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Background: Lymph node (LN) metastasis is the most important prognostic factor in

esophageal squamous cell carcinoma (ESCC). Traditional clinical factor and existing

methods based on CT images are insufficiently effective in diagnosing LN metastasis.

A more efficient method to predict LN status based on CT image is needed.

Methods: In this multicenter retrospective study, 411 patients with pathologically

confirmed ESCC were registered from two hospitals. Quantitative image features

including handcrafted-, computer vision-(CV-), and deep-features were extracted from

preoperative arterial phase CT images for each patient. A handcrafted-, CV-, and

deep-radiomics signature were built, respectively. Then, multiple radiomics models were

constructed by merging independent clinical risk factor into radiomics signatures. The

performance of models were evaluated with respect to the discrimination, calibration,

and clinical usefulness. Finally, an independent external validation cohort was used to

validate the model’s predictive performance.

Results: Five, seven, and nine features were selected for building handcrafted-,

CV-, and deep-radiomics signatures from extracted features, respectively. Those

signatures were statistically significant different between LN-positive and LN-negative

patients in all cohorts (p < 0.001). The developed multiple level CT radiomics

model that integrates multiple radiomics signatures with clinical risk factor, was

superior to traditional clinical factors and the results reported by existing methods,

and achieved satisfactory discrimination performance with C-statistic of 0.875 in

development cohort, 0.874 in internal validation cohort and 0.840 in independent

external validation cohort. Nomogram and decision curve analysis (DCA) further

confirmed our method may serve as an effective tool for clinicians to evaluate the

risk of LN metastasis in patients with ESCC and further choose treatment strategy.
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Conclusions: The proposed multiple level CT radiomics model which integrate multiple

level radiomics features into clinical risk factor can be used for preoperative predicting

LN metastasis of patients with ESCC.

Keywords: esophageal squamous cell carcinoma, lymph node metastasis, radiomics, computer vision, deep

learning

INTRODUCTION

Esophageal cancer (EC) is the seventh most common cancer
worldwide and the sixth leading cause of cancer death overall,
with an estimated 572,000 new cases and 509,000 deaths in
2018 (1). Esophageal squamous cell carcinoma (ESCC) is the
major histological subtype of EC, especially in high-incidence
areas such as China (2, 3). EC is often associated with a poor
prognosis, and the 5-year relative survival rate during 2008
through 2014 was 19% (4). Lymph node (LN) metastasis is
one of the most important prognostic factor, which generally
indicates a worse outcome (5). Accurate preoperative LN
staging is also important for making treatment decisions,
such as neoadjuvant chemoradiotherapy (6). Therefore,
assessing LN status preoperatively in patients with EC is of
clinical importance.

Currently, computed tomography (CT) plays an important
role in preoperative nodal staging in patients with EC. However,
its ability in identifying positive LN is unsatisfactory, and the
reported accuracy, sensitivity, and specificity are 54.5, 39.7,
and 77.3%, respectively (7). The low accuracy may result in
patients being under- or over-staged. Clinical determination of
LN metastasis according to LN size criteria on preoperative
CT is limited. Recently, radiomics, as an emerging tool, has
shown potential values in predicting LN metastasis by extracting
high-throughput quantitative features from medical images
(8–10). However, most of the features extracted are defined
by mathematical formulas (also called handcrafted feature),
which are shallow, susceptible to noise, and low-order image
features. These features may not be sufficient to reveal tumor
heterogeneity and to predict LN metastasis in patients with
ESCC (11).

To overcome these limitations, several new strategies, such
as computer vision and deep learning have been proposed. On
one hand, computer vision features (CVFs), including local and
global features, are being applied widely in traditional image
processing (12–14). Compared to handcrafted features, CVFs
have the advantages of rotation invariant, insensitive to noise.
These advantages have the potential to avoid the effects of noise
that affecting handcrafted features on CVFs. Several studies have
used CVFs to achieve disease diagnosis and prognosis prediction
in medical imaging (15, 16).

On the other hand, deep learning has drawn increased interest,
among which convolutional neural network (CNN) shows great
image classification and recognition performance in medical
imaging in recent years (17, 18). Compared to handcrafted
radiomics features, the deep features are extracted from pixel
images directly and reflect tumor information from a different
perspective, which may add predictive value for prediction of LN

status in patients with ESCC (11). Although the medical image
dataset is typically not sufficient for deep learning which requires
millions of weights to learn, the transfer learning is proposed
to cover the shortage. Transfer learning, which uses pre-trained
models from images of other domains and makes these useful for
a new dataset (19), is currently widely used in the deep learning
medical field (20).

