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Mitochondria from normal and cancerous cells represent a tale of two cities, wherein 
both execute similar processes but with different cellular and molecular effects. Given 
the number of reviews currently available which describe the functional implications of 
mitochondrial mutations in cancer, this article focuses on documenting current knowl-
edge in the abundance and distribution of somatic mitochondrial mutations, followed 
by elucidation of processes which affect the fate of mutations in cancer cells. The 
conclusion includes an overview of translational implications for mtDNA mutations, 
as well as recommendations for future research uniting mitochondrial variants and 
tumorigenesis.
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iNTRODUCTiON

In the best of times, mitochondria are cytoplasmic organelles that operate as power generators. 
In a normally functioning cell, mitochondria provide the “energy currency,” which allows cells 
to carry out normal metabolic function. In the worst of times, mitochondrial dysfunction may 
contribute to an array of human health disorders, including multiple types of cancer (1, 2). Indeed, 
mitochondria represent a microcosmic tale of two cities, wherein the dynamic processes governing 
the organization and response of the organelle differ between normal and cancerous cells. The 
specific mechanisms through which mitochondria affect cancer progression represent a complex 
intersection between changes in physiological function and DNA sequence, with concomitant 
feedback among these processes.

Mitochondria occupy a canonical cellular role as “the powerhouses of the cell,” synthesizing 
adenosine triphosphate (ATP) through the process of oxidative phosphorylation. Additional 
functions provided by mitochondria range from complementary roles in cellular metabolism to 
more far-ranging relationships with inflammation and programmed cell death (3). Cancer cells, 
however, are characterized by high levels of both energy requirements and proliferation, meaning 
mitochondria may often play a central role in cancer induction and progression (4, 5).

In addition to oxidative phosphorylation, other mitochondrial functions have been implicated 
in cancer formation and progression (6). In the 1950s, Otto Warburg identified mitochondria as a 
contributor to aerobic glycolysis, in which glucose ferments to pyruvate in the presence of oxygen 
(7, 8). Although physiological aberrations leading to aerobic glycolysis do not appear to impair 
mitochondrial function, they are a footprint in the roadmap of malignant transformation (9). 
Additionally, by serving as executors of programmed cell death, mitochondria have the capacity 
to contribute to avoidance of apoptosis, allowing cancer cells to continue proliferating (10). Several 
recent reviews have thoroughly documented mitochondrial dynamics in relation to cancer (11, 12). 
Through various mechanisms, these cellular functions interact with genetic alterations in the mito-
chondria to provide a feedback mechanism contributing to cancer emergence and progression (3, 4).
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FiGURe 1 | Structure of the human mitochondrial genome. Colored boxes represent locations of D-loop (red), transfer RNAs (light gray), ribosomal RNAs (orange), 
Complex I NADH dehydrogenase genes (purple), Complex III cytochrome c reductase gene (yellow), Complex IV cytochrome c oxidase genes (blue), and Complex V 
adenosine triphosphate synthase genes (green). Boxes appearing shorter represent antisense transcripts; others are sense transcripts. Hypervariable regions (16) are 
represented by dark gray bars, the “common deletion” (17) as a pink bar, and the genes described in Abundance and Distribution of Mitochondrial Mutations as 
relevant to cancer are highlighted with black bars. Diagram created in Circos (18) from GenBank accession NC_012920 (revised Cambridge Reference Sequence); 
code available at https://github.com/k8hertweck/mt_genome_viz.
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Mitochondria are the descendants of a billion-year-old sym-
biosis between bacterial precursors and pre-eukaryotic cells (13). 
Along with their autonomous bio-energetic sister organelles, 
chloroplasts, they retain specialized anatomical structures, 
self-contained haploid genomes, and corresponding regulatory 
processes. Specialization of these organelles has resulted in much 
of their genetic material being transferred to the nuclear genome, 
with a redox regulatory system retained in the organelle to 
preserve function (14). In humans, each mitochondrion holds a 
circular, intron-free, double-stranded genome that is only 16.5 kb 
in size, encompassing 13 protein-coding genes, 22 transfer RNAs 
(tRNAs), and 2 ribosomal RNAs (rRNAs) (Figure 1). Despite this 
small size, mutations to the mitochondrial genome (mtDNA) 
have been associated with multiple types of cancer during the 
formation, growth, and metastasis of tumor cells (15). However, 
the specific mechanisms through which these mtDNA changes 
alter physiological processes remain unclear (9). We contend that 
this lack of clarity is partially derived from a lack of understanding 

about general patterns in mtDNA mutations related to cancer, 
which this review seeks to synthesize.

In the nearly two decades, since the first report of somatic 
mtDNA mutation associated with human cancer (19), mtDNA 
alterations associated with cancer formation and progression 
have been documented throughout the mitochondrial genome 
and in many different cancer types. This review focuses on the 
mutational landscape of the mtDNA in cancer, including the 
type, distribution, and frequency of mitochondrial mutations. 
We then review clinical translation of mtDNA mutations before 
identifying future directions for research on the mtDNA cancer 
genome.

