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Introduction: The emerging field of “radiomics” has considerable potential in disease

diagnosis, pathologic grading, prognosis evaluation, and prediction of treatment

response. We aimed to develop a novel radiomics nomogram based on radiomics

features and clinical characteristics that could preoperatively predict early recurrence (ER)

of intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy.

Methods: A predictive model was developed from a training cohort comprising

139 ICC patients diagnosed between January 2010 and June 2014. Radiomics

features were extracted from arterial-phase image of contrast-enhanced magnetic

resonance imaging. Feature selection and construction of a “radiomics signature”

were through Spearman’s rank correlation and least absolute shrinkage and selection

operator (LASSO) logistic regression. Combined with clinical characteristics, a radiomics

nomogram was developed with multivariable logistic regression. Performance of the

nomogram was evaluated with regard to discrimination, calibration, and clinical utility. An

independent validation cohort involving 70 patients recruited from July 2014 to March

2016 was used to evaluate the utility of the nomogram developed.

Results: The radiomics signature, consisting of nine features, differed significantly

between ER patients and non-ER patients in training and validation cohorts. The area

under the curve (AUC) of the radiomics signature in training and validation cohorts was

0.82 (confidence interval [CI], 0.74–0.88) and 0.77 (95% CI, 0.65–0.86), respectively. The

AUC of the radiomics nomogram combining the radiomics signature and clinical stage in

the two cohorts was 0.90 (95%CI, 0.83–0.94) and 0.86 (95%CI, 0.76–0.93), respectively.

Decision curve analysis confirmed the clinical usefulness of the radiomics nomogram.

Conclusion: The non-invasive radiomics nomogram developed using the radiomics

signature and clinical stage could be used to predict ER of ICC after partial hepatectomy.
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INTRODUCTION

Cholangiocarcinoma is the second most aggressive primary
tumor of the liver after hepatocellular carcinoma
(HCC) (1). These tumors can be classified into
“intrahepatic cholangiocarcinoma” (ICC) and “extrahepatic
cholangiocarcinoma” (ECC) according to the pathogenic sites
involved.

As a lethal primary cancer arising from malignant
transformation of the bile-duct epithelium and hepatocyte
transdifferentiation, ICC accounts for 10–25% of all primary
liver cancers worldwide (1). Resection is the principal treatment
for ICC. Preoperative evaluation of ICC is commonly based on

the 7th edition of Tumor, Node, and Metastasis staging of the
American Joint Committee on Cancer (AJCC)/International
Union Against Cancer system (2).

Tumor stage is predictive of the risk of tumor relapse, but
postoperative early recurrence (ER) for individual patients with
ICC varies distinctly even within patients of identical stage, often

causing treatment failure and death from ICC (3). In fact, even
though the 5-year survival of ICC after surgery is 39.5%, the
median disease-free survival is only 12months (4). Themorbidity
and mortality of ICC have increased annually over the past 30
years, especially in Eastern Asia (3). It remains a challenge for
clinicians to identify reliably those patients at high risk for ER and
hinders the decision-making process of individualized treatment
for patients with ICC.

Recent studies have shown that clinical factors can play
important parts in determining appropriate treatment and
associated outcomes. A nomogram model focused on these
factors has been established for risk stratification and prediction
of clinical behavior (5). Combining clinical factors into a
statistically predictive model can improve personalized prognosis
upon AJCC-based tumor staging. However, the information
related to the spatial and temporal intra-tumor heterogeneities
within ICC can influence the effectiveness of stratifying ER
risk substantially. Subsequent “tailoring” of treatments remains
limited. This has led clinicians to seek safe, efficacious, and novel
methods to identify additional characteristics of ICCs that can
improve the prediction of clinical behavior.

The emerging discipline of “radiomics” has helped generate
high-dimensional, quantitatively mineable signatures extracted
from medical imaging to evaluate (non-invasively) tumor
phenotypes (6–8), tumor-cell proliferation, liver function, and
patient prognosis (9). Radiomics carries the potential to
enhance the precision of decision-making during the diagnosis,
treatment, therapeutic evaluation, and prognostic evaluation
of cancers (10–14). Furthermore, by analyzing multiple image
features, these extracted radiomics signatures could be used to
characterize intra-tumor heterogeneity, which may improve the
predictive accuracy of the prognosis of cancer treatment. A
widely recognized, accurate preoperative model predicting ER
of ICC to guide individualized treatment recommendation is
lacking.

We developed and validated a “radiomics signature” that
could stratify ICC patients undergoing resection according
to ER risk. The image features and radiomics signature

were derived from contrast-enhanced magnetic resonance
imaging (MRI) arterial-phase images of patients with ICC.
We also investigated the gain in accuracy of the radiomics
nomogram model by incorporating the radiomics signature
and clinical risk factors for preoperative prediction of ER
of ICC.

MATERIALS AND METHODS

Patients and MRI Acquisition
This retrospective study was approved by the Institutional
Review Board (IRB) of the First Affiliated Hospital, College
of Medicine, Zhejiang University (Zhejiang, China). A
waiver of written informed consent was obtained from
the IRB.

