting the PFS were unknown.

Therefore, in the present study, we developed and validated
MRI-based radiomics for predicting PFS in nonmetastatic
NPC (stages I–IVA). In addition, we explored the predictive
performance of the MRI-based radiomics in patients with
different pretreatment EBV DNA levels.

MATERIALS AND METHODS

Patients
Ethical approval and written informed consent were obtained for
this retrospective study.

A total of 327 consecutive nonmetastatic NPC patients
at our institute were enrolled between June 2013 and June

Abbreviations: EBV, Epstein–Barr virus; PFS, Progression-free survival; LASSO,

Least absolute shrinkage and selection operator; PCR, Polymerase chain reaction;

CE-T1WI, Contrast-enhanced T1-weighted image; T2WI, T2-weighted image; CI,

Confidence interval; NPC, Nasopharyngeal carcinoma.

2017. The inclusion criteria were as follows: (a) pathologically
confirmed NPC; (b) no treatments before registration; (c) no MR
examination contraindications; (d) no distant metastasis; (e) no
other primary tumor; and (f) complete clinical and MRI data.

All patients (n = 327) were randomly assigned to a training
cohort (n = 230) and a validation cohort (n = 97). The
demographic and clinical data (age, sex, hemoglobin level, and
platelet count) were collected. Tumor was restaged according
to the 8th Edition American Joint Committee on Cancer TNM
Staging System.

In general, patients with stage I tumors were treated with
curative radiotherapy (RT) alone, while those with stage II–IVA
tumors were treated with radical concurrent chemoradiotherapy
(CCRT), with/without induction chemotherapy (IC) or adjuvant
chemotherapy (AC). The CCRT consisted of cisplatin for three
to six cycles. IC and AC were cisplatin-based regimens every
3 weeks for 2–4 cycles. Patients who could not tolerate or refused
chemotherapy did not receive chemotherapy. All patients were
treated with intensity-modulated RT (30–33 fractions with five
daily fractions per week for 6–7 weeks), and the total radiation
doses were 60–72.6 Gy.

Plasma EBV DNA
Plasma EBV DNA concentrations before treatment were
routinely measured using a commercial extraction kit (Shanghai
ZJ Bio-Tech Co. Ltd, China). The real-time polymerase chain
reaction (PCR) analysis was performed on the Hongshi SLAN-
9GP Real-Time PCR system. All tests were performed using our
usual standard operating procedures according to the reagent
operation instructions.

Patients with EBV DNA values of ≥500 copies/ml were
assigned to the EBV DNA (+) group, and patients with EBV
DNA values of <500 copies/ml were assigned to the EBV DNA
(–) group.

MRI Acquisition
All the patients were examined on a 1.5-TMRI scanner (Achieva,
Philips Healthcare). T2-weighted (T2-w), T1-weighted (T1-w),
and contrast-enhanced T1-weighted (CET1-w) MR images were
acquired. The acquisition parameters were as follows: axial T2-w
spin-echo images (FSE, TR = 5,013 ms, and TE = 100 ms), axial
T1-w spin-echo images (FSE, TR = 456 ms, and TE = 15 ms),
and axial CET1-w spin-echo images (FSE, TR = 450 ms, and
TE = 15 ms). The slice thickness and interslice gap were 5 and
0.5 mm, respectively.

Lesion Segmentation and
Reproducibility Evaluation
Feature selection used the T2-w and CET1-w MR images.
Regions of interest (ROIs) were first manually drawn slice
by slice by one radiologist (observer 1) with 10 years of
experience in head-and-neck MRI interpretation by using the
in-house software developed by Philips. The ROIs covered the
whole tumor.

We selected randomly 50 patients for reproducibility
evaluation, and then we selected 100 radiomic features from
each selected patient (50 features were randomly selected from
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T2-w-based radiomic features, and 50 features were randomly
selected from CET1 image-based radiomic features) to evaluate
the interobserver and intraobserver ICC. ROI segmentation was
analyzed 1 month later by the same (observer 1) and one other
radiologist (observer 2, 15 years of experience in head-and-
neck MRI interpretation). The differences between the features
extracted by observer 1 (first time) and those by observer 2, as
well as the twice-extracted features by observer 1, were assessed
by an independent Kruskal–Wallis H test.

Radiomic Signature Building
Radiomic features were extracted fromT2-w and CET1-w images
using the Philips Radiomics Tool.

