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When subjects are intentionally preparing a curved trajectory, they are engaged
in a time-consuming trajectory planning process that is separate from target
selection. To investigate the construction of such a plan, we examined the
effect of artificially shortening preparation time on the performance of intentionally
curved trajectories using the Timed Response task that enforces initiation of
movements prematurely. Fifteen subjects performed obstacle avoidance movements
toward one of four targets that were presented 25 or 350 ms before the “go”
signal, imposing short and long preparation time conditions with mean values
of 170 ms and 493 ms, respectively. While trajectories with short preparation
times showed target specificity at their onset, they were significantly more
variable and showed larger angular deviations from the lines connecting their
initial position and the target, compared to the trajectories with long preparation
times. Importantly, the trajectories of the short preparation time movements still
reached their end-point targets accurately, with comparable movement durations.
We hypothesize that success in the short preparation time condition is a result
of an online control mechanism that allows further refinement of the plan during
its execution and study this control mechanism with a novel trajectory analysis
approach using minimum jerk optimization and geometrical modeling approaches.
Results show a later agreement of the short preparation time trajectories with
the optimal minimum jerk trajectory, accompanied by a later initiation of a
parabolic segment. Both observations are consistent with the existence of an
online trajectory planning process. Our results suggest that when preparation
time is not sufficiently long, subjects execute a more variable and less optimally
prepared initial trajectory and exploit online control mechanisms to refine their actions
on the fly.
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INTRODUCTION

During the process of planning a reaching movement, subjects
select a goal for their action (Wolpert and Landy, 2012)
and are subsequently engaged in motion planning; either in
the form of planning a specific trajectory (Flash and Hogan,
1985; Ganesh et al., 2010) or by designing an optimal control
policy, that allows for on-line feedback corrections (Todorov
and Jordan, 2002). Accumulating results have suggested that
when subjects perform point-to-point movements in the absence
of any additional spatial constraints, the planning time is
primarily affected by target selection, which may involve
the representation of multiple options (Cisek and Kalaska,
2005), and motor planning is likely to rapidly occur before
movement initiation (Wong et al., 2016). However, when
task execution includes additional spatial constraints (such
as the need to avoid an obstacle or to draw a predefined
shape); motion planning is more complex, naturally requiring
additional planning resources. Indeed, it was shown that
trajectory planning under these conditions requires additional
preparation time (Wong et al., 2016), and may raise the need
for constructing the trajectory from several distinct movement
segments (Morasso and Mussa Ivaldi, 1982). It was also
suggested that the generation of curved trajectories involves the
activation of different cortical areas than those participating in
the planning of straight point-to-point movements (Schwartz,
1994).

The processes underlying action planning have traditionally
been investigated using reaction time tasks (Hyman, 1953; Simon
and Rudell, 1967; Donders, 1969; Philipp and Koch, 2011;
Boisgontier et al., 2014). It was shown that the durations of
the reaction time intervals depend on the intensity, duration
and modality of the sensory stimulus presented to the subject
(Todd, 1912; Simon et al., 1971; Ulrich et al., 1998), as
well as on the number of the possible motor responses
(Hick, 1952), and the complexity of the required inter-limb
coordination patterns (Philipp and Koch, 2011; Boisgontier
et al., 2014). Furthermore, it was shown that when target
selection involves perceptual grouping, a trade-off between
reaction time and online trajectory corrections arises, suggesting
that while movement onset and target selection processes are
related, they can be decoupled (Song and Nakayama, 2008),
and that reaction time tasks may overlook online planning
components. The concern that reaction time durations do not
adequately reflect the cognitive processes underlying motor
planning was further supported by a recent study showing that
even when subjects are forced to move early, compared to
their natural reaction time, they are still capable of producing
accurate movements (Haith et al., 2016), suggesting that
reaction time might be controlled separately of the movement
preparation processes. To overcome this limitation, in this
study we investigate the kinematic and geometrical effects that
the shortening of the preparation time has on the performed
trajectory.

The kinematic profiles of curved trajectories display multiple
velocity peaks, possibly indicating that curved trajectories
emerge from the composition of several kinematic trajectory

units. Morasso and Mussa Ivaldi (1982) presented a model
for trajectory formation, in which the more curved the
movement is, the more it is likely to be composed of a
larger number of time-overlapping kinematic motion primitives.
Sosnik et al. (2015) demonstrated that in scribbling movements,
subjects tend to continue movement production until a
curved kinematic primitive is completed even if instructed to
suddenly stop, indicating a feedforward planning mechanism
which cannot be suddenly arrested during the generation of
individual segments. In the context of curved movements,
the underlying kinematic motion primitives might be straight,
having a bell shape speed profile (Morasso and Mussa
Ivaldi, 1982), as was suggested by the trajectory superposition
scheme used to model trajectory modification (Flash and
Henis, 1991; Henis and Flash, 1995), or curved (Sosnik
et al., 2007; Polyakov et al., 2009b). Movement primitives
may also have parabolic shapes as reported, for example,
by Polyakov et al. (2009a) in a study of monkey scribbling
movements. Notably, the underlying motion primitives may
have more complex geometrical forms than those of straight
or parabolic segments, as was indicated by a study of
Hatsopoulos et al. (2007) showing that the patterns of neuronal
firing of neurons in the primary motor cortex encode for
motion fragments having rather complex geometrical shapes
(Hatsopoulos et al., 2007). These studies have led us to consider
the possibility that the shortening of preparation time may
affect movement compositionality and the characteristics of
kinematic motion primitives used to compose intentionally
curved trajectories.

Movement planning may also involve an optimization
process that determines the kinematic and geometric features
of the composed motion primitives. Based on the concept of
smoothness optimization as expressed by the minimum jerk
model (Flash and Hogan, 1985), basic motion primitives may
have either straight or parabolic shapes (although more complex
shapes might also be employed). Specifically, point to point-
minimum jerk trajectories having zero velocity and acceleration
at the movement end-points follow straight hand paths. On
the other hand, the paths of the minimum-jerk trajectories
starting and ending at rest, but required to pass through a via
point (Flash and Hogan, 1985), have geometrical shapes nearly
indistinguishable from those of parabolic segments (Polyakov,
2006; Shpigelmacher, 2006). Hence, the jerk optimization model
can successfully account for the geometrical shapes and temporal
features of straight as well as curved obstacle avoidance
movements.

