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Restoration of speech communication for locked-in patients by means of brain computer

interfaces (BCIs) is currently an important area of active research. Among the neural

signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local

field potential (LFP), and electrocorticography (ECoG) are good candidates for an input

signal for BCIs. However, the question of which signal or which combination of the three

signal modalities is best suited for decoding speech production remains unverified. In

order to record SUA, LFP, and ECoG simultaneously from a highly localized area of

human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which

was 7 by 13mm containing sparsely arranged microneedle and conventional macro

contacts. We determined which signal modality is the most capable of decoding speech

production, and tested if the combination of these signals could improve the decoding

accuracy of spoken phonemes. Feature vectors were constructed from spike frequency

obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP

signals, then input to the decoder. The results showed that the decoding accuracy for

five spoken vowels was highest when features from multiple signals were combined and

optimized for each subject, and reached 59%when averaged across all six subjects. This

result suggests that multi-scale signals convey complementary information for speech

articulation. The current study demonstrated that simultaneous recording of multi-scale

neuronal activities could raise decoding accuracy even though the recording area is

limited to a small portion of cortex, which is advantageous for future implementation

of speech-assisting BCIs.

Keywords: speech, decoding, single neuron recording, local field potential, electrocorticography, ventral motor

cortex

INTRODUCTION

Recent advancements in neuroscience, which are based on the emerging technology of
neuroengineering and neuromathematics, provide profound insight into the human brain
(Khodagholy et al., 2015; Sturm et al., 2016). Research on neuroscience is now not only
about discovering the physiological fundamentals of human cognitive functions, but also about
translating recorded brain signals (decoding) into various kind of cognitive or behavioral output
(Ossmy et al., 2015; Baker, 2016; Huth et al., 2016; Rupp et al., 2017; Úbeda et al., 2017).
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Among various aspects of human life, vocal communication,
which is a characteristic ability of humans, is indispensable
for our daily living. Thus, impaired speech ability resulting
from locked-in-syndrome can severely decrease the quality of
life. Restoration of speech communication for individuals with
locked-in syndrome by brain computer interfaces (BCIs) is
currently an important area of active research (Brumberg and
Guenther, 2010; Brumberg et al., 2010). Unverified issues for
speech decoding include which neural signals from which brain
area should the speech-related neural activities be recorded.

Speech production involves multiple cortical areas such as
the ventral lateral prefrontal cortex, ventral sensorimotor cortex
(vSMC), supplementary motor area, rostral anterior cingulate
cortex, and superior temporal cortex (Ojemann and Mateer,
1979; Lotze et al., 2000; Jürgens, 2002; Brown et al., 2009; Price,
2010; Hickok, 2012). Among these areas, the vSMC plays an
important role inmotor control ofmultiple anatomical structures
in the vocal tract, which are also known as the speech articulators
(Jürgens, 2002). The speech articulators (larynx, lips, tongue, jaw,
palate) are represented somatotopically in the dorsoventral and
antero-posterior axis within the vSMC. The somatotopy within
the vSMC has further been investigated to be in an interdigitated
mosaic fashion between the speech articulators (Breshears et al.,
2015).

Many works targeting communication BCI has used EEG
to record brain potentials to control spelling devices (Farwell
and Donchin, 1988; Birbaumer et al., 1999). In contrast to the
non-invasive and easy-to-access EEG recordings, intracranial
electrophysiological recordings require surgical implantation of
the electrodes, which is an invasive procedure for the patients.
But once the implantation is completed, intracranial signals could
especially be suitable for directly decoding speech from brain
signals as opposed to indirectly through typing interfaces, owing
to its high temporal/spatial resolution.

Currently, we can record neural activities in various scales
of single-unit activity (SUA; represents individual neural units),
local field potential (LFP; represents the total activity of dozens
of neurons in the immediate vicinity of the electrode), and
electrocorticography (ECoG; represents the cumulative activity
of hundreds to thousands of neurons underneath the electrode
surface). Recent studies have begun to reveal the utility of
the intracranial signals recorded from the human vSMC in
both indirect (controlling spelling device) and direct decoding
of speech. In terms of the signal modality used for decoding
speech directly from the motor cortex, SUAs have been used
to synthesize vowel formant and achieved 70% accuracy when
classifying three imagined vowels by long-term training (Bartels
et al., 2008; Guenther et al., 2009). SUAs were used to decode
imagined production of phonemes (Brumberg et al., 2011).
A more recent study on direct decoding by SUAs recorded from
rostral anterior cingulate gyrus, medial orbitofrontal cortex, and
superior temporal gyrus achieved 93% classification accuracy of
five spoken vowels (Tankus et al., 2012). Compared to the studies
based on SUAs, ECoG has been utilized in directly decoding
speech in several recent literatures, and the number of these
studies has been growing. There is a study on discrimination of
vowels and consonants (Pei et al., 2011), or study on successful

classification of four different phonemes (Blakely et al., 2008), set
of words (Kellis et al., 2010), or phonemes within words (Mugler
et al., 2014), and even spoken sentences (Herff et al., 2015).

Regarding these recent findings, the question of which
modality or combination of the three signal modalities is best
suited for decoding speech production still remains unverified,
and whether combination of different signal modalities could
improve decoding accuracy remains unanswered. In this study,
we fabricated an electrode that can record SUA, LFP, and ECoG
simultaneously from a highly localized area of human vSMC.
We compared the three signals within and across individuals
and evaluated which signal modality is the most capable for
decoding speech production. We also tested if the combination
of these signals could improve the decoding accuracy of spoken
phonemes.

MATERIALS AND METHODS

Subjects
Thirty-one patients with pharmaco-resistant epilepsy underwent
intracranial electrode placement for the purpose of evaluating
epileptic foci at the University of Tokyo Hospital between 2012
and 2015.

Among them, 10 patients (14 hemispheres) had their vSMC
and the adjacent area covered by the specially fabricated electrode
(hybrid electrode, see next section) together with conventional
grid electrodes. Out of these ten patients, six patients went
through the task described below and were included in this
study. Among the removed four patients, one had the electrodes
removed immediately after clinical monitoring because the
epileptic focus was too broad to treat surgically, and other three
did not go through the identical task used for this research.

In total, nine hybrid electrodes (see section below) were
implanted in six patients. Since one hybrid electrode had very
poor recording quality, eight hybrid electrodes (6 patients) were
finally analyzed in this study (Table 1).

Written informed consent was obtained from each patient.
The protocols of this study were reviewed and approved by
the institutional ethical committee of the University of Tokyo
Hospital.

Electrode and Surgical Procedure
We designed and fabricated a silicone-coated electrode array
consisting of a combination of six microneedles and three
macroelectrodes (Unique Medical Co., Tokyo, Japan; Figure 1).
The outline of this “hybrid electrode” was 7 × 13mm which
is small enough to allow its implantation within a gyrus.
The length of the microneedles was 1.5 or 2.5mm, and were
aligned in alternating pattern to reduce the force needed for
electrode implantation by halving the number of needles that
simultaneously penetrates the cortical surface. The alternating
alignment also allowed recording neural activities from different
cortical layers. The microneedle contact diameter was 200µm
and the 2.5 mm-long needles were intended to record neural
activities from pyramidal cells located in layer 4/5, whereas
the 1.5 mm-long needle were intended to record extracellular
potentials of more superficial neurons. The center-to-center
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TABLE 1 | Patient characteristics and surgical procedure.