Several studies have shown substantially predictive value
improvement of the multiscale model that integrating multiple
signatures compared to the use of individual signature (21,
22). We hypothesized that multiple level radiomics model have
potential value in preoperative prediction of LN metastasis in
patients with ESCC. Therefore, the aim of the current study was
to develop a multiple level CT radiomics model, which integrated
handcrafted-, CV-, and deep-radiomics signatures, to improve
the performance of the LN metastasis prediction in patients with
ESCC, and validate it within an independent external dataset.

MATERIALS AND METHODS

Ethics Statement
This multicenter retrospective study was approved by the
Institutional Ethics Committee of two participating hospitals
(Guangdong Provincial People’s hospital, denote as Hospital 1;
The Sixth Affiliated Hospital, Sun Yat-sen University, denote as
Hospital 2). Requirement for informed consent was waived.

Study Population
Four hundred and eleven patients were enrolled from two
hospitals (Hospital 1: n = 321, Hospital 2: n = 90) in this
study. Our inclusion criteria were as follows: (a) patients with
histologically confirmed ESCC; (b) patients who underwent
standard contrast-enhanced CT examination within 2 weeks
before surgery; (c) patients who received radical esophagostomy
with extensive lymph node dissection; (d) patients who had
pathologically confirmed LN status after surgery. Exclusion
criteria included: (a) patients who received preoperative
neoadjuvant chemotherapy or radiotherapy; (b) patients who had
received prior treatment in other institutions; (c) patients who
presented with multiple primary carcinoma or with a concurrent
malignancy; (d) patients whose tumor lesion was too small to
identify or had poor quality of CT images; (e) clinicopathological
information was incomplete. A more detailed description of
the data is presented in the Figure 1. Three hundred twenty-
one patients from Hospital 1 were chronologically divided
into two cohorts: the development cohort with 173 patients
who were treated between January 2008 and December 2016,
and the internal validation cohort with 148 patients who
were treated between January 2017 and December 2018. An

Frontiers in Oncology | www.frontiersin.org 2 January 2020 | Volume 9 | Article 1548

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Radiomics Approach Predicting ESCC LNM

FIGURE 1 | Data screening flowchart and study design. In total, 751 patients were collected from two hospitals but only 411 patients met our research requirements.

One hundred and seventy-three patients in Hospital 1 were used for model training and the others in Hospital 1 were used for internal validation. Ninety patients from

Hospital 2 were used as an independent external validation.

external validation cohort with 90 patients between January
2017 and December 2018 from Hospital 2 was used for
independent validation.

Baseline clinical and histopathological information of the
enrolled patients were derived from the clinical records and
pathology reports. Tumor location was determined according
to the 8th edition of the American Joint Committee on Cancer
(AJCC) Cancer Staging Manual (23). Histologic grade was
obtained from pathology reports. CT-reported LN status was
estimated on the preoperative CT images by a radiologist
who with 12 years of experience in upper gastrointestinal CT
interpretation. A positive lymph node was defined as the short
axis diameter of the largest regional LN >10mm (24). Besides,
the age and gender were also obtained for each patient.

Images Acquisition and Processing
All patients have underwent a contrast-enhanced CT scans from
the neck to the abdomen. Scan parameters are listed in the
Supplementary Dataset. Images were reconstructed with a slice
thickness of 5mm in Hospital 1 and 1 or 1.5mm slice thickness
in Hospital 2.

For handcrafted features, CVFs and deep features extraction,
a region of interest (ROI) was outlined along the tumor border
with exclusion of the necrosis and air area in the largest cross-
sectional area of the CT images using a free software called ITK-
SNAP (version 3.6.0, http://www.itksnap.org). To evaluate the
reproducibility of the extracted features, we randomly selected

50 samples from the development cohort to extract features and
analyze the repeatability with inter- and intra-class correlation
coefficients (ICC) indicators. Normally, features with ICC> 0.75
were defined as good agreement in reproducibility (25). The ROI
delineation was performed by two radiologists, Reader 1 and
Reader 2, with 12 and 15 years of upper gastrointestinal CT
interpretation experience, respectively.