Generating an optimal trajectory was recently shown to
be a time-demanding process (Wong et al., 2016). This time
demand could reflect a time-consuming process to construct an
optimal control policy, or a time-consuming explicit planning of
the entire trajectory. Regardless of the nature of the processes
demanding an increase in reaction time under such scenarios,
we predict that if movement preparation is hindered by the lack
of time, subjects will initiate a sub-optimal movement plan. To
study the optimization processes that occur during the planning
phase, we chose an experimental paradigm called the ‘‘Timed
Response paradigm’’ (Ghez et al., 1990), whereby subjects are
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forced to prematurely initiate an obstacle avoidance movement,
immediately upon hearing the final beep in a series of four
metronome-like beeps.

The goal of this study is to investigate the planning of
intentionally curved trajectories by comparing their kinematic
characteristics when generated under insufficient vs. sufficient
preparation times. Using kinematic analysis, geometrical
segmentation schemes and an optimization model, we find that
when preparation time is not sufficiently long, subjects execute
a sub-optimal initial trajectory and improve the performed
motor plan ‘‘on the fly’’ by utilizing the segmented nature of the
movement. Our observations show that the sub-optimality of the
trajectories is reflected in a higher initial trial-by-trial variability
and in larger deviations of the hand paths from the obstacle, but
not in changes in the overall movement duration.

MATERIALS AND METHODS

Participants
Fifteen right-handed subjects (7 males and 8 females, aged
22–31; mean age 26.1), naïve to the task and aims of the
study, volunteered to participate in the experiment. The
subjects reported being healthy without any known motoric
limitations, an attention deficit disorder or dyslexia. All subjects
signed a written informed consent form and received a small
compensation for their participation in the study. The Sourasky
center of medicine Review Board approved all procedures, which
were in accordance with the Declaration of Helsinki.

Experimental Setup
All recordings were conducted in a quiet room using a WACOM
DTZ2100 tablet with a 142Hz sampling rate and 500× 1000 pixel
per centimeter squared spatial sampling resolution. The tablet
was synchronized with a PC using the Psychophysics Toolbox
in MATLAB (Brainard, 1997; Pelli, 1997). Each subject was
required to stand in front of the tablet, placed horizontally
at a height of 85–94 cm, according to subject’s preference.
Subjects were positioned such that the lateral end of the right
clavicle was aligned with the tablet’s middle point. Additionally,
the subjects’ feet positions were marked on the floor to allow
them to keep a consistent posture throughout the experiment.
Subjects held a touch screen stylus pen (WACOM) in their
right hand. Their left hand remained free to the side of their
body.

Experimental Procedures
During the experiment, subjects were required to perform
obstacle avoidance reaching movements on the tablet. The task
was based on the Timed Response paradigm developed by
Hening et al. (1988). Subjects were required to initiate an obstacle
avoidance movement in synchrony with a predicted auditory
‘‘go’’ signal that was the last in a sequence of four beeps (see
Figure 1A, experimental design). Movements started from a
specified starting point. A trial was considered successful if the
subject passed a 0.5 cm distance threshold from the center of
the starting point, which was a circle with a radius of 0.3 cm,

within a 300 ms time window, starting at the appearance of
the ‘‘go’’ signal (fourth beep). An auditory feedback at the
end of each trial informed the subjects whether their trial was
successful.

Circular targets of radius 0.3 cm appeared at four possible
locations (one target for each trial): 150◦, 120◦, 60◦ and 30◦ to the
x-axis (referred to as target 1, 2, 3 and 4, respectively), distanced
15 cm from the starting point. A circular obstacle of radius 0.6 cm
positioned exactly half way between the starting position and the
target, at a distance of 7.5 cm from both (see Figure 1B), appeared
at the same time with the target.

The target and obstacle were presented at one of two
possible time points: either 25 ms or 350 ms before the
‘‘go’’ signal. The first condition forced subjects to initiate a
movement using a shorter preparation time than the one
naturally used, whereas the second condition allowed for enough
preparation time for movement initiation. The exact preparation
time values were chosen based on pilot studies that were
conducted in the laboratory to detect the preparation times that
elicit detectable behavioral effects. Preparation time is defined
as the time between the presentation of the target and the
initiation of the movement. Movement onset latency is defined
as the time between the ‘‘go’’ signal and the initiation of
the movement.

The experiment consisted of five sessions, each composed of
81 trials. The first session was dedicated to familiarize subjects
with the requirements of the task (movement onset latency and
obstacle avoidance), and to train the subjects to leave the starting
point simultaneously with the ‘‘go’’ signal, with targets and
obstacles presented precisely together with the ‘‘go’’ signal (0 ms
time preparation time condition). The four following sessions
included two sessions with short and two sessions with long
preparation times. The order of the sessions was random.

The order and numbering of target appearance were
counterbalanced, so that the probability for each target to appear
after any previous displayed target was identical for all target
pairs, including repetitions of the same target. Each session
included five repetitions of each of the 42 possible targets
pairs.

Data Analysis
Data were smoothed using a low pass filter with a cut off
frequency of 10 Hz. For some analyses (parabolic fitting of data,
and minimum-jerk prediction of trajectories; both requiring the
calculation of high order derivatives of the data), data were
smoothed by a low pass filter with a cut off frequency of 3.55 Hz.
In order to ignore small oscillatory movements of the hand
prior to movement initiation, movement onset and offset were
defined using a velocity threshold (2% of maximal velocity). In
the analysis of kinematic predictions based on the minimum jerk
model (see ‘‘Materials and Methods’’: ‘‘Prediction of Trajectory’s
Suffix Based on Local Kinematics’’ Section) a more conservative
threshold was applied (5% to 6% of maximal velocity). Accuracy
was defined based on the probability of reaching a distance of less
than 0.5 cm from the target. This distance was slightly larger than
the size of the shown target (0.3 cm) to account for positional
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FIGURE 1 | Experimental design. (A) Subjects were trained to leave the starting point on hearing a predictable auditory “go” signal, the last one in a sequence of four
beeps. Beeps were separated by 500 ms. A target and an obstacle were presented in one of two preparation time conditions; Short: 25 ms or Long: 350 ms before
the auditory “go” signal. (B) For each trial, one of four targets was presented with its corresponding obstacle. Subjects initiated obstacle-avoidance movements from
the starting point towards one of the specified targets while avoiding the obstacle. (C) Magnification of the square shown in (B). For each point along the trajectory,
the angular position relative to the global reference frame (α, absolute angular position) and the angular position relative to the line connecting the starting point and
the target (β, target-relative angular position) were calculated.

errors caused due to differences between the target presentation
plane and the drawing plane.