The inclusion criteria for patients in this study were: (i) an
ICC that was resected with a confirmed pathologic diagnosis;
(ii) a contrast-enhanced MRI was carried out ≤ 4 weeks before
resection; (iii) clinical data and follow-up data were complete.
The exclusion criteria were: (i) ICC was confirmed by biopsy;
(ii) the disease was confirmed to be combined HCC plus
cholangiocarcinoma; (iii) the patient was treated before contrast-
enhanced MRI. The patient-recruitment process is shown in
Supplementary Data I.

Two independent datasets were used in this study. The
training cohort used to construct the predictive model involved
139 ICC patients diagnosed between January 2010 and June 2014.
This cohort consisted of 85 males and 54 females (range, 44–
86 years; mean, 59.54 ± 9.75 years). The independent validation
cohort, which was used to test the predictive model, comprised
70 patients (46 males and 24 females; range, 40–80 years; mean,
59.70 ± 9.02 years) diagnosed between July 2014 and March
2016. Imaging data were archived within the Picture Archiving
and Communication System at the First Affiliated Hospital.
The reliability of this study was evaluated by calculating a
power of the test based on sample sizes and ER in the two
cohorts (15).

Two surgeons assessed the clinical characteristics of the
included patients independently. The clinical characteristics (sex,
age, cholelithiasis (presence or absence), hepatitis (presence
or absence), liver cirrhosis (presence or absence), affected site
(left lobe or right lobe), maximum diameter of tumor, tumor
number, clinical stage (I/II or III/IV), surgical margin (positive
or negative), degree of tumor differentiation) were gathered
and collated from the electronic medical-record system. The
clinical stage was determined based on the 7th edition of the
AJCC staging system (3). The patients underwent serial imaging
approximately every 3 months after surgery to detect ER. The
condition and time of recurrence were recorded during clinical
and telephone follow-up. These were confirmed by definite
pathology or confident imaging diagnosis according to a study on
HCC recurrence (16). Patients who suffered recurrence within 1
year of their partial hepatectomy were classified as the ER group,
whereas those without recurrence or suffering recurrence after 1
year of surgery were defined as the non-ER group.

Laboratory examination results (serum levels of alanine
transaminase (ALT), aspartate transaminase (AST), carbohydrate
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antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA) were

acquired via routine blood tests < 2 weeks before surgery. The
threshold values for ALT, AST, CA19-9, and CEA used here were

35, 50, 37µg/mL, and 5 ng/mL, respectively.
Patients underwent imaging on a 3.0-T MRI scanner (GE

Medical Systems, Milwaukee, WI, USA) using a breath-hold,

fat-suppressed three-dimensional fast-spoiled gradient-recalled
echo sequence (liver acceleration volume acquisition) (17). The
acquisition parameters for MRI were: repetition time (TR) of

2.8ms; echo time (TE) of 1.3ms; reverse time of 5ms; flip

angle of 10◦; field of view of 380 × 304mm; bandwidth of
390.6 kHz; image resolution of 0.78 × 0.78 × 5mm. Each
patient was injected with a dose of 0.1 mmol/kg of gadopentetate
dimeglumine through themedian cubital vein via a high-pressure

injector (2.5 mL/s). The arterial phase, portal-vein phase, and

delayed phase were imaged at 14, 55, and 120 s after injection,
respectively.

Region of Interest (ROI) Segmentation,
Feature Extraction, and Building of a
Radiomics Signature
The ROIs of tumors were segmented manually on ITK-SNAP
v3.6.0 (www.itksnap.org) (18) by two radiologists with extensive
clinical experience in making imaging diagnoses of the abdomen.
An example of definition of ICC volume of two patients is given
in Figure 1. The predictive model was constructed based on the
radiomics features extracted from the contours identified by the
first radiologist. As an internal validation, the reproducibility
of these contours was assessed using the radiomics features
extracted from the contours identified by the second radiologist.

Radiomics features can characterize the heterogeneity and
complexity within tumors using a large set of quantitative
features. The pre-processing procedure (i.e., image resampling
and gray-level quantization) was undertaken before feature
extraction. Radiomics features were extracted from ROIs

FIGURE 1 | Arterial-phase contrast-enhanced MRI images of two patients with ICC. The tumor was identified, and the region of interest (ROI) placed (red line) on the

images. (A,B) The primary image and the ROI (red line) marked image for one patient developed early recurrence. (C,D) The primary image and the ROI marked (red

line) image for the other patient did not develop early recurrence.
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contoured by the two radiologists (11). Based on the preoperative
arterial-phase images on MRI, three groups of image features
were extracted: (i) 6 histogram statistical features; (ii) 53 texture
features; (iii) 408 wavelet features. A detailed description of these
features is provided in Supplementary Data II.