For feature selection, removing features with low variance
was first performed to identify the significant features with
threshold <0.01, and the least absolute shrinkage selection
operator (LASSO) was explored to reduce the dimensionality of
features. After that, the recursive feature elimination (RFE) based
on support vector machine (SVM) was used to further choose the
most valuable predictive features from the above features, and
the dimensionality of features was further reduced. Finally, 20
key features were selected in the training cohort. After feature
selection, a Cox model was built and used to construct a radiomic
score (Rad-score).

Prognostic Validation of the Radiomics
The potential correlations between PFS and radiomics were
first assessed in the training group and then confirmed in the
validation group. Kaplan–Meier survival was performed in both
groups. The patients were assigned to high-risk and low-risk
groups based on median Rad-score. Stratified analysis was used
to determine the PFS in various subgroups, and high-risk and
low-risk patients were compared. The C-index of the radiomics
based on the T2-w and CET1-w images were calculated by the
univariate Cox proportional hazards models.

The C-index was used to evaluate the prognostic performance
of the five models (Model 1: clinical data, Model 2: radiomics,
Model 3: overall stage, Model 4: radiomics+ overall stage, Model
5: radiomics+ overall stage+ EBV DNA).

Clinical Endpoints and Follow-Up
All patients were followed up every 3 months in the first 2 years,
6 months in years 3–5, and 12 months thereafter or until death.
The follow-up time was defined from therapy initiation to the
day of last examination or death. We set PFS as the endpoint
(16, 17). PFS was defined from the 1st day of treatment to the date
of disease progression (local recurrence or distant metastasis),
death for any cause, or the last follow-up (censored). Disease
progression was confirmed by biopsy pathology and/or imaging
methods such as CT, MRI, or PET-CT (15).

Statistical Analysis
The Mann–Whitney U-test was used to analyze quantitative
variables of the training group and the validation group, and
the chi-square test was used to analyze the qualitative variables.
Those differences of the C-indexes in five models were compared
by one-way ANOVA. Bonferroni post-hoc test was used for

comparing the differences of the C-indexes between any two
models. The statistical analysis was performedwith SPSS software
version 22.0 (SPSS IBM). LASSO in the “glmnet” package of
R(version 3.6.2) and RFE based on SVR in Python(3.7) were used
to select radiomic features to fit the Cox proportion model. The
Kaplan–Meier survival and Cox proportional hazards regression
analyses were respectively performed with the “survival” package
and “rms” package in R (version 3.6.2). In Bonferroni post-
hoc test, a two-sided P < 0.05/5 was considered statistically
significant, and in all other tests, a two-sided P < 0.05 was
considered statistically significant.

RESULTS

Clinical Data
The clinical data of all patients are summarized in Table 1.
There were no significant differences between the training

TABLE 1 | Characteristics of the patients in the training and validation cohorts.

Training cohort

(N = 230)

Validation

cohort (N = 97)

P

Gender 0.645

Male 165 (71.7%) 72 (74.2%)

Female 65 (28.3%) 25 (25.8%)

Age (years)

Median (IQR) 52.00

(45.00 ± 61.00)

52.00

(45.5 ± 60.5)

0.811

Overall stage 0.902

I 1 (0.4%) 0 (0.0%)

II 32 (13.9%) 15 (15.5%)

III 120 (52.2%) 48 (49.5%)

IVA 77 (33.5%) 34 (35.0%)

T stage 0.954

T1 20 (8.7%) 7 (7.2%)

T2 100 (43.4%) 42 (43.3%)

T3 65 (28.3%) 27 (27.9%)

T4 45 (19.6%) 21 (21.6%)

N stage 0.985

N0 18 (7.8%) 7 (7.2%)

N1 62 (27.0%) 25 (25.8%)

N2 111 (48.2%) 49 (50.5%)

N3 39 (17.0%) 16 (15.5%)

Pretreatment EBV DNA

0 161 (70.0%) 67 (69.1%) 0.868

1 69 (30.0%) 30 (30.9%)

Pretreatment HB

Median (IQR) 137.50

(126.00–149.00)

137.00

(127.50–147.50)

0.792

Pretreatment PLT

Median (IQR) 199.00

(153.00–253.00)

190.00

(157.50–242.00)

0.298

PFS (months)

Median (IQR) 24.00

(14.00–29.00)

24.00

(15.00–28.00)

0.948

HB, hemoglobin; PLT, platelets; PFS, progression-free survival.
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TABLE 2 | Radiomic feature selection result.