Angular Hand Positions throughout the
Trajectory
Each trajectory was divided into 100 samples separated by
intervals of equal arc lengths. We refer to these points as the
arc length percentiles of the trajectory. At each percentile,
we interpolated the Cartesian hand position. Subsequently,
we extracted angular coordinates from each arc length
percentile.

Two different angular coordinate frames were used for two
types of analysis. First, for the analysis of reaching movements
irrespective of their target, a common target-independent
coordinate system was used; the absolute angular hand position,
α, was defined for each hand position as the angle between the
positive x axis and the line connecting the start point and hand
position. Second, for target-specific analysis, a target-relative
coordinate frame was defined. The target-relative angular hand
position, β , was defined for each hand position as the angle
between the line connecting the starting point and the target and

the line connecting the starting point and the hand position (see
Figure 1C).

Bypassing Direction Analyses
In our design, a subject could bypass the obstacle from its
right or left sides. Bypassing direction was determined for each
trial according to the side of the maximal deviation from the
line connecting the starting point and the target. Formally,
we examined the target-relative angular position of maximal
absolute size, βmax = argmaxβ |β|); indicating the maximum
deviation from the line connecting the starting point and the
target.

When βmax was positive it indicated a left bypassing, and
when βmax was negative it indicated a right bypassing. Changing
preparation time sometimes resulted in a change in the common
bypassing direction. To overcome the variability induced by
having two possible bypassing directions, in most of our analyses
we used only movements that agreed with the subject’s dominant
bypassing direction for the examined target, which was defined
as the subject’s more frequently used direction for bypassing the
examined target in the short preparation time condition.
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Statistical Analysis
A random effects analysis of variance (ANOVA) for repeated
measures was used to detect significant differences in movement
behavior among the different experimental conditions, using
the MATLAB ‘‘anovan’’ command. Interaction effects were
constrained to the a-priori contrasts of interest. A paired
t-test was also used to compare behavioral patterns between
conditions, using the MATLAB ‘‘ttest’’ command.

Geometric Analysis
To examine how the geometric structure of the generated
motions changes depending on the preparation time condition,
we segmented the movement data based on the notion of
geometric invariance. We used both straight lines and conic
sections as geometric motion primitives (Guggenheimer, 1977)
and identified segments whose geometric structure closely
matched a straight line or a conic section, i.e., forming a
parabola, a hyperbola, or an ellipse. We saw that most segments
were either straight or parabolic. These well-studied primitives
of motion are the geodesics of Euclidean and equi-affine
geometries, respectively (Flash and Handzel, 2007). Parabolic
segments account for the kinematics of scribbling motions
in monkeys and were shown to correspond to transitions in
cortical neural states recorded from monkeys (Polyakov et al.,
2009a). Computationally, parabolas are also the solutions of jerk
minimization with constant equi-affine speed (Polyakov et al.,
2009b).

We defined straight segments as continuous portions of
duration ≥0.07 s where the absolute Euclidean curvature did
not exceed 0.05 cm−1. Consecutive segments with a gap of
up to 0.025 s were united. We defined parabolic segments as
continuous portions of duration≥0.1 s, where the absolute value
of equi-affine curvature did not exceed 1 cm−4/3 (calculated
invariantly based on the work of Calabi et al., 1998). Consecutive
parabolic segments separated by gaps of up to 0.025 s were
united.

For each of these parabolic segments, we found a best
fitting parabola and measured its parameters, determining the
parabola’s orientation, its location and its geometric shape. The
best fitting parabola was found in two steps. First, the best fitting
parabola for each possible orientation was derived. Next, we
chose the parabola that showed the best fit to the parabolic
segment, across all possible orientations.

For each orientation angle, γ , we compared all parabolas
whose symmetry axis made an angle γ with respect to the
y axis. We first rotated the coordinate frame such that these
parabolas had their symmetry axis parallel to the new y axis,
by applying a rotation transformation (xγ , yγ ) = R−γ (x,y).
Here x,y are the original coordinates and xγ , yγ are the
new rotated coordinates aligned with the direction defined by
the orientation angle, γ . Following rotation, all the oriented
parabolas were described by 2nd order polynomials, yγ (xγ ) = ax2γ
+ bxγ + c. The best fitting parabola with the identified
orientation was found by minimizing the least squared error
E = sumi

(
yγi − ŷγ

(
xγi
))2, that is the sum of squared yγ

distances between the model parabola ŷγ at each data point’s
rotated coordinates xγ i and measured values yγ i. We found the

best fitting parabola for a given orientation by minimizing this
error, using the MATLAB ‘‘polyfit’’ function, thus estimating
for each γ the fitting error, E(γ ), and its minimizing
parameters a, b, c.

To find the optimal orientation, we minimized the error
E(γ ) as a function of the orientation angle, γ . To this end,
we performed a nonlinear regression using the MATLAB
‘‘fminsearch’’ function. For each parabolic segment, the
optimization process yielded the parameters γ , a, b, c
defining the best fitting parabola. We report the results of
the analysis of the rotation angle γ and the focal parameter:
P = 1

(2
√
a) , describing the orientation and curvature of the

parabola, respectively. We also report analysis of the fitting
error, E.

To compare the fitting errors between the two preparation
time conditions, each segment was truncated to have a uniform
length of 5 cm around its central point. There was no detectable
presence of other types of conic segments such as elliptic
(positive equi-affine curvature exceeding 1 cm−4/3) or hyperbolic
(negative equi-affine curvature below−1 cm−4/3) in the data.