Subject Age (years) Day of Recording Electrode placement Implanted hemisphere Handedness Epileptic foci (EF) Surgical procedure

S1 20–30 POD 26 Hybrid + grids Grids: Lt&Rt Rt Lt.temporal lobe Lt.ATL + HT

Hybrid: Lt

S2 40–50 POD 10 Hybrid + grids Girds: Lt&Rt Rt Lt.temporal lobe Lt.ATL + HT +MST(T1) + VNS

Hybrid: Lt&Rt

S3 40–50 POD18 Hybrid + grids Grids: Lt&Rt Rt Rt.temporal lobe Rt.ATL + FR + HT

Hybrid: Lt&Rt

S4 20–30 POD 11 Hybrid + grids Grids: Lt Rt Lt frontal lobe(FCD) &

surrounding lesion

FR

Hybrid: Lt

S5 40–50 POD 10 Hybrid + grids Grids: Lt Rt Lt.temporal lobe Lt.HT + MST(T1/T2)

Hybrid: Lt

S6 20–30 POD 13 Hybrid + grids Grids: Lt&Rt Rt Rt.temporal lobe Rt.ATL

Hybrid: Lt&Rt

POD, Post-Operative Day; VNS, Vagal Nerve Stimulation; HT, Hippocampal Transection; ATL, Anterior Temporal Lobectomy; MST, Multiple Subpial Transection; FR, Focus Resection;

T1, Superior Temporal Gyrus; T2, Middle Temporal Gyrus; FCD, focal cortical dysplasia; vMC, ventral motor cortex.

distances between the microneedles were set to 3.5mm. The
macroelectrode contact was 1.5mm in diameter, and the center-
to-center distances between macroelectrodes were set to 3.5mm.
The electrode impedance of the microneedle was fabricated to
range 150 ± 30 k�, and that of macroelectrode was fabricated
to range 750± 250�.

The anatomical structure of the lateral cortex including
the vSMC, which was clinically pre-evaluated as a potential
epileptic focus, was confirmed by both visual inspection of
the pattern of cortical sulci and by a magnetic resonance
imaging (MRI) registered navigation system (Stealth Station S7,
Medtronic, Minneapolis, MN, USA). The Grid electrodes and
the Hybrid electrodes were both subdurally implanted according
to clinical criteria. We first placed the Grids on the surface of
the peri-sylvian frontal and temporal surface, and then placed
the Hybrid electrode on the remaining surface not covered
by Grid electrodes, with care to avoid any damage to the
microvasculature. We maintained precise orientation during the
implantation procedure, and the final locations of the implanted
electrodes were verified using co-registration after implantation.
The hybrid electrode was placed with special care to prevent
avulsion of the microvasculature on the cortical surface (see
Figure 1, dashed circle).

Experimental Design
Recordings
Recordings were performed in the digitally shielded room at the
University of Tokyo Hospital during 24-h seizure-free periods,
both before and after seizures. Our system consists of an
amplifier that is a digitizer/amplifiermodule and the neural signal
processor (Cerebus R©, Blackrock Microsystems, Salt Lake City,
UT, USA). The amplifier filters the signals with a first order high
pass filter at 0.3Hz and a third-order low-pass filter at 7,500Hz.
The filtered neural signals from each electrode are digitized
with 16-bit resolution at 1 µV per bit with a sampling rate of
30 kHz. For the signals from the surface electrode, sampling rate
was set to 2 kHz. We did not apply a digital bandpass filter

or a notch filter for data acquisition. The most and second
distant macroelectrodes placed against the internal dural surface
were used as the ground electrode and the reference electrode,
respectively.

Stimulus Presentation
The task was to speak out fifteen Japanese syllables including
five monophthongal vowels (/a/, /i/, / mβ/, /e/, and /o/) and ten
consonant-vowel syllables displayed on the monitor (viewing
angle 9 × 9 deg.) ten times each in a pseudo-random order.
The inclusion of CV syllables was to avoid neural adaptation
to vowel production, as the research was focused on decoding
the five spoken vowels. English approximation for each vowel
is as follows; /a/: between cut and father, /i/: meet, / mβ/: food,
/e/: hey, and /o/: owe. Patients were simply instructed to clearly
articulate the syllable displayed on the monitor. The duration of
presentation for each vowel and syllable was 300ms, followed by
an interval of 1,500 ± 300ms. This inter-stimulus interval was
set with an intention to make the recording session less onerous
for each subject by reducing the total time required. We have
confirmed that each subject could perform the task within the
inter-stimulus interval by going through practice session before
each recording. Trials with mis-pronunciation were omitted
from the analysis.

Electrode Localization
Three dimensional T1-weighted MRI of each subject’s brain
was obtained pre-operatively. MRIs were semi-automatically
registered to post-operatively scanned computed tomography to
determine electrode positions based on a normalized mutual
information method using Dr.View (Asahi Kasei, Tokyo, Japan;
Kunii et al., 2011). Both pre-operative MRI and the registered
post-operative computed tomography were then normalized
to Montreal Neurological Institute (MNI) coordinates via a
linear scale adjustment using SPM8 (SPM, RRID:SCR_007037,
Update Revision Number 6313), and then the coordinates
for each electrode were extracted. The final step to overlay
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FIGURE 1 | The configuration of the hybrid electrode and an example of implantation. (Left) The electrode fabricated for this study (7 × 13mm) consists of three grid

electrodes (macroelectrodes, arrow) and six needle electrodes (microelectrodes, arrowhead) on the side (Unique Medical Co., Tokyo, Japan). The surface diameter of

each macroelectrode was 1.5mm, whereas that of the microelectrodes was 200µm. The length of the needles alternated between 1.5 and 2.5mm to reduce the

physical force needed for implantation. (Right) Implanted electrodes overlaid on a 3D reconstructed pre-operative MRI, displayed together with the intraoperative

photograph. The hybrid electrode is encircled by the dotted yellow line in the intraoperative photograph. The subdural grid electrodes are shown in green. The hybrid

electrode is shown in red.

the electrodes was performed with FreeSurfer version 6.0.0
(FreeSurfer, RRID:SCR_001847; Dale et al., 1999; Fischl et al.,
1999) (Figure 2).

Data Processing and Analysis
SUA
For analyzing SUA, we applied fourth order 250Hz high-pass
Butterworth filter to the signals recorded from the microneedles.
Spike waveforms were then extracted from the filtered signal
by thresholding the signal where its negative peak fell below
the 3.5–4.0 times root mean square (thresholds were different
among subjects) of the background signal. The spike waveforms
then underwent offline spike sorting by the Standard Expectation
Maximization method (Dempster et al., 1977), which is a semi-
automatic spike-sorting algorithm offered by the Offline Sorter R©

(Offline Sorter, RRID:SCR_000012). Features used for spike
sorting were waveform projections onto the first and second
principal components. For each unit, a peri-stimulus histogram
was obtained for each articulated vowel with raster plots for
a 1,500ms trial epoch (300ms pre-stimulus to 1,200ms post-
stimulus; Figure 3, bottom-right).