Multiple Level Radiomics Features
Extraction
Handcrafted Radiomics Features Extraction

The image data analyzed in this study were derived from various
CT scanners. In order to reduce the impact of machine factors, all
images had been normalized before feature extraction. A toolbox
of radiomics feature extraction based on the Matlab 2016b was
developed in-house. All images were normalized by a min-max
normalization algorithm with the Hounsfield units transformed
into a range of [1, 100]. Then, four types of handcrafted radiomics
features were extracted for further analysis: (a) 14 quantitative
features described the size of tumor, called first-order statistics
features, (b) 7 quantitative features described the tumor intensity,
called size- and shape-based features, (c) 63 texture features
reflected the intratumoral heterogeneity, and (d) 3,388 features
were derived from wavelet filter and Laplace-Gaussian filter.
A total of 3,472 handcrafted radiomics features were extracted
in each patient (Figure 2). More detailed description about the
handcrafted features were presented in theMethods S1.
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FIGURE 2 | Workflow of the radiomics model building process. Image segmentation was performed by experienced radiology doctor on the CT image. The

handcrafted features were extracted from the segmented image. For computer vision features and deep features, sub-images contain whole tumor were clipped from

the segmented images, and then combined into a RGB image. Computer vision features and deep features were extracted from the RGB images. (A) Segmented

images for extracting handcrafted features. (B,C) RGB images for computer vision and deep features extraction, respectively.

Local Features Based on Computer Vision Extraction

Local features (also called local descriptors), which are distinctive
and invariant to intensity variation, noise and distortion, have
been widely utilized in computer vision filed and digital image
processing. In this study, local features based on CV were
extracted from the segmented images, which could be categorized
as four types: (a) Local Binary Pattern (LBP); (b) Histogram
of Oriented Gradients (HOG); (c) Speeded Up Robust Features
(SURF); (d) Haar-like features. In total, 5,126 CVFs were
computed based on Python 3.5 (https://www.python.org/) in this
article (Figure 2). Regarding the machine vision features, we
provided a detailed description in theMethods S2.

Deep Radiomics Features Extraction

Deep feature extraction was executed with Matlab 2016b
using a toolbox called MatConvNet (version 1.0-beta25; http://
www.vlfeat.org/matconvnet/). Convolution Neural Network-
Fast (CNN-F), a pre-trained CNN model was selected to extract
the deep features. In this paper, deep features were generated
from pre-trained CNN-F models through transfer learning.

CNN-F contains eight learnable layers, five of which are
convolutional layers, and the last three are fully connected
layers. This model was pre-trained on ImageNet Large Scale
Visual Recognition Challenge 2012 (ILSVRC-2012) dataset and
the input was a fixed-size 224 × 224 pixel2 RGB images. In
order to match the input of the pre-trained CNN-F model, three
steps were performed for each patient. First, the largest tumor
area slicer was selected from all slicers for each patient, and
manually segmented the tumor area along the tumor boundary.
Then, cropped the segmented tumor area and resized to 224 ×

224 pixel2 by bicubic interpolation. Finally, the resized single
channel image was encoded into a three-channel image and
allowed to input the model. When deep feature extraction
was performed, the last fully connected layer was removed,
and only the information of the seventh fully-connected layer
was extracted as the deep feature and used for subsequent
analysis (Figure 2). The hyperparameters of the model were
the same as that used by (26): momentum 0.9, weight decay 5
× 10−4, initial learning rate 10−2. When the validation error
stopped decreasing, the initial rate dropped to one tenth. Other
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relevant descriptions about the deep features are presented in the
Methods S3.

Feature Selection
In order to select effective features for prediction signatures
construction, a coarse to fine feature selection strategy was
adopted. Firstly, to ensure reproducibility of features, a subset
cohort was randomly extracted from development cohort as
mention above. ICCs was used to assess the reproducibility
of features. Normally, features with ICCs above 0.75 were
considered high agreement in reproducibility. Secondly, the
correlation coefficient value for all pairs of features were
calculated. All pairs of features with correlation coefficient over
0.9 were detected, and the features in each of those pairs
with the high predictive (AUC value decide) were retained.
Thirdly, Random Forest-Recursive Feature Elimination (RF-
RFE) algorithm was applied. RF-RFE is an automatic method for
feature selection, which begins by fitting a model on the entire set
of features and calculating an importance score for each feature,
and then removing the less relevant features. This process iterates
over and over until the optimal feature set is selected. Finally,
backward stepwise regression was used to select key features for
LN metastasis prediction.