Due to the large number of radiomics features and relatively
small size of the patient dataset, feature selection was essential
to deliver the optimal predictive features and to avoid over-
fitting. Feature selection was carried out in two steps based
on the training cohort. First, Spearman’s rank correlation
coefficients were calculated to examine the internal correlation
between individual features. Redundant features with linear
correlation coefficients >0.95 were removed (19). Second, a
least absolute shrinkage and selection operator (LASSO) logistic
regression analysis was used to identify the most ER-related
features (19, 20). Thus, the radiomics signature was established
by linear combination of the selected features weighted by
the corresponding LASSO coefficients. A radiomics score was
obtained for each patient using the radiomics signature.

The performance of the radiomics signature was reported
using the receiver operating characteristic curve (ROC) and
area under the ROC curve (AUC) in the training cohort
and independent validation cohort. These values ranged from
0.50 (prediction accuracy was the same as a random guess)
to 1.00 (prediction result was 100% correct). Details of the

LASSO algorithm can be found in Supplementary Data III.
The formula for the radiomics signature is presented in
Supplementary Data IV.

Development and Validation of a
Radiomics Nomogram Model
Clinical characteristics (sex, age, cholelithiasis, hepatitis, liver
cirrhosis, tumor diameter, tumor number, clinical stage, blood
tests) were analyzed with a Mann-Whitney U-test to examine
the statistical difference between the ER and non-ER groups
(13). The combination of the developed radiomics signature with
different clinical characteristics was tested using multivariable
logistic regression. The backward search method using the
Akaike information criterion (AIC) score was employed to select
the optimal combination. This strategy assessed the quality of
the model developed with comprehensive consideration of the
influences of the binomial deviance and the number of variables
in the selection process (13). Themodel with the lowest AIC score
was selected as the optimal model. The ROCs and AUCs among
different combinatorial models were compared through a Delong
test (21), with a significance level set at 0.05. Finally, a radiomics
nomogram model was developed based on multivariate logistic
regression.

The calibration and discrimination performances of the
radiomics nomogram model were tested in the training and

FIGURE 2 | The radiomics workflow and study workflow.
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validation cohorts. Calibration performance was assessed by
the calibration curve, which described the agreement between
the predicted and observed risks of ER. A Hosmer–Lemeshow
(H–L) test (22) was used to evaluate the goodness-of-fit of the
nomogram model. The discrimination performance was also
measured with an AUC. Internal validation was completed using
the cohort of 209 patients segmented by the second radiologist.
Independent validation was carried out using the independent
validation cohort of 70 patients segmented by the first
radiologist.

The clinical utility of the radiomics nomogram model
was conducted with a decision curve analysis (DCA) in the
internal and independent validation cohorts. The net benefit
was determined by calculating the difference between the “true”
positive rate and weighted false-positive rate across different
threshold probabilities in the validation set (23, 24). Specifically,
the weighing factor was the specific value of the threshold
probability divided by 1 minus the threshold probability. A high
net benefit suggested a higher true positive rate and relatively
low false-positive rate. The decision curve was generated by
plotting the net benefit against the threshold probability across
the range of 0 to 1. DCA for the radiomics signature was also
plotted.

Statistical Analysis
Statistical analyses were carried out on R v3.4.1 (www.Rproject.
org) and MedCalc v15.2.2 (www.medcalc.org). LASSO logistic
regression analyses, plotting of nomograms and calibration
curves, H–L test, ROC and AUC, and DCA were performed
on the packages “glmnet,” “rms,” “generalhoslem,” “pROC,” and
“dca.R,” respectively. The reported significance levels are two-
sided and set at 0.05.

RESULTS

Basic Features
The workflow of the radiomics nomogram model and flowchart
of our study are presented in Figure 2.

Clinical Characteristics
Clinical characteristics in the training and validation cohorts are
summarized in Table 1. There was no significant difference in
the ER rate between training and validation cohorts (85/139 vs.
48/70, p = 0.29). The ER cases were intrahepatic alone (109,
81.96%), extrahepatic alone (17, 12.78%), or both (7, 5.26%).
The position of extrahepatic recurrence was lymph node (13
cases), peritoneal and omental (4 cases), lung (3 cases), or other
(4 cases).

Six clinical factors showed significant differences between
the ER and non-ER groups: maximum tumor diameter, AST
level, ALT level, CA19-9 level, CEA level, and clinical stage.
Complete R0 resection was obtained in 177 (84.69%) cases of all
surgical patients. In the pathologic evaluation of tumor-resection
specimens, well-, moderate-, and poorly differentiated tumors
were found in 25 (11.96%), 110 (52.63%), and 74 (35.41%)
cases, respectively. The power of our test was 0.96, suggesting
a sufficient sample size of the validation cohort and a credible
conclusion.

Feature Selection, Building of a Radiomics
Signature, and Validation
A total of 467 texture features were extracted from arterial-
phase images on MRI for each patient. Of these texture features,
98 features showed no significant linear internal correlation.
These 98 features were reduced to 9 via LASSO regression
based on the training cohort (Figures 3A,B). The formula

TABLE 1 | Clinical factors and radiomics score of the ER and Non-ER groups in two cohort.