LFP and ECoG
In-house Matlab R© scripts were used for data analysis of the LFP
and ECoG data (MATLAB, RRID:SCR_001622). The continuous
time series data recorded from each electrode was segmented
into 2,000ms epochs (500ms pre-stimulus to 1,500ms post-
stimulus). The short time Fourier transformation (STFT) was
performed by applying 250ms Hamming window with 225ms
(90%) overlap, yielding the spectrogram of each epoch. In the

STFT, 1,000 points were sampled by applying zero-padding to the
windowed time-series resulting in 501 frequency bins in 2 Hz/bin
resolution. The spectrogramwas then z-score transformedwithin
trial by the baseline period for each frequency bin. The obtained
ERSP was then displayed with 1,500ms window (300ms pre-
stimulus to 1,200ms post-stimulus; Figure 3, top-right, E1–E3:
ERSP for ECoG and N1–N6: ERSP for LFP).

Feature Vector Construction
Spike firing frequency and LFP and ECoG spectral power for the
various frequency bands (Alpha 8–12Hz, Beta 14–30Hz, Delta
2–4Hz, Theta 4–8Hz, low-Gamma 30–80Hz, high-Gamma 80–
160Hz, ultra-Gamma 160–240Hz) epoched from 0 to 600ms
post-cue were calculated for each trial. We used the stimulus
onset for alignment since the task was designed to apply future
covert speech decoding. The 0–600ms window was chosen since
the onset for the related neural activities was detected at about
300ms post-stimulus (Figure 3), and lasted for about 300ms.
Spike firing frequency was summed within each bin, the size of
which were 12.5, 25, 50, 75, 100, 150, and 200ms. ECoG and LFP
derived ERBP for each frequency band was also summed within
50, 100, 150, and 200 ms-size bin.

The feature vector was built as follows; the spike firing rate
feature was built per each SUA by serially concatenating spike
firing rate calculated for each bin size mentioned above, within
the 0–600ms window. Then each SUA feature were serially
concatenated, which resulted in different dimension size among
subjects (the more SUAs recorded, the larger feature dimension
became). The spectral features of ECoG and LFP were built per
electrode in the samemanner with SUA, for each frequency band.
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FIGURE 2 | Electrode distribution. The normalized electrode contacts (Red dots) extracted from post-implantation computed tomography from all subjects were

overlaid on a normalized brain within FreeSurfer software ver. 6.0.0 (https://surfer.nmr.mgh.harvard.edu/). Note that each set of three electrodes represents one hybrid

electrode. Pre-operative MRI was semi-automatically registered to post-operatively scanned computed tomography to determine electrode positions based on a

normalized mutual information method using Dr.View (Asahi Kasei, Tokyo, Japan). Both the pre-operative MRI and the registered post-operative computed

tomography were then normalized to Montreal Neurological Institute coordinates via linear scale adjustment using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/, Update Revision Number 6313), and then the coordinates for each electrode were extracted.

All the above mentioned concatenation processes in building
each feature was performed within each subject. For subjects with
bilateral implantation (Subject 3 and Subject 6), feature vector
was constructed by bilateral implantations.

Classification Analysis
We constructed a Sparse Logistic Regression classifier (Yamashita
et al., 2008) to predict five spoken vowels (/a/, /i/, / mβ/, /e/,
and /o/) in response to the vowel stimuli, by SUA-, LFP-,
and ECoG-derived feature vectors on a trial-by-trial basis. The
classification was multi-class, combining binary (current vowel-
vs.-rest) classifiers built per subject.

Dimension selection was performed against the whole dataset
as follows. Before training SLR, we conducted a feature
normalization procedure and a feature selection procedure
(Majima et al., 2014). The values of each feature dimension were
normalized using the mean and standard deviation calculated
within the dimension. Then, informative dimensions were
selected based on the value of F-statistic over 2.5 (p < 0.05),
calculated for each dimension with one-way analysis of variance
(ANOVA). The dimensions were further reduced to the top
100 dimensions if the number of dimensions exceeded 100.
This was to reduce computational load for SLR by limiting the
dimension number to about 5% of the maximum feature length
(about 2,000–3,900 dimensions when combining all three signal
modalities).

SLR is a Bayesian extension of logistic regression in which
a sparseness prior (automatic relevance determination prior)
is imposed to enable dimensional reduction. SLR can reduce
the dimension by applying a sparseness prior (a Gaussian
distribution with mean 0), to the weight parameter used in the
logistic regression (Yamashita et al., 2008). This can prevent over-
fitting of the classifier, but it has also been reported that SLR

suffers from over-pruning of the dimensions that are potentially
useful for prediction when the number of dimensions are too
large (Hirose et al., 2015), hence we tried to minimize this effect
by selecting features based on the F-statistic prior to the SLR.

After feature selection above, the dataset was divided into
training data and test data. The SLR decoder was constructed
by the training data, and then tested against the test data (cross
validation). The cross validation was performed in a leave-one-
out scheme, resulting in 50-fold cross validation. The output
of each binary classifier is a probabilistic prediction for each
label, and the label with the maximum probability is chosen
as the final output for multiclass classification. Regarding each
signal modality/signal combinations, the decoding accuracy was
calculated as the fraction of correct output across all validations.

Statistical Analysis
Statistical analysis was performed using Matlab R©. The
significance of decoding accuracy was calculated to be 30% by
the binominal test (5 classes, Alpha= 0.05, 50 trials; Combrisson
and Jerbi, 2015). Group comparisons for averaged decoding
accuracy based on different signals and signal combinations were
carried out using one-way ANOVA and post-hoc t-tests. Each
group contains results from six subjects (six accuracy values).
The groups were SUA, ECoG, LFP, SUA+ECoG, SUA+LFP,
ECoG+LFP, and SUA+ECoG+LFP. The decoding accuracy was
averaged within each group (across subjects). Averaged data are
represented as the mean± SD.

RESULTS

Electrode Distribution
The distribution of the macro contacts of the hybrid electrodes
is shown on the 3D normalized brain fused automatically
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FIGURE 3 | Speech-related neural activities recorded from the hybrid electrode. (Top-Right) Z-scores normalized for peri-event spectral perturbations averaged

across all trials (Subject 5). The cue is the onset of syllable presentation, and the displayed time window is [−300 to 1,200ms] post-cue. E1, E2, and E3 represent the

macroelectrodes. N1, N2, N3, N4, N5, and N6 represent the microneedle electrodes. Cue-related amplification of high-frequency band power, together with

attenuation of low-frequency band power, can be seen in selected electrodes. (Bottom-Right) Raster plots with peri-event spike histograms for all trials and for each

spoken vowel. Unit 1 and unit 2 are two different units recorded from the same microneedle (Needle #6 of Subject 5). The red dashed line represents the timing of the

visual cue.

using FreeSurfer, version 6.0.0 (Figure 2, https://surfer.nmr.mgh.
harvard.edu/; Dale et al., 1999; Fischl et al., 1999). The MNI
coordinates of each hybrid electrode (the barycentric coordinate
of the three surface electrodes) were [X, Y, Z] = [−59, 10, 26],
[−59, 5, 13], [−45, −14, 55], [−48, −3, 46], [−54, 4, 25], [55,
−1, 39], [54, 10, 29], and [50, 11, 37]. All patients underwent
clinical evaluation to identify the potential epileptic foci before
the recording sessions, and none of their vMCs was revealed
to be included in the epileptic foci. No patients had clinical
complications related to the implantation or removal of the
hybrid electrode.