The feature selection strategy was applied to the handcrafted,
CV and deep radiomics feature selection process. In order to
maintain the independence between the development and the
validation cohort, feature selection was only performed on the
development cohort, and validation cohort was only used to
evaluate the prediction performance of the model.

Signatures Building and Model
Development
After feature selection, radiomics signature was built in the
development cohort with selected key features by using logistic
regression for handcrafted, CV and deep learning, respectively.
Meantime, radiomics scores could be calculated for each patient.
The association between signatures and LN metastasis were
assessed in each cohort.

To assess the efficacy of radiomics signatures in predicting
LN metastasis of patients with ESCC compared to prior studies,
we constructed three models. First, based on prior studies
(27), a model (called Model 1) consisting of clinical indicator
and handcrafted radiomics features was constructed. Then, CV
radiomics signature was integrated into Model 1 to form the
Model 2. Finally, the deep radiomics signature was merged into
the Model 2 to form the Model 3 (Table 2).

Models Performance Assessment
To assess the performance of prediction models, four steps
recommended by Steyerberg et al. (28) were applied in
this study:

Step 1: model overall performance
Brier score (29) and Nergekerke’s R2 (30) were applied to
assess the overall performance for all models in this study.
The Brier score provided a measure of the agreement between
the observed binary outcome (i.e., LN positive vs. LN negative
in this study) and the predicted probability of that outcome.

The brier score was computed as
∑

(

yj − probj
)2

/N, with y
the outcome and prob the predicted probability for sample j
in the data set of N samples. Brier score ranges from 0 for a
perfect prediction model to 0.25 for useless prediction model.
The Nergekerke’s R2 was a measure of explained variation
computed on the log-likelihood scale.
Step 2: model discrimination
The discriminative ability of model was evaluated using
concordance statistic (C-statistic) and discrimination slope.
C-statistic, in binary outcome, is equivalent to the area
under the receiver operating characteristic curve. A reasonable
discrimination is signaled by the C-statistic values of 0.7–
0.8 and a good discrimination by values surpassing 0.8 (31).
Discrimination slope is defined as the slope of a linear
regression of predicted probabilities of events derived from a
model on the binary event status, which reflects the models
how well samples with and without the outcome are separated.
Discrimination box plot can more intuitively reflect the
discrimination ability of the model, which will show less
overlap between those with and without the outcome for a
better discriminating model.

Net Reclassification Improvement (NRI) is a statistic that
measures the incremental prognostic values that a newmarker
will improve when added to an existing prediction model,
which offers a simple and intuitive way to quantify the
improvement ability of marker.
Step 3: model calibration
Calibration refers to how closely the predicted probabilities
of LN metastasis agree with the observed LN metastasis
in this study. The calibration curve could provide an
intuitive representation of the consistency between predicted
and observed outcome. Perfect prediction should be
corresponding to 45◦ line. Calibration slope was measured
to reflect the average strength of the predictor effects. The
Hosmer–Lemeshow test was also applied to check the
goodness-of-fit of the model. A reasonable calibration should
have a higher p-value (>0.05).
Step 4: model clinical usefulness
In addition to assessing the discrimination and calibration of
the models, we also hoped to know whether the prediction
model was beneficial in clinical practice. Therefore, we also
evaluated the clinical usefulness of the models using decision
curve analysis (DCA). Standardized net benefit (sNB) was
conducted derived from decision curve.

Standardized net benefit was conducted as a function of the risk
threshold derived from decision curve (sNB value ranges from
0 to 1). Once the threshold was applied to grouped patients
into low risk and high risk, sensitivity, and specificity were often
calculated, and used as measures for usefulness. The clinical
impact plot and ROC components plot were also conducted for
assessing the clinical usefulness of models.

Statistical Analysis
All statistical analyses were performed using the R programming
language (version 3.4.2; https://www.r-project.org/). The R
packages used in this study were listed in the Methods S5. All
statistical tests in this study were two-sided and considered

Frontiers in Oncology | www.frontiersin.org 5 January 2020 | Volume 9 | Article 1548

https://www.r-project.org/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Radiomics Approach Predicting ESCC LNM

statistically significant if p ≤ 0.05. Chi-square test was applied
for categorical variables, such as sex, tumor location, histologic
grade, and CT-reported LN status. Continuous variables such
as age, and radiomics score were analyzed using the Mann–
Whitney U-test.