Training cohort Independent validation cohort

Characteristic ER (n = 85) Non-ER (n = 54) P ER (n = 48) Non-ER (n = 22) P

Age (years) 58.88 ± 9.14 60.57 ± 9.85 0.3042 59.69 ± 11.24 59.73 ± 8.32 0.6082

Gender (male: female) 51:34 34:20 0.7286 32:16 14:8 0.8076

Location (left: right) 49:36 29:25 0.6518 29:19 8:14 0.6512

Multiple (no: yes) 67:18 49:5 0.0682 34:14 19:3 0.1265

Maximum diameter (cm) 6.23 ± 2.63 4.54 ± 2.10 0.0001* 6.22 ± 2.23 4.09 ± 2.00 0.0003*

Hepatitis (no: yes) 64:21 34:20 0.1325 33:15 12:10 0.2740

Cirrhosis (no: yes) 76:9 50:4 0.5336 44:4 20:2 0.9196

Cholelithiasis (no: yes) 67:18 46:8 0.3521 38:10 20:2 0.1792

AST (normal: abnormal) 72:13 52:2 0.0109* 37:11 22:0 0.0113*

ALT (normal: abnormal) 68:17 48:6 0.0350* 33:15 21:1 0.0140*

CA19-9 (normal: abnormal) 27:58 36:18 0.0013* 20:28 12:10 0.0008*

CEA (normal: abnormal) 62:23 51:3 0.0099* 27:21 18:4 0.0047*

Clinical stage (I/II: III/IV) 33:52 46:8 <0.0001* 14:34 20:2 <0.0001*

Radiomics score 0.76 ± 0.58 0.09 ± 0.47 <0.0001* 0.78 ± 0.59 0.20 ± 0.60 0.0023*

Individual pre-operative clinical factors are analyzed for significant differences using non-parametric test. *P < 0.05 indicates a significant difference. Maximum diameter, Age and

Radiomics score are represented as [mean ± standard deviation]. ER, early recurrence; Non-ER, non-early recurrence; AST, serum aspartate transaminase; ALT, serum alanine

transaminase; CA19-9, serum carbohydrate antigen 19-9; CEA, serum carcinoembryonic antigen.
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FIGURE 3 | Selection of radiomics features using the LASSO logistic regression algorithm. (A) The penalization coefficient λ in the LASSO model was tuned using

tenfold cross-validation and the minimum criterion. AUC metrics (y-axis) were plotted against log(λ) (bottom x-axis). The top x-axis indicates the number of predictors

for the given log(λ). Red dots indicate average AUC for each model at the given λ, and vertical bars through the red dots show the upper and lower values of the AUC

according to the tenfold cross-validation. The vertical black lines define the optimal λ (i.e., where the model provides its best fit to the data). As a result, an optimal λ of

0.0605, with log(λ) = −2.81, was selected. (B) LASSO coefficient profiles of the 98 radiomics features. The vertical line was plotted at the given λ, selected by tenfold

cross-validation. For the optimal λ, nine features with a non-zero coefficient were selected. ROC curves of the radiomics signature for (C) training cohort, (D) internal

validation cohort, and (E) independent validation cohort.

used to calculate the radiomics score (Supplementary Data V)
was constructed by linear combination of these nine features
multiplied by LASSO coefficients. In general, patients in
the ER group showed a significantly higher radiomics score

than patients in the non-ER group from the training cohort
(0.76 ± 0.34 vs. 0.09 ± 0.22, p < 0.001). The AUC of
the training cohort was 0.82 (95% confidence interval [CI],
0.74–0.88).
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FIGURE 4 | (A) Radiomics nomogram combining the radiomics score and clinical stage developed by the training cohort. Performance of the nomogram was

assessed by ROC curves and calibration curves in the (B,E) training cohort, (C,F) internal validation cohort, and (D,G) independent validation cohort. Calibration

curves describe the calibration of the nomogram with respect to agreement between the predicted risk (x-axis) and real risk (y-axis) of ER. The 45-degree black line

represents the “ideal” prediction. The blue line represents the performance of the radiomics nomogram. The blue line closer to the ideal prediction has a higher

predictive accuracy of the nomogram.

The validation cohorts (i.e., the internal and independent
validation datasets) were used to test the prediction power
of the radiomics signature. Internal validation was carried
out using the data cohort of 209 patients segmented by
the second radiologist. Significant differences within radiomics
scores were found between the two groups (0.68 ± 0.66 vs.
0.20 ± 0.25, p < 0.05) with an AUC of 0.75 (95% CI,
0.68–0.81).

Independent validation was conducted using the data cohort
of 70 patients segmented by the first radiologist. The radiomics
scores for patients in the ER and non-ER groups were 0.78
± 0.35 and 0.20 ± 0.36, respectively, and this difference was

significant (p < 0.05). The AUC for the independent validation
was 0.77 (95% CI, 0.65–0.86). The ROC curves are displayed in
Figures 3C–E.

Development, Validation, and Assessment
of the Radiomics Nomogram
A logistic regression analysis combining the radiomics
signature and clinical stage in the training cohort was
conducted. Specific information about the construction of
the multivariate logistic regression model can be found in
Supplementary Data VI. The model is presented as the
nomogram in Figure 4A. The calibration curve of the radiomics
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TABLE 2 | Predictive performance of radiomics signature and nomogram.