Decoding Analysis
The averaged decoding accuracies by each signal modality or
signal combinations described below were averaged across the

results from both unilateral (Subject 1, 2, 4, and 5) and bilateral
implantation (Subject 3 and 6).

SUA
The total number of recorded units were 41 units (Subject
1 Left: 8 units, Subject 2 Right: 6 units, Subject 3 Left:
4 units, Subject 3 Right: 7 units, Subject 4 Right: 5 units,
Subject 5 Left: 4 units, Subject 6 Left: 2 units, Subject 6
Right: 5 units), 28 units were recorded from 1.5mm length
microneedle, 13 units were recorded from 2.5mm length
microneedle (Figure 4). SUAs from subject 6 are noisier than
other subjects, and this resulted in relative lack of contribution
of the SUAs when combined with other signal modalities
(see Figure 6 and discussion below) in this subject. The
accuracy for decoding vowels with SUA was 37.7 ± 11.4%
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FIGURE 4 | Sorted Single Units for all subjects. The spike waveforms underwent offline spike sorting by the Standard Expectation Maximization method, which is a

semi-automatic spike-sorting algorithm offered by the Offline Sorter®. Features used for spike sorting were waveform projection onto the first and second principal

component. The total number of recorded units were 41 units (S1L: 8 units, S2R:6 units, S3L:4 units, S3R:7 units, S4R: 5 units, S5L:4 units, S6L:2 units, S6R:5 units).

(mean ± SD) when averaged across subjects (Figure 5A,
group bar on most right). Decoding accuracies for each vowel
were 37.6 ± 11.9% for /a/, 31.7 ± 25.6% for /i/, 40.6 ±

13.7% for / mβ/, 33.9 ± 21.5% for /e/, and 45.2 ± 21.3%
for /o/.

Since subject 3 and subject 6 had bilateral implantation,
comparison between bilateral implantation and unilateral
implantation was made. Decoding results from the left
hemisphere in subject 3 was 46% (40% for /a/, 50% for /i/, 60% for
/ mβ/, 70% for /e/, and 10% for /o/), whereas results by bilateral
implantation was 54% (40% for /a/, 60% for /i/, 60% for / mβ/,
50% for /e/, and 60% for /o/). In the same way, decoding results
from the left hemisphere in subject 6 was 8% (40% for /a/, 0% for
/i/, 0% for / mβ/, 0% for /e/, and 0% for /o/), whereas results by
bilateral implantation was 40% (20% for /a/, 40% for /i/, 50% for
/ mβ/, 40% for /e/, and 50% for /o/).

The number of single units recorded from unilateral
hemisphere and the decoding accuracy by the SUA signals
recorded from the unilateral implantation were positively
correlated, although the correlation was not statistically
significant (Pearson’s correlation coefficient = 0.66, p = 0.15;
Figure 5B).

LFP
The accuracy for decoding vowels with LFP was 40.7 ± 6.2%
when averaged across subjects (Figure 5A). Decoding accuracies
for each vowel were 38.8 ± 14.4% for /a/, 40.7 ± 18.0% for /i/,
39.1 ± 12.0% for / mβ/, 42.4 ± 16.0% for /e/, and 42.6 ± 17.9%
for /o/.

ECoG
The accuracy for decoding vowels with ECoG was 41.0 ± 5.6%
when averaged across subjects (Figure 5A). Decoding accuracies
for each vowel were 44.1 ± 20.6% for /a/, 44.4 ± 17.9% for /i/,
37.2 ± 18.4% for / mβ/, 35.2 ± 20.5% for /e/, and 44.3 ± 25.4%
for /o/.

Combination of Signals
The accuracy for decoding vowels for each combination of
signals was 52.0 ± 10.5% when SUA and ECoG features
were combined (SUA/ECoG), 44.9 ± 7.5% for SUA/LFP, 48.9
± 9.1% for LFP/ECoG, and 54.1 ± 11.2% when features
derived from all signals were combined. ANOVA among these
seven types of signal modality/modality combinations showed
a significant difference [F(6, 30) = 2.8, p = 0.0245]. The
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FIGURE 5 | Decoding accuracy of vowels. (A) Decoding accuracy of five spoken vowels displayed as a function of input from various features/feature combinations.

The dashed light gray line indicates the significance level (significance level = 30%, Binominal test, 50 trials, 5 classes, alpha = 0.05). The group of bars on the far

right shows the results averaged across subjects and the standard deviation. The decoding accuracy improved significantly by combining different signal modalities

[F (6,30) = 2.8, p = 0.02, ANOVA]. The combination of all three signals outperformed each single signal modality (no correction for multiple comparisons was used): vs.

SUA (t = 2.50, p = 0.03, confidence interval [1.76–30.8], paired t-test), vs. ECoG (t = 2.55, p = 0.02, confidence interval [1.65–24.5], paired t-test), and vs. LFP (t =

2.55, p = 0.02, confidence interval [1.7–25.0], paired t-test). Also, accuracy improved when combining SUA and ECoG (t = 2.24, p = 0.04, confidence interval

[0.12–28.4], paired t-test). (B) Correlation between decoding accuracy and the number of single units recorded. The decoding accuracy and the number of single

units were non-significantly but positively correlated (Pearson’s correlation coefficient 0.66, p = 0.15). (C) Confusion matrix averaged among subjects, based on the

optimal feature combination in each subject. Diagonal cells indicate correct classification. All vowels reached the significance level. The decoding accuracy for the

optimized signal combination was 58.6 ± 5.1% when averaged across subjects and vowels. Accuracies for each vowel were 54.1 ± 9.3% for /a/, 65.9 ± 21.0% for

/i/, 61.3 ± 12.7% for /

mβ/, 59.0 ± 8.2% for /e/, and 53.9 ± 17.8% for /o/.

combination of all three signals outperformed each single signal
modality (no correction for multiple comparisons was used):
vs. SUA (t = 2.50, p = 0.032, confidence interval [1.76–
30.8], paired t-test), vs. ECoG (t = 2.55, p = 0.029, confidence
interval [1.65–24.5], paired t-test), and vs. LFP (t = 2.55, p
= 0.029, confidence interval [1.7–25.0], paired t-test). Also,
an improvement in accuracy was confirmed when combining
SUA and ECoG: vs. SUA (t = 2.24, p = 0.048, confidence
interval [0.12–28.4], paired t-test) and vs. ECoG (t = 2.25,
p = 0.048, confidence interval [0.13–21.9]). This combination
also outperformed the decoding accuracy of LFP alone (t =

2.26, p = 0.047, confidence interval [0.17–22.4]). The optimal
combination of signals differed among subjects (S1; LFP+ECoG,
S2; SUA+ECoG, S3; SUA+ECoG+LFP, S4; SUA+ECoG+LFP,
S5; SUA+LFP, S6; SUA+ECoG+LFP). When average among
subjects, decoding accuracy given by the optimized signal
combination was 58.6 ± 5.1%, and the accuracies for each
vowel were 54.1 ± 9.3% for /a/, 65.9 ± 21.0% for /i/, 61.3 ±

12.7% for / mβ/, 59.0 ± 8.2% for /e/, and 53.9 ± 17.8% for /o/
(Figure 5C).