Optimization Point of the Minimum Jerk
Model
Based on the minimum jerk optimization model (Flash
and Hogan, 1985), we developed and applied a method
for predictive completion of a kinematic movement profile.
For a specific trajectory drawn by the subject, Er (t), we
examined at each time point t0, what would be the predicted
minimum jerk trajectory assumed to be initiated at a time
t0 and having at this time position, velocity and acceleration
vector values equal to those measured at that time, namely
Er = Er (t0) , Ev = Ėr (t0) , Ea = Ër (t0) and Ej =

...
Er (t0).

Using the local kinematics defined by these values and using
the remaining movement duration from the time point t0
until movement end T, T – t0, as the movement duration
for such a predicted trajectory, we predicted the suffix of
the trajectory (i.e., the remaining part of the trajectory),
following this time point, denoted by Ert0 (t), defined for t0
≤ t ≤ T.

In a case that the original trajectory Er (t) is a maximally
smooth trajectory corresponding to a minimum jerk trajectory
plan, then for any initial time point t0, the predicted suffix will
overlap with the planned trajectory, Ert0 (t) = Er (t) for all t
following t0. For an unplanned or a sub-optimal trajectory, the
predicted continuation will most likely deviate from the planned
trajectory, Ert0 (t) 6= Er (t) for all t following t0. Therefore, for
any time point t0, the comparison of the predicted trajectory,
Ert0 (t), to the actual trajectory, Er (t), can be used to indicate
whether the suffix starting at time t0 produced by the subject
is well-planned; i.e., obeying the minimum jerk model while
using the appropriate boundary conditions. Since this study
focuses on planning a trajectory that ends at a pre-determined
target, we compared the end-point of the predicted trajectory
Ert0 (T) to the end-point of the actual recorded trajectory
Er (t). Each time point t0 was therefore assessed according to
how well the predicted and measured end-points matched, by
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measuring the distance between the predicted and measured
hand positions at time T: dt0 = d

(
Ert0 (T) , Er (T)

)
. The time point

t0 for which these two end-points coincided (had a distance
dt0 ≤ 1 cm) was called the optimal movement onset time td.
This time is the first one to correspond to the initiation of
an optimal motor plan aimed at reaching the final movement
target.

Technically, to discard possible biases due to differences in
movement durations, we conducted analysis on the ratio between
the optimal movement onset time td and the trajectory’s total
movement duration T. This ratio was named the normalized
optimal movement onset time, defined as tnd = td/T.

Prediction of Trajectory’s Suffix Based on
Local Kinematics
We used the minimum jerk model to predict a suffix Ert0 (t) of a
movement trajectory.

In order to avoid relying on high order derivatives of
noisy data, we preprocessed each trajectory by applying an
optimization based filtering process, as suggested by Meirovitch
et al. (2016) which overcomes the limitations of standard
approaches such as Finite and Infinite Impulse Response filters.

To generate a filtered trajectory Erf (t) we minimized an
optimization cost C = ∫

∣∣Ej∣∣2dt + λ ∫ ∣∣Erf (t)− Er (t)∣∣2dt, where
the filtered trajectory Erf (t) is having a geometric shape similar
to that of the measured trajectory Er (t) and is smoother than Er (t)
with respect to a minimum jerk criterion. Here λ is a constant
representing a trade-off between smoothness and geometric
resemblance to the measured trajectory.

Note that λ = 0 generates a minimum jerk trajectory (in the
original sense of Flash and Hogan, 1985), and λ� 0 generates
a trajectory with a path practically indistinguishable from that
of the measured trajectory r(t). After verifying that our results
were insensitive to the value of λ, we set the value of λ to be
λ = 30 s−6.

We predicted the trajectory’s suffix based on the movement’s
measured duration and boundary conditions representing the
local kinematics of the filtered trajectory Erf (t) at the time point
t0, and at movement end time T. The two spatial coordinates,
x and y, were treated separately, both complying with a 5th
degree polynomials x (t) =

∑
i cit

i, y (t) =
∑

i bit
i defined

over the temporal region t0 ≤ t ≤ T. The coefficients ci,
i = 0, . . . , 5 defining x(t) were uniquely determined using six
boundary conditions. Four equations defined the behavior at
t = t0; x (t0) = x0, ẋ (t0) = vx0, ẍ (t0) = ax0,

...x (t0) = jx0
with values of x0, vx0, a

x
0, j

x
0 taken from the filtered trajectory Erf (t)

at the time point t0. Two additional equations defined stopping
at the end-point at t = T, setting speed and acceleration to
zero, ẋ (T) = 0, ẍ (T) = 0. We repeated the same process
to find the coefficients bi, i = 0, . . . , 5 defining y(t) using
the same equations for the y coordinate. Notice that to predict
a trajectory primarily based on the measured kinematics at
time t0, we used non-symmetric boundary conditions with
four equations describing the behavior at time point t0,
compared to only two equations describing the behavior at
end time T. This approach is different from the standard

practice of using the minimum jerk model with symmetric
boundary conditions of position, velocity and acceleration
dictated at both the start and end-points (Flash and Hogan,
1985).

RESULTS

Successful Task Performance under the
Two Preparation Time Conditions
Before analyzing movement kinematics, we examined whether
the differences between the conditions led to differences
in task performance variables such as movement onset
latency, accuracy, duration, peak velocity and path length.
The average percentage of valid trials (i.e., trials in which
the subjects managed to leave the starting point on time,
passing a threshold distance of 0.5 cm from the center
of the origin within 300 ms after the go cue) across all
subjects was 89.4 (SE 1.8) (see ‘‘Materials and Methods’’
Section). The average percentage of valid trials was not
affected by the preparation time condition (F(1,29) = 1.48,
p = 0.244). Trajectories that reached a distance of 0.5 cm
from the center of the target were classified as accurate
(see ‘‘Materials and Methods’’ Section). Trajectories
showed high accuracy under the two preparation time
conditions (93.5% success ±15.2 in the short and 95.85%
success ±8.8 for long), with a relatively minor, but significantly
larger, accuracy in the long preparation time condition
(F(1,119) = 6.32 p = 0.013).