Model Radiomics signature Radiomics nomogram

Sensitivity Specificity AUC (95% CI) Sensitivity Specificity AUC (95% CI)

Training cohort 0.78 0.76 0.82 (0.74–0.88) 0.74 0.89 0.90 (0.83–0.94)

Internal validation 0.78 0.63 0.75 (0.68–0.81) 0.89 0.64 0.84 (0.78–0.89)

Independent validation 0.94 0.50 0.77 (0.65–0.86) 0.81 0.82 0.86 (0.76–0.93)

AUC, area under ROC curve; CI, confidence interval.

nomogram, indicating the probability of ER, showed good
agreement between the predicted and observed risks of ER.
An H–L test with the training cohort suggested that there
was no significant deviation from the ideal fit (p = 0.41).
The AUC of the nomogram was 0.91 (95% CI, 0.85–0.95,
Figure 4B).

Another promising performance was obtained in the internal
validation cohort with an AUC of 0.85 (95% CI, 0.80–0.90)
(Figure 4C) and a non-significant H–L test statistic (p = 0.45).
Good performance was also observed with an AUC of 0.88
(95% CI, 0.78–0.94) (Figure 4D) and a non-significant H–
L test statistic (p = 0.75). The non-significant value of the
H-L test statistic suggested no deviation from the perfect
predictive model. The calibration curves of the radiomics
nomogram are shown in Figures 4E–G. The performance of the
radiomics signature and radiomics nomogram is summarized in
Table 2.

DCA for the radiomics nomogram model and radiomics
signature are presented in Figure 5. For the internal validation
cohort, the DCA curve showed that the radiomics nomogram
gained more net benefits than the “treat all patients”
strategy, the “treat none” strategy, as well as the radiomics
signature (range: 0–1). For the independent validation
cohort, the DCA curve showed that the nomogram also
performed better than the treat-all-patients strategy, the
treat-none strategy, and the radiomics signature when the
threshold probability for a physician or patient was within a
range 0–0.90.

DISCUSSION

The nomogram described here was constructed using a
radiomics signature and clinical stage. The radiomics signature
was built via radiomics features extracted from MRI scans.
The radiomics signature and clinical stage are convenient
options to implement in the clinical setting. The radiomics
signature was developed using nine features, all of which were
extracted from decomposed images (which were decomposed
by a three-dimensional wavelet transformation). One could
suggest that the wavelet transformation was a multiscale
analytical method that could be used to further explore
tumor heterogeneity in multiple scales. The wavelet features
may also have underlying associations with pathophysiology,
proteomics and tumor morphology, which could not be
captured by low-level radiomics features or visual inspection by
clinicians.

FIGURE 5 | DCA for the radiomics signature and radiomics nomogram in the

(A) internal validation cohort and (B) independent validation cohort. The y-axis

represents the net benefit, whereas the x-axis represents the threshold

probability. Blue line: radiomics nomogram; red line: radiomics signature; black

line: hypothesis that all patients have ER; gray line: hypothesis that no patients

have ER.

Only two studies have investigated the preoperative prediction
of ICC recurrence. Jeong et al. developed a nomogram to predict
ICC recurrence after hepatic resection (5). The nomogram
was established based on four independent prognostic clinical
factors: tumor diameter, Child–Pugh score, lymph-node
metastasis, and surface antigen of the hepatitis-B virus level
(5). Although this nomogram could predict ICC recurrence,
it provided the prediction based only on clinical factors,
and had unfavorable accuracy. A study by Ribero et al.
established a preoperative model of recurrence scoring based
on tumor number, metabolic tumor volume, CEA level, and
tumor diameter (25). This scoring model was developed by
incorporating information of clinical and functional imaging,
but this scoring model could not be used widely because of
the high cost of positron emission tomography. Thus, a more
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feasible method for preoperative prediction of recurrence needs
to be investigated.

This is the first study to investigate prediction of ER of
ICC using MRI features. In the present study, a radiomics
nomogram was developed for preoperative prediction of ER
of ICC after partial hepatectomy. The nomogram developed
generated a favorable prediction performance by including
radiomics features which were highly related to ER in ICC
patients.

Whether tumor diameter can serve as an independent
risk factor used for the prognosis is controversial. In our
study, univariate analysis showed that tumor diameter was
associated significantly with ER of ICC. However, tumor
diameter was not included in the nomogram because a significant
improvement was not observed between the nomogram
model with tumor diameter and the model without tumor
diameter. Similarly, tumor diameter is excluded as one of the
stratification factors in the AJCC staging system (2). Multiple-
factor analyses in several ICC studies have reported the lack
of a significant relationship between tumor diameter and
the prognosis (4, 26). However, other studies have suggested
that tumor diameter could be an independent prognostic
factor for ICC (5, 27, 28). These differing results may be
explained (at least in part) by the heterogeneity of the ICC
population.