THe MiTOCHONDRiAL GeNOMe’S 
MUTATiONAL LANDSCAPe

Complete genome sequencing of diverse cancer types from many 
individuals has revealed overwhelming evidence of the influence 
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of nuclear mutations on cancer susceptibility, formation, and 
progression (20). The origin and impact of mtDNA alterations 
remain unclear, however, with large-scale studies across multiple 
tumor types providing scant evidence generally connecting 
mitochondrial mutations with formation and spread of tumors 
(15, 21). On the other hand, focused studies on specific tumor 
types suggest closer relationships between mtDNA alterations 
and tumorigenesis (22). Ultimately, genomic instability driving 
mutation accumulation is considered a genetic hallmark of can-
cer progression (23), and mtDNA alterations are emerging as an 
essential but complex feature of this multifaceted process.

Abundance and Distribution of 
Mitochondrial Mutations
The difficulty in assessing the contribution of mtDNA muta-
tions to tumorigenesis is largely related to nuances associated 
with genetics of the organellar genome. Most importantly, the 
proximity of reactive oxidative species (ROS) formed during 
normal metabolic events increases risk of mtDNA perturbation 
and instability (3). The effect of ROS on changes to mtDNA is 
supported by a general increase in some cancers of transitions 
at purines (19). This risk to DNA damage, coupled with fewer 
repair mechanisms relative to the nuclear genome, results in 
an mtDNA mutation rate at least an order of magnitude higher 
than the nuclear genome (24). Empirical evidence suggests that 
endogenous mutational processes are much more influential in 
the mtDNA mutation rate, as opposed to exogenous carcinogens 
like environmental chemical and ultraviolet light (15). Two 
additional characteristics are relevant to interpret the abundance 
and distribution of variants in mtDNA. First, mitochondria (and 
mitochondrial genomes) are present in hundreds or thousands 
of copies per cell. Second, mtDNA exhibits matrilineal inherit-
ance in humans, resulting in a single mtDNA haplotype per indi-
vidual (but see Heteroplasmy for the effects of multiple copies).

Both germline and somatic variants are relevant to interpret-
ing genetic alterations in mtDNA. Germline mtDNA mutations 
are heritable from mother to offspring and are constitutively 
found throughout the body of the offspring. Somatic muta-
tions, on the other hand, cannot be inherited by offspring but 
can be found in subsequently proliferating populations of cells. 
Germline mtDNA variants are useful for assigning individuals to 
certain haplogroups (25), which can then be related to ancestral 
matrilineal relationships (16). Although haplogrouping is pri-
marily used for identifying relationships among individuals and 
populations, some haplogroups possess sequence variants that 
also contribute to cancer susceptibility (26–28). Moreover, some 
somatic mutations may represent haplogroup conversion (29), 
complicating interpretability of mtDNA data.

The basic landscape of somatic mutation across the mito-
chondrial genome of cancer reflects more general patterns in 
germline mutational processes. Two broad assessments of many 
cancer types (15, 21) noted replicative strand bias in mtDNA 
mutations associated with cancer. Although this latter trend 
differs from that found in the nuclear cancer genome, it does 
recapitulate germline patterns shaping primate mtDNA muta-
tions. In the context of mammalian mitochondrial genomes, 

human mtDNA in general contains mutation hotspots in both 
rRNA and protein-coding genes, representing synonymous, 
non-synonymous, and non-coding sites, with minimal changes 
in tRNAs (30). This relative frequency of mutation in various 
sequence types is reflected in whole-genome analysis of somatic 
mutations related to cancer (31, 32). Signatures of cancer 
mutations reported from the nuclear and mitochondrial are 
both heterogeneous across tumor types (15, 21). Moreover, the 
proportion of individual cases containing somatic mutations 
varying from 13 to 63% depending on the type of cancer (33) and 
mtDNA variants may be present across cancer types or present 
only in one type of tumor (34). A comparison of distribution and 
types of somatic mtDNA mutations from exemplar literature is 
reviewed in Lee et al. (35); summaries below represent patterns 
emerging as relevant across cancer types.

Multiple mitochondrial genes have documented somatic 
mutations which may be implicated in tumor formation (Table 1; 
Figure 1). Across cancer types, somatic mtDNA alternations are 
enriched for non-synonymous variants compared to synonymous 
variants (32, 33). Protein-coding genes found in the mitochon-
dria belong to four different complexes of the mitochondrial 
respiratory chain (Figure 1). Complex I (NADH dehydrogenase) 
is represented by seven mtDNA genes (ND1-6, including ND4L); 
this complex most frequently contains variants related to tumori-
genesis (36). ND5, for example, is enriched for somatic mutations 
(31, 33, 37), which may alter tumor progression (38). Complex 
III, of which CYTB is the only gene encoded by mtDNA, contains 
fewer documented somatic variants. The exception is bladder 
cancer, in which this complex is significantly more affected than 
other complexes (39) and a 7 amino acid deletion detected in nat-
ural populations is experimentally associated with bladder tumor 
growth (22, 40). Complex IV (cytochrome c oxidase) includes 
three genes encoded in the mitochondria (COX1-3); mutations 
in COX1 associated with colorectal cancer may eliminate expres-
sion or decrease the efficiency of respiratory chain (41). Finally, 
Complex V (ATP synthase) has two mitochondrially encoded 
genes (ATP6 and ATP8). ATP6 appeared more susceptible to 
mutation than ATP8 in breast cancer patients, which may reflect 
changes in energy metabolism among cancer cells (42). Across 
these protein-coding genes, alterations to Complexes I and IV 
appear to be the most influential in inducing tumorigenesis (12).