DISCUSSION

We evaluated the accuracy of decoding spoken vowels with three
different signal modalities: SUA, LFP, and ECoG. The signals were
recorded through a newly fabricated hybrid electrode located
in the human ventral motor cortex. The decoding accuracy
of five spoken vowels by single signal modality reached above
significance level when averaged across subjects in all modalities.
The decoding accuracy improved when combining different
signal modalities and timescales of the neural activities. Our
report is the first to show improvement in decoding accuracy of
vowel articulation when combining SUA, LFP, and ECoG. Thus,
information for coordination of speech articulators is computed
by complementary multiscale neural signals within the ventral
motor cortex.

Decoding Accuracy of Feature Vectors
Derived From a Single Signal Modality
We found no significant difference among the decoding
accuracies of the three individual signal modalities when
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FIGURE 6 | The Origin of survived feature dimension. Each pie graph represents the signal origin of the survived features. The union of survived features from all the

validation were included. Note that the features are derived from all three signals, which implies that these signals complementary computes vowel production.

averaged across subjects. This was because the best signal
modality differed among subjects, owing to the inter-individual
variance of recorded number of neurons that caused varying
results of the decoding accuracy by SUA. As shown above in our
results, there was a tendency of having higher decoding accuracy
when there were greater number of recorded SUAs, although
the possibility remains that bilateral implants (additional
information from the right hemisphere) could have been the
main reason for improvement, rather than simply the number of
SUA recorded. Conversely, LFP and ECoG demonstrated robust
and consistent results, performing above the significance level
in all subjects. The explanation for this could be speculated
as follows. The dominant components of LFP and ECoG
signals are synaptic inputs, allowing these signals to capture
key integrative synaptic processes that cannot be measured
merely by observing the spiking activity of a few neurons.
Previous studies have reported that decomposition of these
signals into multi-frequency band spectra (which was also the
feature input in this research), plays an important role in
neural communication (Cole and Voytek, 2017) and have a
band-specific functional role in processing local and larger-
scale network dynamics. For example, gamma oscillations reflect
network oscillations mediated by rhythmic inhibition (Bartos
et al., 2007), which relates to higher brain function in multiple
brain areas. Beta oscillations dominate the cortical activity of
the sensorimotor cortex during movement preparation and also
attenuate movement initiation (Brovelli et al., 2004; Rubino
et al., 2006). Furthermore, lower frequency oscillations reflect the
arriving synaptic drive to the cortex from subcortical structures
such as the thalamus, striatum, and cerebellum (Ros et al., 2009;
Neske, 2015), which also modulate movement, enabling these
signals to be useful neural prosthetic commands when recorded
from the motor cortex (Bansal et al., 2011).

Therefore, we speculated that the combined oscillatory
activities of seven frequency bands used in our research had
complementarily contributed to the robust decoding results.

Results of decoding accuracy by SUA were not as robust as
those of LFP and ECoG. Thismay be due to inter-subject variance
of recorded numbers of functionally relevant neurons. In this
research, the location of the hybrid electrode was not optimized
to the orofacial area since the hybrid electrode was placed
in the remaining cortical surface after the placement of grid
electrodes, hence resulting in antero-posterior and dorso-ventral
variation of the electrode location within the ventral motor
cortex. As a result, the population of neurons detected from each
needle could vary widely since the thickness of the cortical layer
could differ within the gyrus if the location variance was great
(Lüsebrink et al., 2013), even though the 2.5 mm-long needle
was targeted to the layer 4/5 pyramidal neurons and the 1.5 mm-
long needle was targeted to more superficial layer 2/3 pyramidal
neurons.

Our results suggest that the number of single units recorded
from unilateral hemisphere is positively correlated with the
decoding accuracy by SUA signals (Figure 5B). Thus, SUAs,
which are the computing elements that reflect both intrinsic
processing and the output of the area where the electrode is
located (Bansal et al., 2012), likely contain richer information
than other signals if the recorded number of task-specific units
is high enough. In addition, comparison between the results
from unilateral and bilateral implantation in subject 3 and
6 could suggest the possibility of improvement by bilateral
electrode implantation. Although it is hard to determine whether
the improvement was due to the bilateral information or
the increase in total number of SUAs, an optimally higher
density of the electrode could improve the decoding accuracy
of SUA by increasing the number of SUAs recorded, and
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bilateral implantation may also improve the decoding accuracy
by combining information from both hemispheres.

Our results suggest that SUA could be the most informative
signal if the number of recorded single units is high enough,
whereas multifrequency decomposed LFP and ECoG are more
robust in computing information for articulation.

Improved Decoding Accuracy When
Combining Multiple Signal Modalities
For all subjects, the best decoding accuracy was seen when
the feature vector was constructed from a combination of two
or three signal modalities. When averaged across subjects, the
combination of any two signal modalities tended to improve
the decoding accuracy compared to that from a single signal
modality. SUA/ECoG was the only combination to show
significant improvement (Figure 5A).

This result could be explained by the difference in the
neuronal population size reflected within each signal, which is
considered the greatest in this combination; SUAs reflect the
activity of a single cell near the electrode, whereas ECoG reflect
tens of thousands of cells below the electrode contact. The
combination of ECoG/LFP showed non-significant but higher
accuracy compared to that with ECoG or LFP alone. Both signals
reflect the collective dynamics of neural populations mainly as
synaptic currents, but the difference in the signal source locations
and the difference in the neuronal population size between the
two signals again might be factors to have improved the decoding
accuracy. The combination of LFP/SUA did not give as high
an accuracy as the other combinations. Although SUA and LFP
differ in signal characteristics in that the former reflects discrete
spike activity data processed on a nominal scale, whereas the
latter reflects continuous data of a processed time series, the
similarity in the signal source location and the scale of neuronal
population between these two signal modalities may have limited
the combining effect to improve the decoding accuracy.

Finally, decoding accuracy improved when combining all
three signal modalities in three subjects and showed significant
improvements compared to the results based on each single
modality when averaged across subjects (Figure 5A). But there
is a limitation in evaluating the random effect due to individual
difference since the mixed-ANOVA is not applicable in our result
dataset. The analysis of the remaining dimensions of the input
feature vector that were used for decoding analysis showed that
the final features originated from all three signal modalities
(Figure 6). Although the remained features after dimension
reduction showed no temporal pattern or frequency pattern that
is common across subjects, the result suggests that SUA, ECoG,
and LFP signals convey complementary information for effective
motor control of human speech articulators.

Location of the Hybrid Electrode in
Relation to the Facemotor Cortex
The population map of decoding accuracy for each hybrid
electrode revealed that the highest performance was achieved
when the electrode center was at the MNI coordinate of [X, Y,
Z] = [−59, 5, 13] (Figure 7). This location is compatible with

FIGURE 7 | Decoding accuracy and the location of the hybrid electrode. Each

circle represents the center of each hybrid electrode, which was automatically

overlaid on the Montreal Neurological Institute normalized brain (Electrodes on

the right hemisphere was inverted and overlaid onto the left hemisphere). The

color map indicates the decoding accuracy averaged across five vowels for

the optimal feature combination. The population map revealed that the highest

performance was achieved when the electrode center was at the MNI

coordinate of [X, Y, Z] = [−59, 5, 13] (left hemisphere of Subject 3), which is

compatible with the lip/tongue area proposed by previous studies using

electrical stimulation.

the previous studies by electrical stimulation which also has
revealed that the tongue area is located within 1–3 cm dorsal
from the Sylvian fissure and about ±1 cm antero-posterior to
the central sulcus, whereas the lip area is located within 2–4
and 1 cm, respectively, within these regions (McCarthy et al.,
1993; Breshears et al., 2015). In our study however, the electrode
position was determined solely by clinical requirements of
evaluating the epileptic foci, which resulted in wide variance in
the electrode position in our cohort. This may have influenced
the decoding accuracy. Therefore, the decoding accuracy may
increase if we can perform a pre-implantation functional MRI to
obtain a detailed functional map of the facemotor cortex in each
subject, by enabling optimal placement of the hybrid electrode.