Movement Duration, Extent and Speed
Were Not Affected by Preparation Time
The duration of movements (time between movement
onset and offset, i.e., the first and last points whose speed
was ≥2% of the peak velocity) was 0.68 s (SE 0.07), and
did not change significantly between preparation time
conditions and target conditions (F(1,118) = 0.01, p = 0.92;
F(3,118) = 0.04, p = 0.99, respectively). The trials’ peak velocity
was 46.69 (SE 4.86) cm/s, and this value also did not change
significantly between the preparation time conditions and
targets (F(1,118) = 0.09, p = 0.76; F(3,118) = 0.04, p = 0.99,
respectively). The movement length, which was 17.8 cm
(SE 0.4) did also not change significantly between the
preparation time conditions and targets (F(1,118) = 0.14,
p = 0.71; F(3,118) = 0.55, p = 0.64, respectively). Thus, subjects
reached the target equally fast under the two preparation time
conditions.

Preparation Time Condition Did Not Affect
Movement Onset Latency
In order to further verify that the experimental manipulation
indeed shortened preparation times and did not lead to a
systematic increase in movement onset latency in the short
preparation time condition, we compared movement onset
latencies between the two preparation time conditions and
found no effect (Figure 2C). We defined movement onset
latency as the duration between the time of the ‘‘go’’ signal
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FIGURE 2 | Trajectories from representative subjects. (A) Trajectories
performed by three subjects under the long preparation time condition. Each
inset shows trajectories taken from a single subject. The colors depict the
targets for each trajectory. (B) Trajectories that the same subjects performed
under the short preparation time condition. The colors depict the targets for
each trajectory. (C) Onset latency times, measured from the “go” signal until
the subject was reaching a speed of 5% of peak movement velocity, grouped
across all subjects for movements performed under the long preparation time
condition (left) and for movements performed under the short preparation time
condition (right).

(the fourth beep) and a specified event signifying the beginning
of the movement. Regardless of how this event was defined
(2%, 5%, 7% and 10% of the total movement arc length,
2%, 5%, 7% and 10% of peak velocity, and crossing a
velocity threshold of 5 or 10 cm/s), movement onset latencies
were comparable across the two preparation time conditions
(p > 0.38). Notably, the values of the movement onset latencies
of the short preparation time condition (average of 144 ms
according to a 5 cm/s velocity threshold) were comparable
to movement onset latencies in other experiments using the
timed response tasks where subjects were able to initiate
accurate target selective point to point movements (Haith
et al., 2016). This suggests that subjects in this study were
able to perform target selection by the time they initiated the
movement.

Interestingly, despite the lack of differences in movement
durations and movement onset latencies and the small difference
in accuracy, observing the trajectories that were performed under
the two conditions, one can clearly appreciate the effect of
preparation time on both the averaged trajectory and the trial-
by-trial variability (Figure 2).

Trajectories in Both Conditions Were
Directed toward the Instructed Targets
One explanation for the observed results is that in the short
preparation time condition subjects initially guessed the position
of the target and only later made an online correction to
eventually reach the indicated target, similarly to what happens
in target jump experiments (Flash and Henis, 1991). To test this
hypothesis, we examined the absolute angular positions at the
beginning of the movement. We referred to the 10th percentile
of the overall movement as an indicator for the feedforward
part of the trajectory, and therefore as an estimator of the
initial movement planning stage. We ran a two-way ANOVA
for targets and preparation time conditions (four targets × two
preparation time conditions) and found a significant target effect
(F(3,119) = 13.82, p < 0.0001), with no preparation time effect
or interaction between target and preparation time condition
factors (F(1,119) = 0.2, p = 0.65 and F(3,119) = 1.24, p = 0.30,
respectively). Running ANOVA separately on each preparation
time condition elicited a significant effect of target in both
cases (p < 0.03). Lastly, to address the concern that in the
short preparation time condition there was a considerable
proportion of movements that did not show initial target-
sensitivity (guessing), we split the short preparation time
movements into two groups (according to movement onset
latencies) and ran a two-way ANOVA with the effects of target
and movement onset latency. We found a significant effect
of target on the angular position (F(3,119) = 3.59, p = 0.041)
and no significant interaction between the movement onset
latency group and target effects (F(3,119) = 0.56, p = 0.65).
These results demonstrate that despite the large variability in the
trajectories that subjects made under the short preparation time
condition, the trajectories were directed toward their indicated
targets.

Trial-by-Trial Variability of Relative Angular
Hand Position Was Higher in the Short
Preparation Time Condition
We were first interested in examining if reducing the
preparation time reduces the consistency of the trajectories
across trials. To test this hypothesis, we compared the trial-
by-trial variability along the trajectory in both preparation
time conditions. We calculated the standard deviation of
the target-relative angular positions (Figure 1B) at three
points along the trajectory (10th, 50th and 90th percentiles
of the arc length, Figure 3), separately for each subject.
Only movements having the same obstacle bypassing direction
were selected for this analysis (see ‘‘Materials and Methods’’:
‘‘Bypass Directions Analyses’’ Section). Paired t-test on the
three points of interest revealed a significant difference in
STD levels between the short and long preparation time
conditions (p < 0.001 for the 10th and 50th percentiles and
p = 0.026 for the 90th percentile). In order to compare the
distributions of angular positions directly, we ran Levene’s
test on the data of each subject separately at movement
onset (10th percentile of movement length). We found that
most subjects (12/15) had a significantly larger variability
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FIGURE 3 | STD of target-relative angular positions. STD for the long (light
gray) and short (dark gray) preparation time conditions. Relative angular hand
positions were calculated in relation to each target’s axis (see Figure 1). Mean
and standard error across subjects are shown.

of the relative angular position for the short preparation
time compared with the long preparation time conditions
(p< 0.05).

Shortening Preparation Time Affects
Feedforward Planning
In addition to the increased variability, there were also marked
differences in the averaged trajectories that subjects performed
(Figures 2, 4), suggesting that the plan itself was also sensitive
to the preparation time. We focused our analysis on the
initial part of the movement to emphasize the contribution of
preparation time to the feedforward plan of the movement. We
first hypothesized that the initial direction of the movement
will be sensitive to preparation time. We calculated the mean
target-relative angular position at the onset of the movement
(10th percentile of the movement length). As predicted, the
deviation from the line connecting the starting point and the
target during the short time condition was larger than that for the
long time condition. A two-way ANOVA test, modeling target
and preparation time conditions (four targets× two preparation
time conditions), revealed a preparation time condition effect
(F(1,119) = 6.53, p = 0.012).