The mitochondrial genome includes 22 tRNAs, comprising a 
relatively small proportion of the mtDNA nucleotide sequence. 
Somatic mutations in tRNA are not frequently documented in 
association with human cancer (Table 1), although they are com-
monly implicated in a variety of other primary respiratory chain 
disorders (2). Of the relatively few tRNA mutations associated 
with cancer, they appear to represent alteration to secondary 
structures (21) and variants in stem and loop regions may result 
in instability and altered mitochondrial function (31). Similarly, 
mutations in the two mitochondrially encoded rRNA genes are 
more likely to result in dramatically deleterious effects than 
changes to protein-coding genes (2); thus, modifications to rRNA 
are even less common (Table 1).

While genic regions of the mitochondrial genome are a logical 
target for assessing cancer mutations, hypervariable (HV) sites 
in the non-coding human mtDNA control region also represent 
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TABLe 1 | Mitochondrial mutations associated with cancer summarized by tumor type.

Tumor type Citations D-loop variants variants occurring frequently in genes

Bladder (39, 43–45) Subs and indels in 57% of cases Subs and indels in ribosomal RNA (rRNA) and protein-coding genes 
(ND3, ND4, ND5, and CYTB)

Breast Reviewed by Salgado et al. (29) 
and Yadav and Chandra (46)  

(31, 37, 42, 44, 47, 48)

Subs and indels in 16–43% of cases; 
D310 instability in 29% of cases

More frequent mutations in ATP6 than ATP8, ND5 mutations in 9% 
of cases; ND3 (G10398A) may be important (but controversial)

Colorectal Reviewed by Skonieczna et al. 
(33, 49)

Subs and indels in 7–40% of cases; D310 
instability in 23–44% of cases

Low frequency of mutation in protein-coding genes and transfer 
RNAs (tRNAs) with higher frequency in rRNAs; synonymous and 
non-synonymous subs across all genes; 56% of cases with non-
synonymous mutations 

Gastric Reviewed by Lee et al. (35) Subs and indels in 4–48% of cases Synonymous and non-synonymous subs in protein-coding genes; 
subs and indels in tRNAs

Head and neck (32, 43, 44, 50, 51) Subs and indels in 21–37% of cases, 
majority associated with D310 instability

Synonymous and non-synonymous subs in protein-coding genes 
(ND4, ND5, and Complex IV); subs and indels in tRNAs and rRNAs

Lung (43, 44, 52–56) Subs and indels in 23–35% of cases, 
D310 instability in 20% of cases

Synonymous and non-synonymous subs in protein-coding genes 
(enriched in Complex I); subs and indels in tRNAs and rRNAs

Ovarian (33, 44, 57–59) Subs and indels in 20–57% of cases; 
D310 instability may occur rarely

Synonymous and non-synonymous subs in protein-coding genes 
(ND4); subs in rRNA

Prostate (44, 60–63) Few mutations in D-loop, D310 instability 
in 0% of cases

Synonymous and non-synonymous subs in protein-coding genes 
(COI, Complex I); subs and indels in rRNA and tRNA; mutational load 
increases with metastasis

Cancers listed represent most well-characterized mtDNA variation. Studies listed focus largely on common patterns in somatic single nucleotide variants, including substitutions 
(subs) and small insertions/deletions (indels, including homopolymer changes). D310 is C-homopolymer stretch located near bp 310 of D-loop. Several studies have assessed 
mtDNA mutations across multiple types of cancer (15, 21); Lee et al. (35) reviewed location and type of somatic mitochondrial DNA mutations in various types of human cancer.
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general mutational hotspots. Both germline and somatic muta-
tions in mtDNA occur preferentially in two parts of this region, 
HV1 and HV2 (64). Cancer research has focused intensely on 
genetic variants in a large portion of the control region called the 
D (displacement) loop. The D-loop is a subset of the non-coding 
region found in many animal mtDNAs and is formed by incor-
poration of a third linear strand of DNA. Given the association 
between the control region and mitochondrial replication and 
transcription, mutations in the D-loop may influence the copy 
number and regulation of mitochondria (65). In the context of 
cancer, D-loop mutations are arguably the most well-studied of 
all mtDNA cancer variants (Table 1). This region possesses high 
enough rates of change to assess progression and proliferation of 
cell lineages (47). Mutations in the D-loop are also more frequent 
in later stages of cancer (54), and higher numbers of somatic 
D-loop mutations have been linked to poor prognosis in breast 
cancer (66). Despite possible implications D-loop mutations may 
have for mitochondrial function in cancer, it is unclear whether 
these variants are a causal or simply associated phenomenon (but 
see Natural Selection on Genetic Variants in Tumor Formation) 
(47, 66, 67).