Decoding Accuracy Compared to Other
Attempts to Construct Speech Prostheses
We demonstrated decoding accuracy as high as 68% for five
spoken vowels by combining feature vectors derived from
multiscale signals (Subject 3, all signals combined, Table 2).
Our results were well above the significance level, as was seen
in a similar study reporting a decoding accuracy of 40% for
four spoken vowels using open-loop microECoG recordings (Pei
et al., 2011). Another study reported a decoding accuracy of 93%
for five spoken vowels using multiple SUAs recorded from the
rostral anterior cingulate cortex and superior temporal gyrus with
multiple-depth electrodes (Tankus et al., 2012). Higher accuracy
for directly classifying multiple phonemes will be required for
future construction of clinically applicable speech assist BCIs.
This may be achieved by the advancement of machine learning
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TABLE 2 | Decoding Accuracy of spoke five vowels by each signal modality and signal combinations.

SUA (%) ECoG (%) LFP (%) SUA/ECoG (%) SUA/LFP (%) LFP/ECoG (%) SAU/ECoG/LFP (%)

S1L 28.0 36.0 50.0 36.0 46.0 52.0 42.0

S2R 48.0 50.0 38.0 58.0 46.0 48.0 44.0

S3(L+R) 54.0 34.0 32.0 62.0 54.0 42.0 68.0

S4L 30.0 42.0 42.0 54.0 36.0 56.0 60.0

S5L 26.7 42.2 44.4 42.2 51.1 35.6 46.7

S6(L+R) 40.0 42.0 38.0 60.0 36.0 60.0 64.0

SUA, Single Unit Activity; ECoG, Electrocorticogram; LFP, Local Field Potential.

algorithms and optimization of the electrode size, needle length,
and density.

Advantage of the Hybrid Electrode
Besides the capability of improving the decoding accuracy by
simultaneously recording different neural activity scales, another
advantage of this electrode is the small size, 7× 13mm,which can
be implanted through a single burr hole. The sparseness of the
wire electrodes also contributes to its lower invasiveness to the
underlying cortex and does not cause perisurgical complications
such as pial vessel impairment. This electrode is also implantable
and removable under gross visual confirmation without the need
for any special devices. Although the hybrid electrode is capable
of recording neuronal activities with excellent resolution, the
recording stability of SUA decreases over time (Andersen et al.,
2004; Chestek et al., 2009), while LFP/ECoG signals may remain
relatively stable. The long term effects on SUA vs. LFP and
ECoG signals must be further evaluated for the impact of gliosis
resulting from the needle implantation. Gliosis may affect the
recording stability of surface electrode when needle electrodes are
implanted chronically, and this has not been verified in this study.

In terms of future BCI implementation, this electrode has
a potential to provide high resolution information through
recorded SUAs and may provide online neurofeedback (Bouton
et al., 2016; Sitaram et al., 2016) to induce cortical reorganization
(Dancause et al., 2005; Murata et al., 2015), which could induce
high-quality tuning of the local cortex providing stable decoding
accuracy through the remaining LFP/ECoG signals, even after the
SUAs decay.

Limitations of This Study
There are several limitations to note in this study. One is the
stimulus presentation paradigm, the cue of which was a syllable
presentation, rather than the vocal onset cue. Since the reaction
time from presentation to vocalization could differ among trials,
aligning the time series data by vocal onset could have provided
higher quality of data processing, which may have affected the
decoding results.

Secondly, the rather short inter stimulus interval (ISI) of
1,500ms could have been set to a longer period to provide long
enough data for each epoch to minimize the overlap between
neighboring epochs.We have confirmed that all the subjects were
able to perform our session within the ISI by going through
training session although.

Thirdly, the time window used for the decoding paradigm
was set to 0–600ms post-stimulus, which was with intension to
capture the neural activity related to the vocalization onset, which
we assume contributes to decoding most. The optimal window
length should be further investigated with a better time-locked
paradigm in future.

Fourthly, we applied dimension selection based on F-statistics
before applying SLR, but the maximum dimension size
was set intentionally not to exceed 100. When looking
into the decoding accuracy calculated by the optimal
signal combination, there were two subjects who had their
dimensions reduced to below 100. One had 70 dimensions
selected, and the other had 74 dimensions selected, and their
decoding accuracies were 52 and 58%, respectively. For the
rest of the subjects who had 100 dimensions selected, the
accuracies were 68, 60, 51, and 64%. This dimension selection
procedure may have affected the result of decoding analysis,
by arbitrarily selecting the size of input feature for training
SLR.

Fifthly, the dimension selection procedure by the F-statistic
which was conducted over the whole dataset could have
introduced a bias, which could positively impact the decoding
accuracy since the dataset included the future test data set itself
(Fagg et al., 2009).

Finally, the limited number of subjects and the variety of
electrode location in our cohort makes it hard to evaluate the
laterality of speech articulation. This must be further verified.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Institutional Ethical Committee
of the University of Tokyo Hospital with written
informed consent from all subjects. All subjects gave
written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the
Institutional Ethical Committee of the University of Tokyo
Hospital.

AUTHOR CONTRIBUTIONS

NK, TM, KK, and NS designed research; NK, TM, KI,
YI, and SS performed data acquisition; KI, TM, and NK
analyzed and interpreted data; KI, TM, NK, YI, SS, KK,

Frontiers in Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ibayashi et al. Decoding Speech by Hybrid Signals

and NS drafted and critically revised the paper. All the
authors approve the submitted version to be published, and
agrees to be accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated and
resolved.

FUNDING

This research is supported by No. 26242040 for Scientific
Research (A), No. 16H06260 for Young Scientists (A), and No.
26861140 for Young Scientists (B) from the Japan Society for the
Promotion of Science.

REFERENCES

Andersen, R. A., Musallam, S., and Pesaran, B. (2004). Selecting the
signals for a brain-machine interface. Curr. Opin. Neurobiol. 14, 720–726.
doi: 10.1016/j.conb.2004.10.005

Baker, D. H. (2016). Decoding eye-of-origin outside of awareness.Neuroimage 147,
89–96. doi: 10.1016/j.neuroimage.2016.12.008

Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., and Donoghue, J. P. (2012).
Decoding 3D reach and grasp from hybrid signals in motor and premotor
cortices: spikes, multiunit activity, and local field potentials. J. Neurophysiol.
107, 1337–1355. doi: 10.1152/jn.00781.2011

Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., and Donoghue, J. P. (2011).
Relationships among low-frequency local field potentials, spiking activity, and
three-dimensional reach and grasp kinematics in primary motor and ventral
premotor cortices. J. Neurophysiol. 105, 1603–1619. doi: 10.1152/jn.00532.2010

Bartels, J., Andreasen, D., Ehirim, P., Mao, H., Seibert, S., Wright, E. J.,
et al. (2008). Neurotrophic electrode: method of assembly and implantation
into human motor speech cortex. J. Neurosci. Methods 174, 168–176.
doi: 10.1016/j.jneumeth.2008.06.030