Whether the serum level of CA19-9 is an independent
clinical factor for prediction of ICC recurrence is controversial.
Several studies have reported CA19-9 to be an important tumor
marker for pre-operative prediction of ICC prognosis (27, 28).
However, a recent study excluded the CA19-9 level from a
nomogram for predicting ICC recurrence after hepatectomy,
and a significant difference was not observed for the relapse-
free survival of patients with ICC (5). In the present study,
although a significant difference was obtained in the CA19-9 level
between patients in the ER and non-ER groups, a significant
improvement was not achieved between the nomogram using
the CA19-9 level and the model not using the CA19-9 level.
Thus, the CA19-9 level was not included in the developed
nomogram.

An accurate preoperative prediction of ER could be
useful to develop appropriate strategies, particularly because
additional chemotherapy would benefit patients at a high risk
of ER. In one meta-analysis, ICC patients did not benefit
from adjuvant chemotherapy (29). Another study found a
similar 5-year recurrence rate and overall survival in ICC
patients who had adjuvant transarterial chemoembolization
(TACE) compared with non-TACE ICC patients (30, 31).
Although those results showed no significant difference in the
overall prognosis between chemotherapy and non-chemotherapy
groups, ICC patients with high-risk factors were found
to benefit from post-hepatectomy adjuvant chemotherapy
through stratification of ICC patients with different risks
(30, 31). Therefore, ICC patients with high-risk features (e.g.,
large diameter, multiple tumors, lymphatic involvement) have
been suggested to have adjuvant therapy to improve their
prognosis in an agreed expert consensus for ICC treatment
(32). Currently, there is an absence of objective evaluation

criteria/tools for high-risk features in patients with ICC. Our
prediction nomogram could provide individualized prediction
of short-term recurrence risk, which could be used to
stratify patients at high risk of ICC recurrence for adjuvant
chemotherapy.

Our study had three main limitations. First, diffusion-
weighted MRI data from our institution with different b
values over a long-time interval were, regretfully, abandoned
in our study because of poor consistency (33). Considering the
need for a large cohort in machine learning and convenient
application in the future, we used arterial-phase images of
contrast-enhanced MRI to extract radiomics features. Second,
molecular markers closely correlated with the ICC prognosis
were not explored due to a restriction of experimental
conditions (34–36). Lastly, this was a single-center retrospective
study. Also, all patients were imaged using the same MRI
scanner. MRI scans can yield different gray-level ranges
between patients because of different scanners, magnetic
densities, and acquisition protocols (37–39). Besides, the
MRI machine was equipped with an image post-processing
function that also impacted the image texture. These differences
may impact texture computation. Whether the textures on
the MR images are stable between different manufacturers
and field strengths is not known. In future work, we will
investigate the prediction performance using image data from
different centers related to different MR scanners and magnetic
densities.

CONCLUSIONS

We built a new nomogram model that combines radiomics
features and clinical stage for pre-operative prediction of ER
of ICC after partial hepatectomy. This model was validated by
a relatively small independent validation cohort. Multicenter
retrospective, as well as prospective, validation will be undertaken
in subsequent studies to achieve an even higher level of
evidence.

AUTHOR CONTRIBUTIONS

WL, LX, and FC: conception and design. WL, LX, and FC:
development of methodology (provided animals, acquired and
managed patients, provided facilities, etc.). WL, LX, and PY:
analysis and interpretation of data (e.g., statistical analysis,
biostatistics, computational analysis). WL, LX, TN, and FC:
writing, review, and/or revision of the manuscript. WL, LX,
PY, LZ, DW, QH, TN, and FC: administrative, technical, or
material support (i.e., reporting or organizing data, constructing
databases).

FUNDING

This work is supported by the Zhejiang Cognitive Medical
Engineering Technology Research Center, Zhejiang Provincial
Natural Science Foundation of China (Grant No. LY17H160010,
LR16F010001), National High-tech R&D Program for Young

Frontiers in Oncology | www.frontiersin.org 9 September 2018 | Volume 8 | Article 360

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liang et al. Recurrence Prediction of Intrahepatic Cholangiocarcinoma

Scientists by the Ministry of Science and Technology of China
(Grant No. 2015AA020917), National Key Research Plan by
the Ministry of Science and Technology of China (Grant No.
2016YFC0104507), Natural Science Foundation of China (NSFC
Grant No. 81201091, 51305257, 81171402).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2018.00360/full#supplementary-material

REFERENCES

1. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology

(2011) 54:173–84. doi: 10.1002/hep.24351

2. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th

edition of the AJCC cancer staging manual and the future of TNM. Ann Surg

Oncol. (2010) 17:1471–4. doi: 10.1245/s10434-010-0985-4

3. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines

for the diagnosis and management of intrahepatic cholangiocarcinoma. J

Hepatol. (2014) 60:1268–89. doi: 10.1016/j.jhep.2014.01.021

4. Hyder O, Hatzaras I, Sotiropoulos GC, Paul A, Alexandrescu

S, Marques H, et al. Recurrence after operative management

of intrahepatic cholangiocarcinoma. Surgery (2013) 153:811–8.

doi: 10.1016/j.surg.2012.12.005

5. Jeong S, Cheng Q, Huang L, Wang J, Sha M, Tong Y, et al. Risk stratification

system to predict recurrence of intrahepatic cholangiocarcinoma after hepatic

resection. BMC Cancer (2017) 17:464. doi: 10.1186/s12885-017-3464-5

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology (2015) 278:563–77. doi: 10.1148/radiol.2015151169

7. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.