RESULTS

Clinical Characteristics
As displayed in Figure 1, a total of 751 entitle patients were
consecutively registered in this study from the two hospitals,
and 340 patients were excluded through the exclusion criteria.
Finally, 411 patients were registered for further analysis. The
dataset from Hospital 1 was chronologically divided into the

development cohort and internal validation cohort, the dataset
from Hospital 2 were used as external validation cohort. The
clinical characteristics of all patients were shown in Table 1.

The LN metastasis positives rate in the development, internal
validation and external validation cohorts were 46.2, 47.9, and
44.4%, respectively. There was no significant difference between
two groups with regard to age, gender, tumor location, and
histological grade in three cohorts (p: 0.082–0.945).

Feature Selection, Signature Construction,
and Assessment
In total, 3,472 handcrafted, 5,126 computer vision, and 4,096
deep features were extracted for each patient. With the coarse to
fine feature selection strategy, five, seven, and nine features were

TABLE 1 | Characteristics of patients with ESCC in development and validation cohorts.

Development cohort

(n = 173)

Internal validation cohort (n = 148) External validation cohort (n = 90)

Characteristic LNM (–)

(n = 93)

LNM (+)

(n = 80)

p LNM (–)

(n = 77)

LNM (+)

(n = 71)

p LNM (–)

(n = 50)

LNM (+)

(n = 40)

p

Age (mean ± SD, year) 57.83 ± 8.51 56.74 ± 8.09 0.389 58.91 ± 8.09 57.63 ± 8.15 0.342 59.86 ± 8.48 58.65 ± 9.58 0.533

Sex, No. (%) 0.445 0.695 0.507

Male 70 (75.27) 65 (81.25) 61 (79.22) 59 (83.10) 40 (80.00) 35 (87.50)

Female 23 (24.73) 15 (18.75) 16 (20.78) 12 (16.90) 10 (20.00) 5 (12.50)

Tumor location (%) 0.135 0.082 0.362

Up 11 (11.83) 7 (8.75) 14 (18.18) 5 (7.04) 8 (16.00) 3 (7.50)

Medium 45 (48.39) 29 (36.25) 32 (41.56) 28 (39.44) 25 (50.00) 19 (47.50)

Low 37 (39.78) 44 (55.0) 31 (40.26) 38 (53.52) 17 (34.00) 18 (45.00)

Histologic grade (%) 0.438 0.130 0.945

Well differentiated 18 (19.36) 10 (12.5) 12 (15.58) 11 (15.49) 11 (22.00) 8 (20.00)

Moderately differentiated 48 (51.61) 47 (58.75) 48 (62.34) 34 (47.89) 27 (54.00) 23 (57.50)

Poorly differentiated 27 (29.03) 23 (28.75) 17 (20.08) 26 (36.62) 12 (24.00) 9 (22.50)

CT-reported LN status (%) <0.001 <0.001 0.007

LN-negative 61 (65.59) 29 (36.25) 52 (67.53) 24 (33.80) 33 (66.00) 14 (35.00)

LN-positive 32 (34.41) 51 (36.75) 25 (32.47) 47 (66.20) 17 (34.00) 26 (65.00)

LNM, lymph node metastasis; LN, lymph node; CT, computed tomography.

TABLE 2 | Risk factors for lymph node metastasis in patients with ESCC.

Intercept and

variables

Model 1 Model 2 Model 3

β OR (95% CI) p β OR (95% CI) p β OR (95% CI) p

Intercept 0.172 0.333 0.310 0.109 0.474 0.036

CT-reported

LN status

1.039 2.826

(1.657 4.917)

0.0002 0.907 2.476

(1.395 4.467)

0.002 1.011 2.748

(1.437 5.427)

0.003

Handcrafted-

radiomics

signature

1.051 2.860

(1.582 5.644)

0.001 1.190 3.286

(1.705 7.020)

<0.001 0.791 2.205

(1.116 4.858)

0.036

Computer

vision-radiomics

signature

– – – 0.997 2.710

(1.762 4.386)

<0.001 1.012 2.752

(1.706 4.679)

<0.001

Deep-radiomics

signature

– – – – – – 0.967 2.629

(1.820 4.040)

<0.001

β, regression coefficient; OR, odds ratio; CI, confidence interval.
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finally selected from the handcrafted features, CVFs, and deep
features, respectively.