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized
gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8,
45–56. doi: 10.1038/nrn2044

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler,
A., et al. (1999). A spelling device for the paralysed. Nature 398, 297–298.
doi: 10.1038/18581

Blakely, T., Miller, K. J., Rao, R. P., Holmes, M. D., and Ojemann, J. G. (2008).
Localization and classification of phonemes using high spatial resolution
electrocorticography (ECoG) grids. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008,
4964–4967. doi: 10.1109/IEMBS.2008.4650328

Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg,
D. A., Nielson, D. M., et al. (2016). Restoring cortical control of
functional movement in a human with quadriplegia. Nature 533, 247–250.
doi: 10.1038/nature17435

Breshears, J. D., Molinaro, A. M., and Chang, E. F. (2015). A probabilistic
map of the human ventral sensorimotor cortex using electrical stimulation. J.
Neurosurg. 123, 340–349. doi: 10.3171/2014.11.JNS14889

Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., and Bressler, S.
L. (2004). Beta oscillations in a large-scale sensorimotor cortical network:
directional influences revealed by Granger causality. Proc. Natl. Acad. Sci.
U.S.A. 101, 9849–9854. doi: 10.1073/pnas.0308538101

Brown, S., Laird, A. R., Pfordresher, P. Q., Thelen, S. M., Turkeltaub, P., and Liotti,
M. (2009). The somatotopy of speech: phonation and articulation in the human
motor cortex. Brain Cogn. 70, 31–41. doi: 10.1016/j.bandc.2008.12.006

Brumberg, J. S., and Guenther, F. H. (2010). Development of speech prostheses:
current status and recent advances. Expert Rev. Med. Devices 7, 667–679.
doi: 10.1586/erd.10.34

Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R., and Guenther, F. H. (2010).
Brain-Computer interfaces for speech communication. Speech Commun. 52,
367–379. doi: 10.1016/j.specom.2010.01.001

Brumberg, J. S., Wright, E. J., Andreasen, D. S., Guenther, F. H., and
Kennedy, P. R. (2011). Classification of intended phoneme production from
chronic intracortical microelectrode recordings in speech-motor cortex. Front.
Neurosci. 5:65. doi: 10.3389/fnins.2011.00065

Chestek, C. A., Cunningham, J. P., Gilja, V., Nuyujukian, P., Ryu, S. I., and
Shenoy, K. V. (2009). Neural prosthetic systems: current problems and
future directions. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 3369–3375.
doi: 10.1109/IEMBS.2009.5332822

Cole, S. R., and Voytek, B. (2017). Brain oscillations and the importance of
waveform shape. Trends Cogn. Sci. 21, 137–149. doi: 10.1016/j.tics.2016.12.008

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance:
the caveat of theoretical chance levels in brain signal classification and
statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136.
doi: 10.1016/j.jneumeth.2015.01.010

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based
analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194.
doi: 10.1006/nimg.1998.0395

Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V.,
et al. (2005). Extensive cortical rewiring after brain injury. J. Neurosci. 25,
10167–10179. doi: 10.1523/JNEUROSCI.3256-05.2005

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. J. R. Stat. Soc. B 39, 1–38.

Fagg, A. H., Ojakangas, G. W., Miller, L. E., and Hatsopoulos, N. G. (2009). Kinetic
trajectory decoding using motor cortical ensembles. IEEE Trans. Neural Syst.

Rehabil. Eng. 17, 487–496. doi: 10.1109/TNSRE.2009.2029313
Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward

a mental prosthesis utilizing event-related brain potentials. Electroencephalogr.
Clin. Neurophysiol. 70, 510–523. doi: 10.1016/0013-4694(88)90149-6

Fischl, B., Sereno, M. I., and Dale, A. M. (1999). Cortical surface-based analysis.
II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9,
195–207. doi: 10.1006/nimg.1998.0396

Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J. A.,
Panko, M., et al. (2009). A wireless brain-machine interface for real-time speech
synthesis. PLoS ONE 4:e8218. doi: 10.1371/journal.pone.0008218

Herff, C., Heger, D., de Pesters, A., Telaar, D., Brunner, P., Schalk, G., et al.
(2015). Brain-to-text: decoding spoken phrases from phone representations in
the brain. Front. Neurosci. 9:217. doi: 10.3389/fnins.2015.00217

Hickok, G. (2012). Computational neuroanatomy of speech production. Nat. Rev.
Neurosci. 13, 135–145. doi: 10.1038/nrn3158

Hirose, S., Nambu, I., and Naito, E. (2015). An empirical solution for over-pruning
with a novel ensemble-learning method for fMRI decoding. J. Neurosci.

Methods 239, 238–245. doi: 10.1016/j.jneumeth.2014.10.023
Huth, A. G., Lee, T., Nishimoto, S., Bilenko, N. Y., Vu, A. T., and Gallant, J. L.

(2016). Decoding the semantic content of natural movies from human brain
activity. Front. Syst. Neurosci. 10:81. doi: 10.3389/fnsys.2016.00081

Jürgens, U. (2002). Neural pathways underlying vocal control. Neurosci. Biobehav.
Rev. 26, 235–258. doi: 10.1016/S0149-7634(01)00068-9

Kellis, S., Miller, K., Thomson, K., Brown, R., House, P., and Greger, B. (2010).
Decoding spoken words using local field potentials recorded from the cortical
surface. J. Neural Eng. 7:056007. doi: 10.1088/1741-2560/7/5/056007

Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G.
G., et al. (2015). NeuroGrid: recording action potentials from the surface of the
brain. Nat. Neurosci. 18, 310–315. doi: 10.1038/nn.3905

Kunii, N., Kamada, K., Ota, T., Kawai, K., and Saito, N. (2011). A
detailed analysis of functional magnetic resonance imaging in the
frontal language area: a comparative study with extraoperative
electrocortical stimulation. Neurosurgery 69, 590–596; discussion: 596–597.
doi: 10.1227/NEU.0b013e3182181be1

Lotze, M., Seggewies, G., Erb, M., Grodd, W., and Birbaumer, N. (2000).
The representation of articulation in the primary sensorimotor
cortex. Neuroreport 11, 2985–2989. doi: 10.1097/00001756-200009110-
00032

Lüsebrink, F., Wollrab, A., and Speck, O. (2013). Cortical thickness determination
of the human brain using high resolution 3 T and 7T MRI data. Neuroimage