Note that this difference in initial conditions was not
associated with differences in total duration, peak speed,
and length of the trajectories. We suggest that this apparent
discrepancy reflects the local nature of this effect. When the
entire trajectories were analyzed, the differences in relative
angular positions at movement onset was not apparent.

Geometric Decomposition of Movements
The previous sections showed support for the existence
of different movement plans in the two preparation time
conditions. We next asked if the observed effect of preparation

FIGURE 4 | Target-relative angular hand positions at movement onset. Initial
direction of the short preparation time condition’s trajectories (dark gray)
deviated more from the line connecting the starting point and the target than
for the long preparation time condition (light gray). The absolute values of
angular hand positions with respect to a line connecting the starting point and
the target are presented. Only trajectories with the dominant bypass direction
for each target are included. Mean and standard errors across subjects are
shown.

time on the execution of the movement would also be evident
from the geometrical properties of the trajectory. Accumulating
results show that complex trajectories are composed of sub-
units, or primitives, among them geometric primitives (Flash
and Hochner, 2005; Polyakov et al., 2009a; Giszter, 2015).
The hypothesis of this section is that preparation time will
affect the composition of the trajectory from motion primitives,
as can be inferred based on the geometric properties of the
trajectories and their segmentation. Based on our inspection
of the data, we chose to focus our trajectory segmentation
analysis on straight and parabolic segments, defined based
on the Euclidean and equi-affine curvature profiles of the
trajectories (see Figure 5 and ‘‘Materials and Methods’’:
‘‘Geometric Analysis’’ Section). The motivation behind using
equi-affine geometrical analysis stems from previous reports
showing that various curved human trajectories have constant
equi-affine velocities and that parabolic segments (which have 0
equi-affine curvature) serve as basic kinematic primitives in the
construction of human and monkey movements (Polyakov et al.,
2009b).

Parabolic Segments Appear Later When
Preparation Time Is Short
Based on the decomposition of the trajectories into an initial
parabolic segment which is followed by a straight segment,
we hypothesized that if the parabolic elements represent a
component that is planned as a unit stroke, it may appear
later in the trajectory in trials where subjects had a shorter
preparation time. In other words, when preparation time
is shorter, the parabolic segment will appear later. Indeed,
we found that in the short preparation time condition,
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FIGURE 5 | Geometric segmentation. (A) Trajectories of a typical subject from
the long preparation time condition, segmented into parabolic (orange) and
straight (magenta) segments. (B) Trajectories of the same subject from the
short preparation time condition.

the onset of the parabolas (computed with respect to the
‘‘go’’ signal) came on average 42 ms later than in the
long preparation time condition (75 ms ± 4 in the long
and 117 ms ± 4 in the short preparation time conditions
(p = 0.016)). Figure 6 presents the onset of the parabolic
segments for each subject. Note that in subject 14, the onset of
the parabolic segment in the long preparation time condition
is negative due to a consistent initiation of the movement
before the ‘‘go’’ signal. Furthermore, when examining the
time of initiation of the parabolic segments with respect
to the movement onset (and not to the ‘‘go’’ signal), we
found that it is negatively correlated with movement onset
latency. Thus, whenever the movement onset latency was
shorter, subjects initiated their parabolic segment later during
their movement. A linear fit of movement onset latency and
the duration between movement onset and parabolic onset,
performed on a subject-by-subject basis, resulted in linear
coefficients that were always negative (p = 0.001 for the
short preparation time condition and p = 0.002 for the long
preparation time condition). These results should be taken
cautiously given the poor fits of the model (R2 of −0.20
(SE 0.046) for the short condition, and −0.15 (SE 0.039) for
the long preparation time condition). This regression analysis
was feasible due to the natural variability in onset latencies
(see Figure 2C).

FIGURE 6 | Onset of the parabolic segments across subjects. Mean and SE
of durations from the “go” signal to the onset of parabolic segment. For most
subjects, the parabolic segments started later in the short preparation time
condition.

Modeling of the Parabolic Segments
Revealed Preparation Time Effects
Despite the differences in the onset of the parabolic segments,
arc-lengths and durations of the parabolic segments were not
affected by the preparation time condition (F(1,29) = 0.17,
p = 0.679 for segments’ durations, F(1,29) = 0.0023, p = 0.962 for
segments’ arc lengths). To furtherly examine the differences
between the parabolic segments performed under the two
preparation time conditions; we fitted parabolas to the
parabolic segment. The parabolas matched each parabolic
segment closely, with a root mean square error of 0.006
(SE 0.001) cm and 0.012 (SE 0.003) cm for the parabolic
segments of long and short preparation times, respectively.
Interestingly, the quality of those fits was poorer for the short
preparation time condition (F(1,29) = 8.47, p = 0.011). This
difference cannot be attributed to differences in the size of
the segments since the segments were truncated to a uniform
length of 5 cm around their center point, to obviate any
modeling bias.

We next investigated the parameters used to describe the
parabolas in the two preparation time conditions. The rotation
angle γ of the parabolic segment represents the angle of the
symmetry axis of the best fitting parabola with respect to
the y axis. This γ angle showed a significant target effect
(F(3,119) = 160.79, p < 0.001) but not a preparation time
condition effect (F(1,119) = 0.02, p = 0.902) nor target and
preparation time interaction (F(3,119) = 2.03, p = 0.115).
We examined the focal parameter P of the parabola that
expresses the width of the parabola. We found a significant
preparation time (F(1,119) = 12.99 p < 0.0001), and target
(F(3,119) = 7.73, p < 0.001) effects, but no interaction
between these effects (F(3,119) = 0.93, p = 0.431) on the focal
parameter.
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To summarize, compared to the long preparation time
condition, the parabolas in the short time condition had
a significantly smaller focal parameter, indicating that their
underlying parabolas were more curved.

