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Replantation of avulsed spinal ventral roots has been show to enable significant and useful 
regrowth of motor axons in both experimental animals and in human clinical cases, making up 
an interesting exception to the rule of unsuccessful neuronal regeneration in central nervous 
system. Compared to avulsion without repair, ventral root replantation seems to rescue lesioned 
motoneurons from death. In this study we have analyzed the acute response to ventral root 
avulsion and replantation in adult rats with gene arrays combined with cluster analysis of gene 
ontology search terms. The data show significant differences between rats subjected to ventral 
replantation compared to avulsion only. Even though number of genes related to cell death 
is similar in the two models after 24 h, we observed a significantly larger number of genes 
related to neurite growth and development in the rats treated with ventral root replantation, 
possibly reflecting the neuroregenerative capacity in the replantation model. In addition, an 
acute inflammatory response was observed after avulsion, while effects on genes related to 
synaptic transmission were much more pronounced after replantation than after avulsion alone. 
These data indicate that the axonal regenerative response from replantation is initiated at an 
earlier stage than the possible differences in terms of neuron survival. We conclude that this 
type of analysis may facilitate the comparison of the acute response in two types of injury.
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of motor axons in both experimental animals and in human 
clinical cases (Carlstedt et al., 1986, 1995, 2009; Cullheim et al., 
1989, 1999).

The results from such treatment in humans are less successful 
in older patients and good reinnervation in distal muscles like 
in the hand is seldom possible. In a recent case report Carlstedt 
et al. (2009) described a preadolescent boy with complete bra-
chial plexus avulsion injury that was treated by replantation of 
five ventral roots. Shoulder muscle recovery started 8–10 months 
after the spinal cord operation. At 12–15 months, elbow function 
began to recover, followed 2 years postoperatively by forearm, 
wrist, and intrinsic hand muscle activity. This led to recovery of 
hand motor function without restoration of sensation. Bilateral 
motor cortex activity and activation of the sensory cortex on use 
of the affected hand was demonstrated by fMRI. The findings of 
that case study suggested that the restored hand function might 
rely on cortical sensory programs established before the injury 
(Carlstedt et al., 2009). Although the time needed for recovery 
seems very long, it cannot be excluded that the final result is 
dependent on several biological programs that are elicited in the 
early acute stage.

Previous studies indicate that ventral root replantation can 
be neuroprotective for motoneurons (Hoang and Havton, 2006; 
Eggers et al., 2010). If so, how rapidly after the avulsion should 
surgical intervention take place? In this study we have performed 
a gene array in the acute phase with subsequent cluster analysis 

IntroductIon
The pioneering studies of Ramon y Cajal demonstrated that 
injured neurons in the central nervous system (CNS) have a 
strong capacity to extend new axons into the peripheral nervous 
system (PNS; Cajal, 1928). This observation was reinvestigated 
by Aguayo and colleagues (Richardson et al., 1980; Aguayo et al., 
1987). Cajal (1928) described that motor axons that had been 
severed due to spinal cord injury had the capacity to regrow 
to neighboring ventral roots. This observation was later con-
firmed with electron microscopy and intracellular labeling with 
horseradish peroxidase (Risling et al., 1983; Lindå et al., 1992). 
The regrowing axons penetrate through a highly unusual CNS 
environment which lacks a blood–brain barrier (BBB) function 
(Risling et al., 1989) but possesses a high content of cells bearing 
neurotrophin receptors (Frisen et al., 1992, 1998; Risling et al., 
1992) and matrix molecules (Risling et al., 1993; Deckner et al., 
2000). A clinical counterpart to this injury is a ventral root avul-
sion at the border between the CNS and PNS, typically caused 
by a high energy trauma such as a motorbike accident causing 
excessive trauma to the shoulder and head resulting in stretch-
ing and rupturing of ventral roots. Ventral root avulsion is not 
followed by spontaneous regrowth, since the avulsed roots are 
widely separated from the spinal cord inside the subarachnoid 
space or even pulled to a position outside the vertebral channel. 
Replantation of avulsed spinal ventral roots into the spinal cord 
has been shown to be enable significant and useful regrowth 
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the aid of the DAVID. It was possible to group responding genes 
into functional-related gene groups (GO – Gene Ontology search 
terms). All significantly regulated genes, both up- and down-regu-
lated, were used in this part of the analysis in order to identify the 
most actively regulated GO families. Distinctive profiles for each of 
the examined conditions were apparent when the families of genes 
related to development, differentiation, inflammatory response, 
apoptosis, neurogenesis, and synaptic transmission were compared. 
For example, a number of genes related to neurogenesis were found 
to be up-regulated in animals subjected to avulsion combined with 
replantation (Figure 2). A distinct change in expression of genes 
related to synaptic transmission and conduction of nerve impulses 
was also observed in the replanted animals, but not after avulsion 
only. A response related to inflammation was more obvious after 
avulsion than replantation. No obvious difference with regard to 
cell death systems was found.