Natural Selection on Genetic variants  
in Tumor Formation
The conventional view of cancer as a genetic disease is fueled by 
somatic mutation theory, which describes cancer as originating in 
the nuclear genome through a handful of “driver gene” mutations 
(68). The theory describes subsequent mutation accumulation 
throughout the genome as a result of these variants in oncogenes, 

resulting in the array of characteristics defining tumor develop-
ment (23). Somatic mutation theory, however, is difficult to 
reconcile with documented mtDNA variants associated with 
cancer (69). Increasing evidence implicating mitochondria in 
cancer risk, emergence, and progression contributes to a growing 
acknowledgment of cancer as a mitochondrial metabolic disease. 
This evidence derives from various processes involving natural 
selection, heteroplasmy, and the combined effects of genetic 
alterations across the genome.

Following the emergence of mutations in individual mito-
chondrial genomes, variants are subsequently subjected to a 
variety of molecular, cellular, and population level processes (70). 
Tumorigenesis is ultimately dictated by evolutionary processes, 
wherein mutations within the genome emerge and are then 
subjected to natural selection and/or genetic drift. The effects of 
selection are traditionally separated into two categories in cancer 
research: first, purifying (negative) selection, in which deleterious 
alleles are removed from the population, and second, positive 
selection, whereby advantageous alleles increase in frequency in  
a population (perhaps to fixation). Alternatively, mutations may 
be neutral and not subject to selective pressures but still prolifer-
ate stochastically through drift.

Numerous datasets and approaches have been applied to 
test for selection in mtDNA mutations associated with cancer. 
Throughout human history, germline mtDNA mutations in genes 
exhibit negative selection (71). Evidence from a large sample of 
mitochondrial genomes suggests that mutations are subject to 
similar selective constraints, regardless of whether they arise in 
tumor or normal cells (72). Deleterious mutations tend to be 
selected against (9), but some normal tissues conversely exhibit 
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TABLe 2 | Mitochondrial structural variants summarized by tumor type.

Tumor type Citations Structural variant

Bladder (43) 21 bp deletion in CYTB

Breast Reviewed by Salgado 
et al. (29) and Yadav and 

Chandra (46, 76)

4977 deletion more common in 
cancer than normal tissue  
(but this is controversial)

Colorectal (77, 78) 4977 deletion more and less 
common in tumor than normal tissue  
(conflicting results); novel deletion 
frequency varies with ethnicity

Gastric Reviewed by Lee  
et al. (35)

4977 deletion more common in 
cancer than normal tissue;  
other deletions and duplications in 
D-loop frequent in cancer 

Head and neck (79) 4977 deletion more common in 
cancer than normal tissue

Cancers listed represent those with the most well-characterized mtDNA variation. 
Included studies focus on large somatic structural variants and mitochondrial 
microsatellite instability; see Table 1 for single base pair insertions and homopolymer 
slippage. 4977 deletion refers to the “common deletion” spanning five tRNA genes and 
seven protein-coding genes (17) (Figure 1).
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positive selection on mtDNA somatic mutations. In liver, for 
example, positive selection reduced mitochondrial function to 
decrease damage ensuing from byproducts of metabolism (73). 
In terms of selection on mutations related to cancer formation, an 
assessment of somatic mtDNA mutations across oncocytic tumor 
types indicates that variants associated with cancer are indistin-
guishable from random (74). However, there is a correlation 
between the number of somatic mtDNA mutations and patient 
survival in breast cancer, with evidence for both positive and 
relaxed negative selection for somatic missense mutations (31). 
Surveys of mtDNA alterations in bone metastases of prostate 
tumors revealed statistically greater variation than both primary 
tumors and soft tissue metastases (62). These studies, though 
seemingly contradictory, cumulatively highlight two points in 
the effect of selection on mtDNA mutations in cancer: first, the 
time scale and differentiation of somatic from germline muta-
tions matters, and second, patterns of selection may be tissue (and 
therefore tumor) specific.

Mitochondrial Structural variation 
Associated with Cancer
Single-nucleotide substitutions receive much of the focus in 
cancer studies given their possible connections to protein changes. 
However, genomic instability encompasses a wide array of additional 
variants as well, such as structural variations (e.g., duplications and 
deletions). A meta-analysis of such structural changes in mtDNA 
associated with human disease noted that mtDNA duplications are 
not reported in tumors, although it is unclear whether they are less 
frequent than in other diseases or simple not often assessed (75). 
The nature of structural variants in the mitochondria ranges from 
small (single nucleotides) to large (hundreds to thousands of bases) 
(Table 2).

In terms of small structural variants, microsatellite instability 
(MSI) refers to changes in the number of short (1–5 bp) tandem 
repeats (sometimes also referred to as homopolymer slippage). 
Although variants of this type (especially from slippage associ-
ated with mononucleotide repeats) are often discussed with 
substitutions in cancer literature, they are presented here with 
other structural variants given the nature of the genetic varia-
tion. High levels of nuclear MSI throughout the nuclear genome 
have been associated with tumorigenesis in some types of cancer 
(29, 80). Frequency of this hypermutator phenotype within and 
across cancer types, however, is variable, and nuclear MSI is not 
associated with mitochondrial MSI (81) or mtDNA mutations in 
general (82).