A handcrafted radiomics signature was built with a logistic
regression using the five selected handcrafted features. The
computer vision radiomics signature and deep radiomics
signature were built with seven and nine features in the
same way. Radiomics score in each cohort was also computed
(Methods S4). In the development and validation cohorts, three
signatures showed statistically significant differences between
LN-positive and LN-negative patients (all p < 0.001, shown in
Table S1).

Model Development and Overall
Assessment
For univariate analysis, CT-reported LN status, a clinical factor,
was found significantly associated with LN status (p < 0.001,
shown in Table 1). Thus, we built a model (called Model 1)
using the CT-reported LN status and handcrafted radiomics
signature by a logistic regression. Then, to evaluate the improved
performance of CV radiomics signature, the computer vision
CV radiomics signature was added into the Model 1 to form
Model 2. Similarly, to facilitate the assessment of multiple level
CT radiomics potential value, CV radiomics signature and deep
radiomics signature were merged into Model 1 to develop Model
3 (Table 2).

Model 3 was the best model for LN status prediction in
patients with ESCC, with good discrimination achieved (C-
statistic, 0.875, 0.874, and 0.840 in development, internal
validation and external validation cohort, respectively)
(Table 3). Compared with Model 1, the overall performance
of clinical predictor combining both handcrafted- and
CV-radiomics signatures was improved: Nagelkerke’s R
increased from 20.6 to 37.1% and decreased from 20.9 to
17.6% for brier score (Table 3). Also, the discriminative
capability was improved to 0.798, 0.27 for C-statistic
and discrimination slope, respectively. Moreover, the

sNB also was rose from 0.363 to 0.412 by adding the CV
radiomics signature.

Similarly, after adding the deep radiomics signature
into the Model 2 to form Model 3, the Model 3 has
been significantly improved in the discriminative ability,
whether compared to the Model 1 or the Model 2
(Table 3).

In clinical usefulness, DCA was adopted for evaluating CV-
and deep- radiomics signature based models for predicting
LN status. A risk threshold of 0.5 was selected, which
implied a relative weight of 1:1 between true-positive decisions
and false-positive decisions. At point of 0.5, the sNBs of
Model 1, 2, and 3 are gradually improved, which were
0.363, 0.412, and 0.562 in development cohort, respectively
(Figure 4, Table 3).

Model Performance Validation in Internal
and External Cohort
The overall model performance in the external validation cohort
with 90 patients (40 with LN metastasis) was lower than in
the development and internal cohort. As an illustration, Model
3 decreased in R2 (0.406 instead of 0.484 and 0.513 in the
development and internal validation cohort, respectively), but
slightly increased in brier score (0.173 instead of 0.155 and 0.146
in the development and internal validation cohort, respectively).
In terms of the discrimination ability, compared with the
development and internal validation cohort, the C-statistic
demonstrated a slight decrease in external validation cohort, but
it was still the most discriminative model with high classification
accuracy model (C-statistic above the 0.84 for Model 3, but
Model 1 and 2 are below 0.8, in all cohorts). This could also
be explained from the discrimination slope (Figure S1) of the
models. Calibration curves of models in all cohorts were shown
in Figures 3B–D. Calibration slope range from 0.803 to 1.083,
and the Hosmer-Lemeshow test was of no statistical significance
(p > 0.05). At the risk threshold of 0.5, the sNBs were better

TABLE 3 | Performance measures of ESCC LN metastasis prediction models in development and validation cohorts.

Development cohort Internal validation cohort External validation cohort

Performance measures Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Overall

Brier 0.209 0.176 0.146 0.205 0.188 0.155 0.208 0.188 0.173

R2 0.206 0.371 0.513 0.243 0.328 0.484 0.213 0.322 0.406

Discrimination

C-statistic 0.725 0.798 0.875 0.746 0.799 0.874 0.728 0.791 0.840

Discrimination slope 0.157 0.270 0.424 0.173 0.278 0.417 0.169 0.320 0.403

Calibration

Calibration slope 1 1 1 1.083 0.860 0.956 0.951 0.854 0.803

H-L test (p-value) 0.301 0.544 0.692 0.504 0.793 0.420 0.186 0.411 0.063

Clinical usefulness (T50%)