Radiomics: the process and the challenges. Magnetic resonance imaging

(2012) 30:1234–48. doi: 10.1016/j.mri.2012.06.010

8. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,

Granton P, et al. Radiomics: extracting more information from medical

images using advanced feature analysis. Eur J Cancer (2012) 48:441–6.

doi: 10.1016/j.ejca.2011.11.036

9. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding

global gene expression programs in liver cancer by noninvasive imaging. Nat

Biotechnol. (2007) 25:675–80. doi: 10.1038/nbt1306

10. Aerts HJ. The potential of radiomic-based phenotyping in precisionmedicine:

a review. JAMA Oncol. (2016) 2:1636–42. doi: 10.1001/jamaoncol.2016.2631

11. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,

Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:4006.

doi: 10.1038/ncomms5006

12. Caudell JJ, Torres-Roca JF, Gillies RJ, Enderling H, Kim S, Rishi A, et al. The

future of personalised radiotherapy for head and neck cancer. Lancet Oncol.

(2017) 18:e266–73. doi: 10.1016/S1470-2045(17)30252-8

13. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development

and validation of a radiomics nomogram for preoperative prediction of

lymph node metastasis in colorectal cancer. J Clin Oncol. (2016) 34:2157–64.

doi: 10.1200/JCO.2015.65.9128

14. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics

features of multiparametric MRI as novel prognostic factors in advanced

nasopharyngeal carcinoma. Clin Cancer Res. (2017) 23:4259–69.

doi: 10.1158/1078-0432.CCR-16-2910

15. Chow SC, Shao J, Wang H, Lokhnygina Y. Sample Size Calculations in Clinical

Research. Boca Raton, FL: Chapman and Hall/CRC (2017).

16. Shimada M, Takenaka K, Gion T, Fujiwara Y, Kajiyama K, Maeda

T, et al. Prognosis of recurrent hepatocellular carcinoma: a 10-year

surgical experience in Japan. Gastroenterology (1996) 111:720–6.

doi: 10.1053/gast.1996.v111.pm8780578

17. Liang W, Xu S. Magnetic resonance imaging findings of intrahepatic bile

duct adenoma: a report of 4 cases. J Comp Assist Tomogr. (2015) 39:747–51.

doi: 10.1097/RCT.0000000000000286

18. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al.

User-guided 3D active contour segmentation of anatomical structures:

significantly improved efficiency and reliability. Neuroimage (2006) 31:1116–

28. doi: 10.1016/j.neuroimage.2006.01.015

19. Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo Jr BW,

et al. Early-stage non–small cell lung cancer: quantitative imaging

characteristics of 18F fluorodeoxyglucose PET/CT allow prediction of

distant metastasis. Radiology (2016) 281:270–8. doi: 10.1148/radiol.20161

51829

20. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser

B (1996) 58:267–88. Available online at: www.jstor.org/stable/2346178

21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas

under two or more correlated receiver operating characteristic curves:

a nonparametric approach. Biometrics (1988) 44:837–45. doi: 10.2307/25

31595

22. Kramer AA, Zimmerman JE. Assessing the calibration of mortality

benchmarks in critical care: the Hosmer-Lemeshow test revisited.

Crit Care Med. (2007) 35:2052–6. doi: 10.1097/01.CCM.0000275267.6

4078.B0

23. Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA (2015)

313:409–10. doi: 10.1001/jama.2015.37

24. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for

evaluating prediction models. Med Decis Making (2006) 26:565–74.

doi: 10.1177/0272989X06295361

25. Ribero D, Pinna AD, Guglielmi A, Ponti A, Nuzzo G, Giulini SM, et al.

Surgical approach for long-term survival of patients with intrahepatic

cholangiocarcinoma: a multi-institutional analysis of 434 patients. Arch Surg.

(2012) 147:1107–13. doi: 10.1001/archsurg.2012.1962

26. Jiang W, Zeng ZC, Tang ZY, Fan J, Sun HC, Zhou J, et al. A prognostic

scoring system based on clinical features of intrahepatic cholangiocarcinoma:

the Fudan score. Ann Oncol. (2011) 22:1644–52. doi: 10.1093/annonc/

mdq650

27. Shen W, Zhong W, Liu Q, Sui C, Huang Y, Yang J. Adjuvant transcatheter

arterial chemoembolization for intrahepatic cholangiocarcinoma after

curative surgery: retrospective control study.World J Surg. (2011) 35:2083–91.

doi: 10.1007/s00268-011-1171-y

28. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, et al. Prognostic nomogram

for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol.