Microsatellite instability in mtDNA is perhaps best studied 
in the D-loop, which reflects a finding that deletions involving 
the D-loop occur significantly more frequently in tumors than 
in other mitochondrial diseases (75). More specifically, the D310 
homopolymeric (mononucleotide) C stretch possesses variants 
in ca. 22% of tumors across cancer types, although this estimate 
varies widely among and within tumor types and may be present 
in non-cancerous cells as well (44, 83, 84). Although this repeat 
is the most unstable in the D-loop, the frequency of changes at 
this locus and other mtDNA microsatellites is uncorrelated with 
and less frequent than nuclear MSI (81). Given this section of the 

D-loop is responsible for replication of the mtDNA heavy strand, 
Bragoszewski et  al. (58) tested the relationship between D310 
slippage with clinical status and expression of mtDNA genes. 
Although they found no relationship between the mononucleo-
tide variant and clinical status (58), an earlier study suggested as 
association between a separate 50  bp somatic deletion in the 
D-loop with the location of gastric tumor origin (85). These find-
ings cumulatively underscore the heterogeneity of responses to 
mitochondrial D-loop changes regarding cancer formation and 
progression.

In terms of larger structural variants within involving 
genes, a 21-bp deletion of CYTB was noted in bladder cancer 
patients. Overexpression of the mutated CYTB gene resulted in 
increased cell growth, which suggests a mechanistic relation-
ship to tumorigenesis (40). An even larger deletion involving 
4,977  bp (the “common deletion”) spanning five tRNA genes 
and seven protein-coding genes is one of the most frequently 
observed mitochondrial deletions in human tissues (17) and 
may be associated with endrogen receptor-positive breast cancer 
and lymph node metastasis (76). Meta-analysis suggests that the 
deletion is frequent in cancer but is selected against in some 
cancer tissues (86).

The most extreme example of structural rearrangements 
associated with cancer comes from recent documentation of 
somatic mtDNA transfers to the nuclear genome, which occur 
at a similar rate to interchromosomal rearrangements in the 
nucleus (87). The sequences involved in these transfers spanned 
the mitochondrial genome, but mitochondrial breakpoints were 
enriched near the heavy strand origin of replication for the heavy 
strand (in the D-loop), which may ultimately affect the number 
of mitochondria present in the cell.

Mitochondrial Copy Number
In a normal cell, mitochondria (and genomes contained therein) 
occur in high copy number. Comparisons of mtDNA content in 
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TABLe 3 | mtDNA copy number variation documented by tumor type.

Tumor type Citations mtDNA content relative to normal 
tissue (% of cases)

Bladder (88) Decrease

Breast Reviewed by 
Salgado et al. 
(29) and Yadav 

and Chandra (46) 
(31, 88);

Decrease (71–88%)

Colorectal (54, 77, 88, 92) Decrease (28%) or no difference (conflicting 
results; may be tumor-specific); decrease 
related to presence of 4977 deletion

Gastric Reviewed by Lee 
et al. (35)

Decrease

Head and neck (79, 88) Decrease and increase (conflicting results)

Lung (54–56, 88) Decrease and increase (conflicting results)

Prostate (88, 93) Increase (78%) and no change (conflicting 
results, may be associated with increased 
distributional variance in cancer cells)

Cancers listed represent those with the most well-characterized mtDNA variation. 4977 
deletion refers to the “common deletion” spanning five tRNA genes and seven protein-
coding genes (17). Comparisons of mitochondrial copy number between normal and 
cancer cells in 22 tumor types is assessed in Reznik et al. (88).
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15 cancer types with normal adjacent cells revealed that seven had 
decreased mtDNA copies in tumor cells (bladder, breast, esopha-
geal, head/neck squamous cell, kidney, and liver), one increased 
(lung adenocarcinoma), and seven had no difference from 
normal mtDNA content (colorectal, kidney, pancreatic, prostate, 
stomach, thyroid, and uterine) (88). These patterns, however, are 
not entirely consistent with studies of individual cancer, which 
may reflect tumor-specific patterns (29) (Table 3). For example, 
more focused studies found that thyroid (89) and pancreatic (90) 
cancer cells are generally enriched for mitochondria, which may 
be a consequence of cell compensation for defective oxidative 
phosphorylation and lower ATP production per mitochondria 
and contribute to increased cancer risk. On the other hand, 
hepatocellular carcinoma cells are mitochondrially depauperate 
(91). The causal mechanism behind decreased mitochondrial 
copy numbers may be related to D-loop mutations, since this 
region mediates mtDNA replication (54).

Heteroplasmy
The coexistence of multiple copies of the mitochondrial genome 
in each cell provides the basis for unique genetic patterns relative 
to the nuclear genome. Locations in the mitochondria which are 
identical throughout a cell (or sample) are called homoplasmic. 
Heteroplasmic sites represent mtDNA locations where multiple 
haplotypes are present in the same cell, which may exist through 
heteroplasmy in progenitor cells or de novo mutation. Although 
normal tissue is assumed to possess homogenous mtDNA, the 
frequency of heteroplasmic variants differs among even normal 
tissues in the same individual (73, 94) with additional homo- and 
heteroplasmic mutations in cancer cells (95). Moreover, mutations 
initially identified as putatively somatic may represent low-level 
heteroplasmies from germline tissue (94). Kloss-Brandstatter et al. 