sNB(0.5) 0.363 0.412 0.562 0.296 0.394 0.606 0.275 0.375 0.450

Accuracy 0.705 0.728 0.798 0.662 0.703 0.791 0.689 0.722 0.711

H-L test, Hosmer-Lemeshow test; sNB(0.5), standardized net benefit, threshold 0.5.
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FIGURE 3 | Radiomics nomogram of Model 3 for predicting the ESCC patients with LN metastasis (A). Calibration curves of the radiomics nomogram in development

cohort (B), internal validation cohort (C) and external validation cohort (D). Calibration curves reflect the calibration of Model 3 in terms of agreement between the

predicted of LN metastasis and observed of LN metastasis. The 45-degree blue diagonal line represents a perfect ideal model. The closer the red dot-dash line is to

the diagonal line, the better the prediction. (E–G) presents AUC values on the development, internal validation, and external validation cohort of Model 1, 2, and 3.

Potential incremental value of models 2 and 3 relative to model 1 were evaluated by net reclassification improvement (NRI). (B,E) for development cohort, (C,F) for

internal validation cohort, and (D,G) for external validation cohort.

than other models in Model 3 (i.e., 0.450 > 0.375 > 0.275, in
external validation).

Assessing the Incremental Predictive
Ability of the Models
We assessed the improvement of model performance introduced
by inclusion of CV- and deep-radiomics signature based on the
Model 1. The increase in the AUC showed statistic differences
between Model 1 and Model 2 (Delong test: p < 0.001). NRI
was also calculated and presented in Figures 3E–G. Likewise,

with the addition of CV- and deep-radiomics signature, the
reclassification ability of Model 3 was significantly improved
compared Model 1. Detail results were showed in Table S2.

Clinical Usefulness
To provide clinicians with an easy-to-use tool, the radiomics
nomogram was developed by Model 3 (Figure 3A). DCA
plots (Figures 4A–C) of Model 3 showed that patients could
get net benefit from the prediction model at the range
of risk threshold from 0.3 to 0.8. And then, the clinical
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FIGURE 4 | Decision curves of Model 1, 2, and 3 for predicting LN metastasis in development cohort (A), internal validation cohort (B) and external validation cohort

(C). The x-axes and below line show the risk threshold and the cost-benefit ratio. The vertical axis shows the net benefit of standardization. The clinical impact curves

for Model 3 shows in (D–F). The red solid line shows the number of patients who would be regarded as high risk at the related risk threshold, and the blue dotted line

indicates the true positive patients with LN metastasis. True- and false-positive rates with relate risk threshold were plotted in (G–I). This figure contains similar

information to a receiver operating characteristic curve, and also presents the true positive rate by a red solid line and false positive rate by a blue dotted line in each

risk threshold. The first column (A,D,G): development cohort. The second column (B,E,H): internal validation cohort. The third column (C,F,I): external validation

cohort.

impact plot (Figures 4D–F) showed that, to illustrate at risk
threshold of 0.5, of the 1,000 patients predicted, ∼434, 493,
and 433 were considered to have a high risk of developing
LN metastases, of which ∼326, 370, and 325 were true LN

metastases in development, internal validation, and external
validation cohort, respectively. Furthermore, information similar
to the receiver operating characteristic curve (ROC) was
presented by ROC components plot (Figures 4G–I), and the risk
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threshold corresponding to each true- and false-positive rate was
clearly reflected.

DISCUSSION

In the present multicenter study, we developed and validated
three predictive models for LN metastasis in patients with ESCC,
including Model 1 (CT-reported LN status plus handcrafted-
radiomics signature), Model 2 (Model 1 plus CV-radiomics
signature), and Model 3 (Model 2 plus deep-radiomics
signature). Our result showed that Model 3 outperformed the
other two models in discrimination, calibration and clinical
usefulness abilities, indicating that the addition of CV features
and deep features into the predictive model can improve the
prediction ability of LN metastasis in patients with ESCC.

Currently in clinical practice, preoperative assessment of
LN metastasis in patients with ESCC is primarily diagnosed
by radiologists based on radiological methods using LN size
criteria, such as CT images. In our study, CT-reported LN
status showed unsatisfactory discrimination (C-statistic, 0.655,
in external validation cohort). This result was consistent with
several previous reports (7, 32), indicating that the traditional
size criteria cannot accurately reflect the metastatic status of LN,
which leads to the insufficiency of CT diagnosis.