Later Onset of Target-Specific Optimal
Trajectories in the Short Preparation Time
Condition
The last section pointed toward a possible mechanism for
refining the trajectories that subjects made under the short
preparation time condition during their execution. In this
section we follow this direction and examine at what point
the trajectories are becoming optimized given their total
duration and their end-point target, under the assumption
that the outcome of a complete trajectory planning process
is a maximally smooth movement plan. We applied the
minimum jerk model (Flash and Hogan, 1985) at each
point along the trajectory and calculated the point where
the predicted trajectory will terminate (see ‘‘Materials and
Methods’’: ‘‘Prediction of Trajectory’s Suffix Based on Local
Kinematics’’ Section). As the subject’s pen moved along his
trajectory, the predicted movement end-point approached the
target of the movement, until these points coincided. The
position of the pen that predicted movement end-point was
labeled as the optimal movement onset point (Figure 7A).
The normalized optimal movement onset time, the time from
movement onset to the point where the trajectory was a target-
specific optimized trajectory, normalized by the total movement
duration, indicates the completion of the optimization of the

subject’s motion plan (Figure 7B). In the short preparation
time condition, the normalized optimal movement onset time
occurred later than in the long preparation time condition
(F(3,119) = 3.42, p = 0.020, Figure 7B), providing further
support for an online optimization mechanism. The optimal
plan onset times were not significantly correlated with the
movement onset latencies; the linear coefficient was −0.093
(SE 0.048) for the short preparation time condition (not
significantly different than 0, p = 0.075) and 0.001 (SE 0.026)
for the long preparation time condition (not different from 0,
p = 0.983).

Correspondence between Target
Prediction and Segmentation Analyses
Finally, we asked if the results of the decomposition analysis,
pointing to a later initiation of a parabolic segment in the
short condition, and the results of the kinematic prediction
analyses, pointing to a later optimization of the trajectory
in the short condition, are related. We therefore examined
if the onset times of the parabolic segment and the optimal
movement onset times are similar. We found that the
optimal movement onset times came significantly later in the
trajectory (p < 0.001 in both preparation time conditions)
and that the parabolic onset and optimal movement onset
times did not show a consistent relationship within subjects
(R2 < 0.05 in each of the subjects, in both conditions).
These results suggest that the two reported descriptions do
not reflect the same planning aspect, and demonstrate that
the planning continues even after the onset of the parabolic
segment.

FIGURE 7 | Optimal movement onset times. (A) Optimal movement onset points marked on top of exemplary trajectories for long (left) and short (right) preparation
time conditions. Trajectories are depicted by solid lines. For each trajectory, we show two examples of predicted trajectories (dashed line), one is based on the
movement onset (small black circle) and the other is based on the optimal movement onset point (“|”). The end-points of all possible predicted trajectories are also
shown (light gray dots). The predicted trajectory starting at movement onset ends at a predicted end-point (“−”) that is far from the actual movement end, while the
predicted trajectory starting at the optimal movement onset point (“|”) ends at a predicted end-point (“+”) near the actual movement’s end. (B) Mean and SE of
normalized optimal movement onset times for all subjects. These times occurred at an earlier stage in the long compared to the short preparation time conditions.
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DISCUSSION

We investigated the planning processes of curved trajectories
by measuring the effect of preparation time shortening on the
executed trajectory. By manipulating subject’s preparation time,
we were able to find qualitative and quantitative differences
between the performed trajectories. We argue that these
differences reflect time-consuming performance optimization
processes that take place both during the preparation time
and during movement execution. Our results show that the
trajectories formed under the short preparation time condition
were more variable and showed a larger initial angular
deviation from the obstacle. When examining the geometrical
characteristics of the trajectory, we found that the curved
segments from which it is composed show worse fit to a parabola
for the short preparation time condition and started later. The
onset of the parabolic segment was correlated with movement
onset latency in both preparation time conditions. Furthermore,
a minimum jerk optimization model showed that the point
in time where the short condition trajectories became optimal
appeared later.

We suggest that these differences indicate that in the short
preparation time condition, while subjects could possibly select
their endpoint target, they did not have sufficient time to
plan their trajectory, and therefore took advantage of the
ability to continue planning their trajectories after movement
initiation, refining their trajectories on the fly. This conjecture
is consistent with a recent report demonstrating that in a
reaction time penalty task subjects reduce their reaction time
and refine their trajectories on the fly (Orban De Xivry et al.,
2017).

Increased Initial Trajectory Variability in the
Short Preparation Time Condition
Variability in performance may stem from different stages in
the planning and execution processes of a motor behavior:
visual detection of target location, action selection and trajectory
planning and execution. We found that the initial trial-by-trial
variability was higher in the short preparation time condition,
indicating that preparation time affects the consistency of
the executed trajectories. The increased variability could be
a result of differences in the action selection process. In
fact, since in our design the same target always appeared
with the same obstacle, subjects could link the selection and
planning processes, and not go through a de novo motor
planning of each trajectory. Thus, in the short preparation
time condition, when subjects did not have enough time
to complete the process of target detection and selection,
they could have guessed their target end-point and its linked
trajectory. Nevertheless, the fact that the angular position
of the trajectories at movement onset showed sensitivity to
the end-point target at the short preparation time condition
supports the argument that at least part of the variability is
not an outcome of guessing but rather of incomplete path and
trajectory specification. This claim is also supported by the
fact that the movement onset latencies in the short condition
are compatible with previous studies that showed intact target

selection processes under comparable latencies (Haith et al.,
2016).

We therefore argue that the increased variability in the short
condition is an outcome of a poorer trajectory planning process.
In other words, we argue that the source of the increased
variability in the short preparation condition is downstream from
the target selection stage and is likely to be the result of an
insufficient time for planning the required curved trajectory. This
result suggests that performance variability does not depend only
on movement speed (Schmidt and Lee, 1999), target difficulty
(Fitts, 1954) or skill (Müller and Sternad, 2004; Shmuelof
et al., 2012) but also on preparation time and complexity
of the trajectory. Thus, we suggest that when the performed
trajectories are more complex, for instance, when maneuvering
around obstacles, planning involves a time-consuming trajectory
specification stage as well. The effect of increased complexity
on computation time is consistent with a recent report about
an increase in reaction time for obstacle avoidance movements
when compared to point to point movements (Wong et al.,
2016). Our results are complementary to these results, as they
address the characteristics of the trajectory planning process,
using the timed response paradigm. To summarize, our findings
suggest that when subjects are required to execute composite
trajectories, the planning that takes place before movement onset
contributes to the quality of trajectory’s execution and motion
performance.