MRI series Selected features (CET1-w + T2-w) P

CET1-w ShapeBased_Elongation 0.001218

CET1-w WaveletGLCM_wavelet.LLH_ClusterShade 0.006283

CET1-w WaveletGLCM_wavelet.LHL_MCC 0.006448

CET1-w WaveletGLSZMwavelet.HLL

_SmallAreaLowGrayLevelEmphasi

0.006222

CET1-w WaveletGLSZMwavelet.LLL

_LargeAreaLowGrayLevelEmphasis

0.001258

CET1-w SquareGLSZM_square

_LowGrayLevelZoneEmphasis

0.001393

CET1-w LogarithmGLCM_logarithm_Correlation 0.000069

CET1-w LogarithmGLCM

_logarithm_MaximumProbability

0.000262

T2-w WaveletFirstOrder_wavelet.LLH_Energy 0.000816

T2-w WaveletFirstOrder_wavelet.LHH_Maximum 0.000045

T2-w WaveletFirstOrder_wavelet.LHH_Median 0.008018

T2-w WaveletFirstOrder_wavelet.HLL_Maximum 0.001324

T2-w WaveletFirstOrder_wavelet.HLH_Median 0.000632

T2-w WaveletGLCM_wavelet.HLH_ClusterShade 0.002597

T2-w WaveletGLCM_wavelet.HHH_MCC 0.000009

T2-w WaveletGLCM_wavelet.LLL

_ClusterProminence

0.009537

T2-w WaveletNGTDM_wavelet.LHL_Contrast 0.000443

T2-w SquareNGTDM_square_Strength 0.000088

T2-w ExponentialGLSZM_exponential_ZoneEntropy 0.000441

T2-w ExponentialNGTDM_exponential_Busyness 0.000263

The P-value for each radiomic feature associated with outcome was calculated using Cox

proportional hazards regression. CET1-w, contrast-enhanced T1-weighted; T2-w, T2-

weighted.

and validation cohorts in clinical characteristics (P = 0.298–
0.985). The median follow-up time was 38 months (range, 24–
72 months), and the median PFS was 24 months (range, 3–
60 months); 84 patients had progression (14 recurrences and 70
metastases), and 19 patients had died by the last follow-up.

Radiomic Signature Building
Extracted from T2-w images and CET1-w images are 1,227
features, adding up to 2,454 features. Twenty radiomic features
were selected using the Rad-score prognostic model (Table 2).

The Rad-scores for each patient are shown in Figure 1. The
Rad-scores between the training and validation cohorts were
significantly different (P < 0.05).

Reproducibility Evaluation of
ROI Segmentation
There were no significant differences between the features of
the two observers nor between first-extracted features and
second-extracted features of observer 1’s (p-values ranged from
0.576 to 0.784). The intraobserver ICC calculated based on
observer 1’s twice feature extraction ranged from 0.758 to
0.908, and the interobserver ICCs ranged from 0.752 to 0.889.
Therefore, all outcomes were based on the features extracted by
the observer.

FIGURE 1 | Rad-score for each patient. Dodger blue bars show scores for

patients who survived without disease progression or were censored, while

deep pink bars show scores for those who experienced progression or died.

TABLE 3 | C-index of the five models.

Models Training cohort (N = 230) Validation cohort (N = 97)

Clinical data 0.563 (95% CI: 0.493–0.634) 0.456 (95% CI: 0.443–0.470)

Overall stage 0.641 (95% CI: 0.604–0.679) 0.689 (95% CI: 0.677–0.701)

Radiomics 0.749 (95% CI: 0.713–0.783) 0.836 (95% CI: 0.823–0.849)

Radiomics +

overall stage

0.766 (95% CI: 0.729–0.804) 0.839 (95% CI: 0.827–0.853)

Radiomics +

overall stage

+ EBV DNA

0.805 (95% CI: 0.768–0.841) 0.874 (95% CI: 0.861–0.887)

Prediction Performance of Models
The C-index of each model was shown in Table 3. The model
of clinical data gained the lowest C-index in the training cohort
[0.563 (95% CI: 0.493–0.634)] and validation cohort [0.456 (95%
CI: 0.443–0.470)].

The C-index of radiomics was higher than that of the overall
stage in the training cohort [0.749 (95%CI: 0.713–0.783) vs. 0.641
(95% CI: 0.604–0.679)] and validation cohort [0.836 (95% CI:
0.823–0.849) vs. 0.689 (95% CI: 0.677–0.701)].

Model 4 integrating radiomics and overall stage gained
a C-index of 0.766 (95% CI: 0.729–0.804) in the training
cohort and 0.839 (95% CI: 0.827–0.853) in the validation
cohort, which were higher than those of radiomics or
overall stage alone. This nomogram without EBV DNA was
shown in Figure 2A. The nomogram also showed good
calibration (Figure 2B).