Many studies have suggested that medical images quantitative
features could decode the biological characteristics of tumors at
the genetic and cellular levels, which potentially improve tumor
precision prediction and prognosis (10, 33, 34). We quantified
CT images to biomedical features by different methods and
select key image features to build radiomics signatures. Model
1 was developed with CT-reported LN status and handcrafted-
radiomics signature, showing the discrimination with C-statistic
of 0.728 in external validation cohort. In recent studies, Tan et
al. (27) and Shen et al. (35) also developed a similar radiomics
nomogram, which presented an AUC of 0.773 and 0.771 in
the validation cohort, respectively. Although the effect of their
handcrafted radiomics model was superior to Model 1 of our
research, they did not have external validation. Moreover, we
included more patients from different institutions and from
different CT facilities while the same CT scanner was selected in
Tan’s study. Different CT image acquisitions made the difference
in the radiomics features (36, 37), which might lead to bias and
could explain the poor performance in Model 1.

When CV-radiomics signature and deep-radiomics signature
were added to CT-reported and handcrafted-radiomics signature,
the Model 3 showed a preferable discrimination in three cohorts.
One of the reasons is that local features of computer vision excel
in low computational complexity, no pre-learning process, no
additional parameters to learn and highly robust to noise. The
previous work also pointed out that local features based computer
vision have the potential to provide relevant candidate diagnosis
results for radiologists (38). This indicates that maybe computer
vision can make full use of texture, shape, contour information
to quantify heterogeneity of tumor. The other reason is, in
contrast with predefined handcrafted features, deep radiomics
features in the fine tuning model learn directly from image
patches in a data-driven way and could provide supplement

information to improve the performance of the model. Previous
study showed that deep features extracted from the CT image
combined with traditional features had potentially improve
survival prediction ability in patients with lung cancer. In brief,
CV-radiomics signature and deep-radiomics signature may be
able to obtain more detailed information about tumor that
cannot be mathematically defined.

To explore the incremental predictive value of CV- and
deep-radiomics signature, we added them orderly to Model
1. The addition of a CV-radiomics signature to Model 1
significantly improved the reclassification performance in all
cohorts. The updatedModel 3, with the deep radiomics signature,
further improved the reclassification performance (external
validation cohort: NRI = 0.790; p < 0.001). As expected,
the outperformance of Model 3 indicated that CV- and deep-
radiomics features may provide more information and add
predictive value for preoperative prediction of LN status of
patients with ESCC. Our finding may also support that using
a combination of signatures covering different aspects could
be a promising approach to help improve precision medicine.
Comparing with previous studies of handcrafted radiomics
model (9, 27, 35), CV- and deep-radiomics features were added
as independent signatures in our work, which significantly
improved the model’s predictive ability for LN metastasis of
ESCC (C-statistic, 0.840, in external validation cohort).

Considering that evaluation methods (discrimination and
calibration) of model performance could not reflect clinical
relevance well, we applied DCA method to evaluate model
clinical usefulness ability in the range of threshold probability
in order to help make clinical decision preferably (39). In this
study, the decision curve showed that if the risk threshold ranged
from 0.3 to 0.8, Model 3 would add more benefit to predicting
LN metastasis than the other models, and it may be supported
as a potentially useful tool to help treatment decision making
in clinical.

Some limitations were included in the study. Firstly, we
used the limited population for analysis, which was especially
not enough for deep learning study. Secondly, we used 2D
features extracted from the maximum tumor instead of 3D
features. Though 3D features which take the whole tumor into
consideration may provide more information, previous studied
mentioned that there was no significant improvement from 3D
features comparing with 2D features (40, 41). The reason might
be that 3D features were more sensitive to the variance of such
as slice thickness and convolution kernel (42). However, the
situation that images from different scanners is difficult to avoid
in multicenter studies and retrospective studies. Accordingly,
further studies are needed to find solutions for this problem and
to further improve discrimination accuracy and generalization
ability. Finally, previous studies have shown that gene events such
as ZNF750 mutations were associated with metastasis in patients
with ESCC (43). In future when genetic data is available, adding
these gene markers may further improve model predictive value.

In conclusion, this study added computer vision radiomics
signature and deep radiomics signatures in developing a multiple
level CT radiomics preoperative prediction model for LN
metastasis of patients with ESCC, which showed best prediction
performance and clinical usefulness among the tested models.

Frontiers in Oncology | www.frontiersin.org 10 January 2020 | Volume 9 | Article 1548

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Radiomics Approach Predicting ESCC LNM

Our prediction model might be useful for identifying individual
risk of LN metastasis and guiding personalize treatment.
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