(32) found oral cancer tissue to be enriched for non-synonymous 
heteroplasmic variants. Moreover, low-level heteroplasmy was 
more frequent in benign tissue than tumors and occurrence of 
heteroplasmy increased with metastasis.

Heteroplasmy represents one specific type of genetic varia-
tion, which is also intricately tied to the processes driving genetic 
variation in the mitochondrial genome. In pancreatic cancer, 
contributors to cancer risk include the following three types of 
alternations: variants common among humans, variants that are 
rare among human populations, and singletons, or variants that 
are found only in a single individual (27). The effect of hetero-
plasmy is that multiple mitochondrial genotypes are expressed 
simultaneously, and the ratios of common, rare, and singleton 
heteroplasmic variants dynamically adjust with subsequent 
physiological and genetic changes (96). Given the presence of 
purifying selection, how do such diverse variants persist in popu-
lations of cells and humans? Low-frequency (rare or singleton) 
heteroplasmy may allow potentially pathogenic mutations to 
persist because of the simultaneous functioning of unmutated 
copies (97). Late-onset mitochondrial disorders may continue 
to occur through fixation of less-severe variants, which manage 
to escape germline selection (98). Computational modeling 
suggests that selection is not required for low-frequency hetero-
plasmic mutations to reach fixation, indicating drift as a possible 
mechanism for this phenomenon (99).

Nuclear-encoded Alterations Affecting 
Mitochondria in Cancer
Mitochondrial dynamics and their associated genetics result in 
evolutionary interactions driving emergence and proliferation of 
mutations. An extra layer of complexity arises through interac-
tions with nuclear genes. Of the thousand proteins comprising the 
mitochondrial proteome, only a small percentage are encoded by 
mtDNA (100). The rest of these proteins arise from genes located 
in the nuclear genome but which encode for mitochondrial rep-
lication and expression (3). Mutations to such genes may result 
in direct effects to instability and copy number of mtDNA, and 
nuclear-encoded genes may influence mitochondrial function in 
ways that also influence cancer formation and progression.

A limited number of nuclear-encoded genes have been 
hypothesized to alter the mitochondrial genome itself. For 
example, nuclear-encoded mitochondrial transcription factor A 
(TFAM) truncation arising from frameshift mutations in a coding 
mononucleotide repeat of the gene in colorectal cancer cell lines 
resulted in mitochondrial instability and reduced mitochondrial 
copy number (101). Somatic mutations in nuclear-encoded poly-
merase gamma, on the other hand, did not appear to increase 
mtDNA mutations, although they did result in mitochondrial 
dysfunction through a decrease in mtDNA content (102).

In addition to directly affecting mtDNA, genes from outside the 
mitochondria can have dramatic effects on mitochondrial function 
and dynamics. More specifically, nuclear-encoded genes, which 
contribute to mitochondrial functions like oxidative phosphoryl-
ation, can possess mutations, which increase cancer risk, produce 
oncogenic metabolites, or even initiate tumorigenesis (9, 103).  
TP53 (tumor protein p53), for example, is a nuclear-encoded 
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tumor suppressor which acts through cell cycle regulation and 
other cellular mechanisms to regulate mitochondrial metabo-
lism. Some missense TP53 mutations result in proteins, which 
continue to successfully promote normal or cancerous cell sur-
vival (104). Vyas et al. (5) highlighted additional genes involved 
in the following mitochondrial dynamics: biogenesis, mitophagy, 
fission/fusion, cell death, oxidative stress, metabolism, and 
signaling. While an overview of specific genes involved in each 
pathway represented by these functions is outside the scope of 
this review, this highlights the importance of understanding the 
nuclear landscape of expression changes concurrently with that 
of the mitochondrial genome itself.

integration of evolutionary Processes with 
Types of mtDNA variation
The review thus far has focused on individual types of varia-
tion and how evolutionary processes may affect their fates. In 
living cells, however, it is the interactions among these variants 
and evolutionary processes which dictate the development and 
progression of tumors. Assessment of mutational patterns across 
a large sample of tumors confirms that missense mutations tend 
to be selectively neutral and subjected to homoplasy through 
genetic drift. In contrast, structural variants which truncate 
proteins are subject to purifying selection but can persist through 
heteroplasmy because of compensation by fully functional mito-
chondria (15). Because pathogenic mtDNA variants are subjected 
to purifying selection, decreasing mtDNA content limits tumor 
formation because of the remove of this compensation. Evidence 
of this balance comes from oncocytomas, which are relatively 
rare and characterized by excessive mutation accumulation but 
ultimately benign (9).