(2013) 31:1188–95. doi: 10.1200/JCO.2012.41.5984

29. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment

and prognosis for patients with intrahepatic cholangiocarcinoma:

systematic review and meta-analysis. JAMA Surg. (2014) 149:565–74.

doi: 10.1001/jamasurg.2013.5137

30. Li J, Wang Q, Lei Z, Wu D, Si A, Wang K, et al. Adjuvant

transarterial chemoembolization following liver resection for intrahepatic

cholangiocarcinoma based on survival risk stratification. Oncologist (2015)

20:640–7. doi: 10.1634/theoncologist.2014-0470

31. Wu Z, Zhang H, Yang N, Zhao W, Fu Y, Yang G. Postoperative

adjuvant transcatheter arterial chemoembolisation improves survival of

intrahepatic cholangiocarcinoma patients with poor prognostic factors:

results of a large monocentric series. Eur J Surg Oncol. (2012) 38:602–10.

doi: 10.1016/j.ejso.2012.02.185

32. Weber SM, Ribero D, O’reilly EM, Kokudo N, Miyazaki M, Pawlik TM.

Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (2015)

17:669–80. doi: 10.1111/hpb.12441

33. Lee J, Kim SH, Kang TW, Song KD, Choi D, Jang KT. Mass-

forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging

as a preoperative prognostic marker. Radiology (2016) 281:119–28.

doi: 10.1148/radiol.2016151781

34. Gao Q, Zhao YJ, Wang XY, GuoWJ, Gao S, Wei L, et al. Activating mutations

in PTPN3 promote cholangiocarcinoma cell proliferation and migration and

are associated with tumor recurrence in patients. Gastroenterology (2014)

146:1397–407. doi: 10.1053/j.gastro.2014.01.062

Frontiers in Oncology | www.frontiersin.org 10 September 2018 | Volume 8 | Article 360

https://www.frontiersin.org/articles/10.3389/fonc.2018.00360/full#supplementary-material
https://doi.org/10.1002/hep.24351
https://doi.org/10.1245/s10434-010-0985-4
https://doi.org/10.1016/j.jhep.2014.01.021
https://doi.org/10.1016/j.surg.2012.12.005
https://doi.org/10.1186/s12885-017-3464-5
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/nbt1306
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/S1470-2045(17)30252-8
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1158/1078-0432.CCR-16-2910
https://doi.org/10.1053/gast.1996.v111.pm8780578
https://doi.org/10.1097/RCT.0000000000000286
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1148/radiol.2016151829
www.jstor.org/stable/2346178
https://doi.org/10.2307/2531595
https://doi.org/10.1097/01.CCM.0000275267.64078.B0
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1001/archsurg.2012.1962
https://doi.org/10.1093/annonc/mdq650
https://doi.org/10.1007/s00268-011-1171-y
https://doi.org/10.1200/JCO.2012.41.5984
https://doi.org/10.1001/jamasurg.2013.5137
https://doi.org/10.1634/theoncologist.2014-0470
https://doi.org/10.1016/j.ejso.2012.02.185
https://doi.org/10.1111/hpb.12441
https://doi.org/10.1148/radiol.2016151781
https://doi.org/10.1053/j.gastro.2014.01.062
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liang et al. Recurrence Prediction of Intrahepatic Cholangiocarcinoma

35. Li H, Zhou ZQ, Yang ZR, Tong DN, Guan J, Shi BJ, et al. MicroRNA-191 acts

as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic

cholangiocarcinoma. Hepatology (2017) 66:136–51. doi: 10.1002/hep.

29116

36. Yang LX, Gao Q, Shi JY, Wang ZC, Zhang Y, Gao PT, et al. Mitogen-activated

protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma

leads to invasive growth and epithelial-mesenchymal transition. Hepatology

(2015) 62:1804–16. doi: 10.1002/hep.28149

37. AvanzoM, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics.

Phys Med. (2017) 38:122–39. doi: 10.1016/j.ejmp.2017.05.071

38. Goya-Outi J, Orlhac F, Calmon R, Alentorn A, Nioche C, Philippe C,

et al. Computation of reliable textural indices from multimodal brain MRI:

suggestions based on a study of patients with diffuse intrinsic pontine glioma.

Phys Med Biol. (2018) 63:105003. doi: 10.1088/1361-6560/aabd21

39. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol.

(2016) 61:R150. doi: 10.1088/0031-9155/61/13/R150

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Liang, Xu, Yang, Zhang, Wan, Huang, Niu and Chen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 11 September 2018 | Volume 8 | Article 360

https://doi.org/10.1002/hep.29116
https://doi.org/10.1002/hep.28149
https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.1088/1361-6560/aabd21
https://doi.org/10.1088/0031-9155/61/13/R150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Novel Nomogram for Preoperative Prediction of Early Recurrence in Intrahepatic Cholangiocarcinoma
	Introduction
	Materials and Methods
	Patients and MRI Acquisition
	Region of Interest (ROI) Segmentation, Feature Extraction, and Building of a Radiomics Signature
	Development and Validation of a Radiomics Nomogram Model
	Statistical Analysis

	Results
	Basic Features
	Clinical Characteristics
	Feature Selection, Building of a Radiomics Signature, and Validation
	Development, Validation, and Assessment of the Radiomics Nomogram

	Discussion
	Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References