The number of EBV DNA (+) patients and EBV DNA (−)
patients were 228 and 99, respectively. Model 5 integrating
radiomics, overall stage, and EBV DNA gained the highest C-
index of 0.805 (95% CI: 0.768–0.841) in the training cohort
and 0.874 (95% CI: 0.861–0.887) in the validation cohort. The
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FIGURE 2 | (A) A radiomic nomogram without EBV DNA integrating the radiomic signature with the TNM staging system. (B) Calibration curve of the radiomic

nomogram without EBV DNA. (C) A radiomic nomogram with EBV DNA integrating the radiomic signature, TNM staging system, and EBV DNA. (D) Calibration curve

of the radiomic nomogram with EBV DNA.

nomogram with EBV DNA and calibration curve integrating the
three factors was shown in Figures 2C,D.

For low-stage NPC patients (n = 48), those C-indices of
clinical data, radiomics, and EBV DNA were 0.533 (95% CI:
0.687–0.517), 0.759 (95% CI: 0.718–0.814), and 0.687 (95%
CI: 0.633–0.718), respectively. The combined model (radiomics

combined with EBV DNA) improved the predictive performance
of PFS, its C-index was 0.772 (95% CI: 0.718–0.827).

Kaplan–Meier Survival Analysis
The Kaplan–Meier survival curves (Figure 3) were drawn based
on the model of the radiomics combined with the overall stage.
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FIGURE 3 | Stratified analyses were performed to estimate progression-free survival in the training cohort and validation cohort; high-risk patients show lower

progression-free survival rate than low-risk patients, P < 0.05.

In the training cohort and validation cohort, the high-risk group
yielded a lower PFS than the low-risk group (P < 0.05).

DISCUSSION

In our study, we developed an optimal model based on radiomics,
overall stage, and EBV DNA to predict PFS in patients with
stage I–IVA NPC. The nomogram with EBV DNA improved the
prediction performance of the nomogram without EBV DNA.
We used the Rad-scores derived from the optimal model to
stratify patients into high- and low-risk groups

The radiomics successfully translates medical imaging into
mineable, quantitative, and high-dimensional imaging features,
which offers an easy, effective, and reliable method of stratifying
patients into risk groups and aids in decision making (18, 19).
The radiomics may be an effective approach to predict PFS in
patients with NPC via visualizing and quantifying intratumor
heterogeneity. The study showed that the predictive performance
of radiomics for PFS was higher than that for the traditional
TNM overall stage, and the predictive performance of radiomics
combined with overall stage was higher than that of radiomics
or overall stage alone, which are consistent with previous studies
(2, 15, 20).

The C-index of the radiomics combined with the overall
stage in the study was slightly lower than that reported by the
previous studies on advanced or T4 NPC (15, 21). The possible
explanation may be that the present study included 327 patients
with T1–T4 NPC, which may improve the generalizability of the
prediction models.

Recent evidence indicates that plasma EBV DNA may not
only reflect tumor burden but also be an index of other
tumor features, such as accessibility to angiogenesis, circulation,
metabolic activity, tumor cell kinetics, and metastatic potential
(22). Moreover, several studies demonstrated that pretreatment
EBV DNA is relevant to PFS of patients with NPC (9, 23). On
the basis of the above studies, we performed two nomograms
with or without pretreatment EBV DNA on NPC patients. Our
result indicates that the nomograms with pretreatment EBV

DNA improved the prediction performance of those without
pretreatment EBV DNA; this finding with a larger sample size
was consistent with a previous one (2).

The Kaplan–Meier survival curves based on the radiomics
combined with overall stage model can commendably stratify
the PFS of NPC patients, which may contribute to the accurate
stratification of patients for individual treatment strategies in
clinical practice and the improvement of the clinical outcomes
of patients with NPC. The PFS of the high-risk group was lower
than that of the low-risk group, which was similar to previous
studies (18, 20, 21, 24), and it is helpful for administering
individualized treatment plans.

Our study has some limitations. First, this study was
conducted in a single center. The results should be interpreted
cautiously and verified by a large-sample-size, multicenter study.
Second, the mean follow-up time was relatively short; a longer
follow-up time is required to predict the 5-year PFS rates. Third,
radiomics always attempts to find the most valuable feature in
various data, while we only analyze T2-w and CET1-w images.
The analysis of multiparameter data may help improve the
quality of the model.

In conclusion, our study showed that the model incorporating
radiomics, overall stage, and EBV DNA showed optimal
performance for predicting PFS in nonmetastatic NPC patients.
The combined model can stratify patients into low- and high-risk
groups; it may provide additional information to personalized
treatment decision in nonmetastatic NPC.
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