70, 122–131. doi: 10.1016/j.neuroimage.2012.12.016

Frontiers in Neuroscience | www.frontiersin.org 12 April 2018 | Volume 12 | Article 221

https://doi.org/10.1016/j.conb.2004.10.005
https://doi.org/10.1016/j.neuroimage.2016.12.008
https://doi.org/10.1152/jn.00781.2011
https://doi.org/10.1152/jn.00532.2010
https://doi.org/10.1016/j.jneumeth.2008.06.030
https://doi.org/10.1038/nrn2044
https://doi.org/10.1038/18581
https://doi.org/10.1109/IEMBS.2008.4650328
https://doi.org/10.1038/nature17435
https://doi.org/10.3171/2014.11.JNS14889
https://doi.org/10.1073/pnas.0308538101
https://doi.org/10.1016/j.bandc.2008.12.006
https://doi.org/10.1586/erd.10.34
https://doi.org/10.1016/j.specom.2010.01.001
https://doi.org/10.3389/fnins.2011.00065
https://doi.org/10.1109/IEMBS.2009.5332822
https://doi.org/10.1016/j.tics.2016.12.008
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1523/JNEUROSCI.3256-05.2005
https://doi.org/10.1109/TNSRE.2009.2029313
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1371/journal.pone.0008218
https://doi.org/10.3389/fnins.2015.00217
https://doi.org/10.1038/nrn3158
https://doi.org/10.1016/j.jneumeth.2014.10.023
https://doi.org/10.3389/fnsys.2016.00081
https://doi.org/10.1016/S0149-7634(01)00068-9
https://doi.org/10.1088/1741-2560/7/5/056007
https://doi.org/10.1038/nn.3905
https://doi.org/10.1227/NEU.0b013e3182181be1
https://doi.org/10.1097/00001756-200009110-00032
https://doi.org/10.1016/j.neuroimage.2012.12.016
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ibayashi et al. Decoding Speech by Hybrid Signals

Majima, K., Matsuo, T., Kawasaki, K., Kawai, K., Saito, N., Hasegawa, I., et al.
(2014). Decoding visual object categories from temporal correlations of ECoG
signals. Neuroimage 90, 74–83. doi: 10.1016/j.neuroimage.2013.12.020

McCarthy, G., Allison, T., and Spencer, D. D. (1993). Localization of the face area of
human sensorimotor cortex by intracranial recording of somatosensory evoked
potentials. J. Neurosurg. 79, 874–884. doi: 10.3171/jns.1993.79.6.0874

Mugler, E. M., Patton, J. L., Flint, R. D., Wright, Z. A., Schuele, S. U., Rosenow,
J., et al. (2014). Direct classification of all American English phonemes
using signals from functional speech motor cortex. J. Neural Eng. 11:035015.
doi: 10.1088/1741-2560/11/3/035015

Murata, Y., Higo, N., Hayashi, T., Nishimura, Y., Sugiyama, Y., Oishi, T.,
et al. (2015). Temporal plasticity involved in recovery from manual dexterity
deficit after motor cortex lesion in macaque monkeys. J. Neurosci. 35, 84–95.
doi: 10.1523/JNEUROSCI.1737-14.2015

Neske, G. T. (2015). The slow oscillation in cortical and thalamic
networks: mechanisms and functions. Front. Neural Circuits 9:88.
doi: 10.3389/fncir.2015.00088

Ojemann, G., and Mateer, C. (1979). Human language cortex: localization of
memory, syntax, and sequential motor-phoneme identification systems. Science
205, 1401–1403. doi: 10.1126/science.472757

Ossmy, O., Fried, I., and Mukamel, R. (2015). Decoding speech perception
from single cell activity in humans. Neuroimage 117, 151–159.
doi: 10.1016/j.neuroimage.2015.05.001

Pei, X., Barbour, D. L., Leuthardt, E. C., and Schalk, G. (2011). Decoding vowels
and consonants in spoken and imagined words using electrocorticographic
signals in humans. J. Neural Eng. 8:046028. doi: 10.1088/1741-2560/8/4/046028

Price, C. J. (2010). The anatomy of language: a review of 100 fMRI
studies published in 2009. Ann. N. Y. Acad. Sci. 1191, 62–88.
doi: 10.1111/j.1749-6632.2010.05444.x

Ros, H., Sachdev, R. N., Yu, Y., Sestan, N., and McCormick, D. A. (2009).
Neocortical networks entrain neuronal circuits in cerebellar cortex. J. Neurosci.
29, 10309–10320. doi: 10.1523/JNEUROSCI.2327-09.2009

Rubino, D., Robbins, K. A., and Hatsopoulos, N. G. (2006). Propagating waves
mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557.
doi: 10.1038/nn1802

Rupp, K., Roos, M., Milsap, G., Caceres, C., Ratto, C., Chevillet, M., et al.
(2017). Semantic attributes are encoded in human electrocorticographic
signals during visual object recognition. Neuroimage 148, 318–329.
doi: 10.1016/j.neuroimage.2016.12.074

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-
Peacock, J., et al. (2016). Closed-loop brain training: the science of
neurofeedback. Nat. Rev. Neurosci. 18, 86–100. doi: 10.1038/nrn.20
16.164

Sturm, I., Lapuschkin, S., Samek, W., and Müller, K. R. (2016).
Interpretable deep neural networks for single-trial EEG classification.
J. Neurosci. Methods 274, 141–145. doi: 10.1016/j.jneumeth.2016.
10.008

Tankus, A., Fried, I., and Shoham, S. (2012). Structured neuronal encoding
and decoding of human speech features. Nat. Commun. 3, (1015).
doi: 10.1038/ncomms1995

Úbeda, A., Azorín, J. M., Chavarriaga, R., and R Millán, J. D. (2017).
Classification of upper limb center-out reaching tasks by means of
EEG-based continuous decoding techniques. J. Neuroeng. Rehabil. 14:9.
doi: 10.1186/s12984-017-0219-0

Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F., and Kamitani, Y.
(2008). Sparse estimation automatically selects voxels relevant for
the decoding of fMRI activity patterns. Neuroimage 42, 1414–1429.
doi: 10.1016/j.neuroimage.2008.05.050

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Ibayashi, Kunii, Matsuo, Ishishita, Shimada, Kawai and Saito.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2018 | Volume 12 | Article 221

https://doi.org/10.1016/j.neuroimage.2013.12.020
https://doi.org/10.3171/jns.1993.79.6.0874
https://doi.org/10.1088/1741-2560/11/3/035015
https://doi.org/10.1523/JNEUROSCI.1737-14.2015
https://doi.org/10.3389/fncir.2015.00088
https://doi.org/10.1126/science.472757
https://doi.org/10.1016/j.neuroimage.2015.05.001
https://doi.org/10.1088/1741-2560/8/4/046028
https://doi.org/10.1111/j.1749-6632.2010.05444.x
https://doi.org/10.1523/JNEUROSCI.2327-09.2009
https://doi.org/10.1038/nn1802
https://doi.org/10.1016/j.neuroimage.2016.12.074
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1016/j.jneumeth.2016.10.008
https://doi.org/10.1038/ncomms1995
https://doi.org/10.1186/s12984-017-0219-0
https://doi.org/10.1016/j.neuroimage.2008.05.050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex
	Introduction
	Materials and Methods
	Subjects
	Electrode and Surgical Procedure
	Experimental Design
	Recordings
	Stimulus Presentation

	Electrode Localization
	Data Processing and Analysis
	SUA
	LFP and ECoG

	Feature Vector Construction
	Classification Analysis
	Statistical Analysis

	Results
	Electrode Distribution
	Decoding Analysis
	SUA
	LFP
	ECoG
	Combination of Signals


	Discussion
	Decoding Accuracy of Feature Vectors Derived From a Single Signal Modality
	Improved Decoding Accuracy When Combining Multiple Signal Modalities
	Location of the Hybrid Electrode in Relation to the Facemotor Cortex
	Decoding Accuracy Compared to Other Attempts to Construct Speech Prostheses
	Advantage of the Hybrid Electrode
	Limitations of This Study

	Ethics Statement
	Author Contributions
	Funding
	References