Cytoplasmic hybrids, or cybrids, represent a powerful tool to 
test the evolutionary dynamics of mtDNA mutations empirically. 
A cybrid study in multiple human cancer lines tested whether 
mtDNA instability influences mtDNA depletion (105). The 
results indicated that these phenomena occur independently 
and that decreased mtDNA copy number does not contribute 
to the shift from heteroplasmic to homoplasmic. A separate 
cybrid study in which normal mitochondria were inserted into 
cancerous cells indicated that interactions among cancerous 
and non-cancerous mitochondria can reverse the physiological 
reactions associated with cancer cells, even in the context of a 
cancerous nuclear genome (106). These studies cumulatively 
highlight the importance of mitochondria in mediating the 
formation and progression of tumors. Moreover, the fate of 
mutations in mtDNA is a function of multiple, sometimes 
contradictory, processes and is largely contingent on individual 
tumors or cancer types.

CONTiNUiNG AND FUTURe ReSeARCH 
ON THe CANCeR MiTOCHONDRiAL 
GeNOMe

Studying mtDNA mutations related to cancer informs our under-
standing of a broad variety of concepts in basic science, such as 
mitochondrial tRNA function (21) and mechanisms of mtDNA 

replication (15). These findings, however, are generally pursued 
with the intention of clinical translation. This section summarizes 
clinical translations of mtDNA mutation studies, methodological 
recommendations for pursuing such research, and the emerging 
area of mitochondrial epigenetics.

Clinical Translations of Mitochondrial 
Alterations in Cancer
The relationship between germline mtDNA mutations and cancer 
risk is addressed above (section Abundance and Distribution of 
Mitochondrial Mutations), but mtDNA variants can also inform 
cancer detection, treatment, and prognosis. Because mitochon-
dria occur in high copy number in cells and are clonal in nature, 
they possess an innate capacity to aid in detection and diagnosis 
of some cancer types (43). The use of mtDNA as a biomarker is 
not limited to tumors, however, as mtDNA variants related to 
cancer can also be detected in minimally invasive bodily fluids 
(107), such as the use of urine to detect bladder cancer (39). 
Additional examples include the use of serum and nipple fluid 
aspirate for diagnosis of colorectal and breast cancer, respectively 
(108, 109).

Numerous studies have declared the utility of targeting the 
mitochondria to treat cancer (3, 9, 103, 110–112), even stating 
that “understanding mechanisms of mitochondrial function dur-
ing tumorigenesis will be critical for the next generation of cancer 
therapeutics” (5). Given that apoptosis is a main contributor to 
the reduction of tumor cells and cell death response is controlled 
by the mitochondria, it logically follows that mtDNA mutations 
may alter responses to cancer therapy (113). In fact, a well-
documented case study of a somatic mutation in ND4 in serous 
ovarian cancer may be associated with chemoresistance (59) and 
D-loop mutations are correlated with resistance to chemotherapy 
in colorectal cancer patients (114). Decreased mtDNA content 
is connected with improved prognosis in breast cancer patients 
receiving anthracycline-based chemotherapy (115). In stark, 
contrast stand claims that levels of both mitochondrial gene 
expression and mtDNA mutations have limited clinical relevance, 
such as for ovarian cancer (58). A combination of individualized 
metabolic processes associated with myriad variation in both the 
nuclear and mitochondrial genomes prompts additional research 
into the use of personalized medicine in treating cancer (4).

Methodological Recommendations for 
Future mtDNA Cancer Research
As knowledge of mtDNA mutations associated with cancer con-
tinues to grow, it is incumbent on researchers to manage these data 
and target the most appropriate directions for future research. 
The wide availability of massively parallel (next-generation) 
sequencing to obtain complete mtDNA sequences has increased 
the capacity to assess mutation across mitochondrial genome. 
With this technology, however, comes a corresponding need to 
appropriately design experiments and evaluate the robustness of 
results. A number of potential pitfalls exist in assessing mtDNA 
variants associated with cancer, including errors with labwork, 
misdocumentation, and incomplete referencing of previously 
published information (116).
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The first issue concerns obtaining an appropriate representa-
tion of mtDNA mutations to assess. For instance, the use of paired 
tissue samples (tumor and normal) is essential for identifying 
somatic and germline variants. Additionally, Fang et  al. (117) 
advocate use of the same material for diagnosis and DNA analysis 
(e.g., microdissect tissue from slides used for pathology). In terms 
of genomic sampling, the potential transfer of mitochondrial 
sequences to the nuclear genome may require differentiating 
nuclear copies of mitochondrial genes and pseudogenes (117), 
depending on the molecular sampling strategy. Many studies have 
assessed the sensitivity and accuracy of variant analysis (118). 
Although it is possible to obtain many putative variants, applica-
tion of computational stringency filters may dramatically limit 
the number of variants identified (119). These filters are especially 
important when attempting to assess levels of heteroplasmy, par-
ticularly of low-frequency variants (120). Multiple tools have been 
suggested to increase robustness and interpretability of results. 
Reanalysis of previously published mtDNA results suggests that 
the use of median networks can identify potential problems with 
sequencing and/or documentation (121). It is becoming more 
commonplace to analyze variants using a phylogenetic approach 
and to search multiple databases to differentiate novel from 
known (rare and common) variants (122, 123). Finally, using the 
revised Cambridge Reference Sequence to standardize notation 
and minimize errors in interpretation (124).