On the Fly Compensation for
Target-Insensitive Initial Plan
Our results suggest that the accumulation of information
for motor planning continues after movement initiation.
The delayed onset of the parabolic segment in the short
preparation time condition provides a possible mechanism
for integrating the new information into the trajectory.
Interestingly, the fact that the optimization time came after
the onset of the parabolic segment, suggests that the process
of compensating for the initial sub-optimal plan, due to
insufficient preparation time, is likely to be a continuous
process.

Ongoing trajectory specification is also shown in paradigms
involving decision making tasks, whereby motor commands are
updated during movement execution based on the accumulation
of evidence (Resulaj et al., 2009; Friedman et al., 2013). We
speculate that the same mechanism may be utilized for the
refinement of the motor plan.

Our results, supporting the existence of continuous
motor planning, are also consistent with results of motor
imagery studies which demonstrated that motor imagery is
a time-consuming process whose durations (Jeannerod and
Decéty, 1995; Roth et al., 1996; Rodriguez et al., 2008, 2009;
Guillot et al., 2012) and kinematic profiles (Papaxanthis et al.,
2012; Karklinsky and Flash, 2015) are closely correlated with
those of executed movements. Under the hypothesis that
motor imagery is equivalent to motor planning (Jeannerod and
Decéty, 1995; Jeannerod, 1995), the fact that motor imagery is
not instantaneous and evolves through time provides another
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argument in favor of our conjecture that movement planning is
a continuous process.

Isochrony through Control of the Time
Dimension
Despite the robust effects of preparation time on initial variability
and on the motor plan, the ability of subjects to reach the
target at the end of the movement was hardly impaired. This
suggests that subjects utilized feedback correction mechanisms
to refine their movements on the fly. Interestingly, even though
the task did not enforce a specific movement duration, subjects
did not modulate the duration or the maximum speed of
their movements to compensate for initial errors. This result,
which is consistent with the isochrony principle (Viviani and
Flash, 1995), suggests that the selection of movement duration
might be explicitly controlled, or could possibly be dictated
by different considerations. Some finite horizon optimization
models (e.g., the optimal feedback control model (Todorov
and Jordan, 2002) or the minimum jerk (Flash and Hogan,
1985) or the minimum variance models (Harris and Wolpert,
1998) assume that the total movement duration is a-priori
prescribed. In alternative models which include the infinite
horizon modeling approach or the ‘‘cost of time’’ model (Berret
and Jean, 2016), movement time or a function of it is either
explicitly included in the objective function (e.g., Tanaka et al.,
2006) or is selected to give an integrated minimum cost for
the chosen objective function (Huh et al., 2010). Movement
durations predicted by optimization models in which they
are not explicitly prescribed (i.e., ‘‘the cost of time’’ and the
infinite horizon models), are not expected to obey the isochrony
principle. On the other hand, our observations are consistent
with affine invariance predicting full isochrony of the trajectory
plans (Bennequin et al., 2009). Regardless of the mechanistic
explanation of our findings, they support the importance of
the isochrony principle, by showing that the motor system,
despite the enforced shortening in reaction time, does not
exploit modulations of the overall movement duration. This
is surprising, because the movement is composed of several
segments.

Individual Strategies for Complex Tasks
Of a particular interest is the fact that subjects presented a large
variety of individual preferences with respect to their initial
directions (for some examples, see Figure 2). These preferences
of initial direction cannot be explained by a recency effect
since we controlled for the targets history (Jax and Rosenbaum,
2007). Previous studies have found that preferences in the
initial direction of the movement depend on the posture of
the arm (Ghilardi et al., 1995). Hence, a possible explanation
for this phenomenon is mobility considerations, i.e., that the
dynamics of the arm make some movement directions easier
than others. Nevertheless, in a recent pilot experiment that we
conducted, we tested the effect of subject’s position with respect
to the tablet, and found that subjects were consistent in their
preferences even when standing to the right or to the left of the
tablet, suggesting that the idiosyncratic preferences cannot be
fully explained by the dynamics of the arm. These preferences

are therefore likely to point to the fact that the optimization
processes of complex behaviors allow for more pronounced
inter-subject differences. This conjecture is supported by recent
results showing individual characteristics of motion under
loose task constraints during a ball catching task (Cesqui
et al., 2012) and a bimanual polyrhythmic task (Park et al.,
2013).

On the Theoretic Relationship between the
Geometric Segmentation and the Minimum
Jerk Model
Our modeling approaches pointed toward two behavioral effects
that were driven by preparation time shortening. The geometrical
analysis showed that the parabolic segment started later in the
short preparation time condition, and the kinematic modeling
showed a later optimization of the trajectory towards the target.
Nevertheless, the onset times of the parabolic path and the
optimal movement onset times did not correlate and did not
coincide in time; the optimal movement onset times occurred
after the onset of the parabolic segments. Both results show
that when subjects have sufficient preparation time they execute
a smooth trajectory earlier than when enforced to initiate a
trajectory before they are fully ready. This could reflect the
existence of a motor plan before movement initiation. The
fact that the optimization time occurred later suggests that the
planning continues following the onset of the parabola. The
adjustment of the plan after the onset of the parabola could be
done either by an abort-replan mechanism, but more likely, by a
superposition of another primitive on top of the ongoing motion
(Flash andHenis, 1991; Henis and Flash, 1995). The optimization
time may therefore reflect the onset of the last superimposed
motion primitive. The corrective primitive towards the end
of the movement could be either a straight path having a
minimum jerk temporal profile or a more complex kinematic
primitive.

CONCLUSION

We report that reducing preparation time of obstacle avoidance
trajectories to four possible targets from ∼490 ms to ∼170 ms
did not affect target selection process but led to an increase
in trial-by-trial variability and to a modification of the mean
trajectory. Our results therefore demonstrate the effect of
preparation time on trajectory optimization. When optimization
is not completed before movement onset, subjects delay the
implementation of the central parabolic segment, and initiate a
smooth trajectory towards the target later in the trajectory. We
therefore suggest that subjects utilize the segmented nature of
curved movements to refine their motor plan on the fly. These
observations suggest that movement preparation is only part
of the movement planning process that continues throughout
complex movements, allowing on the fly optimization of the
motor plan. Our results point toward a balance between the
preference of the motor system to specify the trajectory before
its initiation and the ability of the motor system to initiate
sub-optimized trajectory rapidly and refine it on the fly.
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