Once mtDNA variants have been identified, the next goal is 
connecting them to potential functions; whether most variants 
are a cause or consequence of tumorigenesis remains uncertain 
(9). Identification of somatic mutations is not an assurance 
of functional relationships with cancer; for example, a 2006 
assessment of tumor-specific mtDNA somatic mutations found 
72% were variants also found in the general population (125). 
Furthermore, Covarrubias et al. (126) identified epistatic inter-
actions between mitochondrial variants involved in risk of breast 
cancer. Subsequent reanalysis using a phylogenetic framework 
and more robust statistics indicated this relationship may be 
spurious (127). However, experimental evidence from cybrid 
studies in mice suggested that one of these variants (G10398A) 
allows cells to metastasize and resist apoptosis (128), indicat-
ing importance of functional studies to complement genomic 
characterization.

The considerations above suggest research topics worthy of 
future work. First, somatic mtDNA mutations clearly need to be 
assessed in the context of potential function, as this may refute or 
implicate mutations in cancer progression. For example, Ishikawa 
et al. (129) used cybrids to determine that enhanced glycolysis 
caused by mtDNA mutations does not actually induce metastasis. 
Cybrid studies introducing COI mutations in prostate cancers, 
however, confirmed that COI mutations dramatically increased 
tumor growth compared to wild type (60). Second, given the 
relationship between mitochondrial function and numerous loci 
in the nuclear genome, the significance of mtDNA mutations will 
be clearer if assessed in conjunction with variation in the nuclear 
genome (130) and adjusting for population substructure while 
assessing such epistatic interactions (103). A corresponding goal 
is identifying the extent to which a mutator phenotype (131) may 
contribute to mtDNA changes. Finally, effective simulation and 

modeling of mutational processes associated with cancer requires 
adequate knowledge of both biological function and experimen-
tal data and may need to be assessed for specific types of cancer 
independently (132). In general, the most promising areas for 
further research lie in the integration of multiple data types, 
spanning sequence variants, gene expression, and consequences 
on phenotype.

The Mitochondria, epigenetics,  
and Cancer
An emerging focus of cancer mitochondrial research is mitoe-
pigenetics, which describes not only the epigenetic regulation  
(e.g., modifications to gene expression) of the mitochondrial 
genome but also corresponding interactions with the nuclear 
genome (133). Mitochondrial methylation patterns vary among 
normal human tissues (134). Moreover, whole-genome methyla-
tion is associated with a variety of human diseases, including can-
cer (135). These basic characteristics lead to an expectation that 
mtDNA epigenetic patterns could promote cancer progression. 
The influence of mitochondrial abundance on global patterns of 
gene expression (136) adds credence to a possible connection 
between methylation and mtDNA copy number (133).

Moreover, Minocherhomji et al. (137) propose a mechanism 
for this relationship: a mitochondrial damage checkpoint (which 
balances apoptotic signaling) may activate to repair damaged 
mitochondria. If signaling occurs between the nucleus and 
mitochondria, the mitocheckpoint could potentially alter epi-
genetic patterns and genomic stability. These lines of evidence 
cumulatively suggest the relevance of mtDNA epigenetics to 
cancer, with some interest already expressed in the use of mtDNA 
methylation as a biomarker for diagnostic purposes (133, 138). 
However, possible relationships and applications have yet to be 
fully explored, especially when we lack basic quantification of 
methylation across cancer types and stages (139). Filling these 
gaps in knowledge may assist in reconciling previous discordant 
evidence among cancer types.

CONCLUSiON

This review provides a high-level overview of the nature of 
mtDNA mutations associated with cancer across multiple tumor 
types. General mutational patterns are placed in the context of 
evolutionary processes affecting the persistence of these muta-
tions, providing an important foundation for studies of mtDNA 
and cancer. We provide recommendations for best practices in 
assessing mtDNA alterations associated with cancer and suggest 
promising areas for future research.

Alterations to mitochondrial dynamics during tumo-
rigenesis run the full gamut of possibilities, affecting biogenesis, 
metabolism, and virtually all other aspects of mitochondrial 
function. As data regarding somatic mtDNA mutations associ-
ated with cancer accumulate, it is apparent that some genetic 
alterations in the mitochondria contribute to tumorigenesis 
while others simple continue to collect as the cancer progresses. 
Mutations in nuclear-encoded genes, along with correspond-
ing changes to the cellular function of surrounding cells, may 
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either promote additional changes in mtDNA or provide 
constraint to what changes may proliferate. Tumors are popula-
tions of cells, with each cell possessing its own population of 
mitochondria, and the fate of mtDNA mutations depend on  
the effects of selection at multiple levels of complexity. The mtDNA 
landscape of cancer appears to promote plasticity and adaptability 
of mitochondria to the ever-changing environment of a tumor. 
Identifying specific mutations useful as biomarkers, therefore, 
will require broader sampling of mitochondrial genomes from 
diverse cancer types at multiple stages of progression, and careful 
modeling to assess the frequency with which these mutations 
persist in tumors.

Mitochondria associated with normal and cancer cells repre-
sent a microscopic tale of two cities. The genomes of each are 
subjected to mutation, but cellular and molecular forces differ-
entially shape the fate of such variants. This duality provides the 

opportunity to inform both basic knowledge of cellular function 
and translational medicine.
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