The differences were also assessed by cluster analysis of enriched 
biological themes, including pathways. The Enrichment score is 
based on the mean value of the −log of the p-values (EASEscore) for 
the members in that cluster. A cut-off value of 2.0 was used, which 
corresponds to a p-value <0.01. Thus, a higher Enrichment score 
value indicates a low p-value and therefore means that the cluster 
is significant. The most enriched clusters (most significantly regu-
lated) observed after replantation were related to development and 
differentiation as well as synaptic transmission (Table 1). Avulsion 
injury only, induced large shifts in genes related to inflammation, 
signal transduction, and proliferation (Table 2). Enriched themes 
in a comparison between replantation and avulsion were develop-
ment/differentiation and synaptic transmission (Table 3).

dIscussIon
The biological changes initiated after a proximal motor axon lesion 
are very complex. Spinal motoneurons seem to have a stronger 
potential than average for axonal regrowth. However, the interac-
tion between the motoneurons and the environment appears to be 
very complex. The outcome of untreated ventral root avulsion may 
be paralysis, loss of sensory function, and neurogenic pain. Clinical 
studies show that replantation with subsequent motor reinnerva-
tion can reduce neuropathic pain as well (Htut et al., 2006).

to evaluate whether this type of analysis may be used to iden-
tify time points for critical events after ventral root avulsion 
and replantation.

MaterIals and Methods
All animal experiments were approved by the local ethic’s com-
mittee in Stockholm. Six adult Sprague-Dawley rats were anes-
thetized by Isoflurane inhalation and the lumbosacral spinal cord 
was exposed. The left L5 ventral root was identified and avulsed 
by gentle traction of the root. In three of the animals the root 
was replanted into the lateral funiculus (Figure 1). The wound 
was closed in layers. After 24 h the animals were euthanized with 
0.5 ml pentobarbital (40 mg/ml) and the inferior vena cava was 
cut open. The lumbosacral spinal cord was rapidly dissected out, 
meninges and rootlets removed. Thereafter the spinal cord segment 
L5 was immersed in RNAlater® (Qiagen, Crawley, West Sussex, UK). 
Lumbar spinal cord specimens from three unoperated animals were 
collected and treated accordingly and used as controls. For microar-
ray analysis, samples comprising the left ventral quadrant (lesion 
side) were used. RNA samples were analyzed at the Karolinska 
Institutet core facility for Bioinformatics and Expression Analysis1, 
where target preparation and hybridization to the microarray were 
completed. RNA was labeled with biotin to produce the final target 
according to Affymetrix standard procedures2. Labeled cRNA was 
then hybridized to the Affymetrix Rat Gene ST 1.0 array. Each of 
the 27,342 genes are represented on the array by approximately 
26 probes spread across the full length of the gene. This 700,000 
unique 25-mer oligonucleotide design is supposed to provide an 
accurate picture of gene expression. After probing and scanning, the 
quality of the images was checked. All arrays passed the Affymetrix 
quality control check. Following normalization, the change in gene 
expression between the three controls, the three avulsed, and the 
three avulsed and replanted rats was compared using an unpaired 
t-test and fold change values. Lists of genes that passed the selected 
significance level were uploaded to the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID)3 for functional 
annotation and detection of enriched functional-related gene 
groups and enriched biological themes, particularly GO terms 
(Dennis et al., 2003; Huang da et al., 2009).

results
Thus, about 30,000 transcripts were analyzed in the three groups 
(replanted, avulsed only, and controls). The material was evaluated 
with regard to signal intensity and fold change (signal ratio in cross 
comparison tests). p-Values for the three intensity values for each 
gene in each group were calculated. Around 2000 genes in each 
comparison (replantation vs avulsion; replantation vs control; avul-
sion vs control) had a p-value of stronger than <0.05. The aim of 
the study was to perform a broad comparison of biological themes, 
based on a comparison of the about 2000 genes in each group that 
had a strong p-value. It would therefore be difficult to validate the 
findings by examination of individual genes. Instead, the lists of 
significantly regulated genes from each group were evaluated with 

Figure 1 | A schematic representation of the employed experimental 
methods.

1www.bea.ki.se
2www.affymetrix.com
3http://david.abcc.ncifcrf.gov
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of lesion. The replantation is performed to the lateral aspect of the 
spinal cord, a position more accessible for surgery than the ven-
tral funiculus. It has been shown that regrowing axons are capable 
of finding a new route inside the spinal cord and navigate to the 
replanted root (Cullheim et al., 1989), while other axons use the pia 

The replantation will result in a limited but unavoidable spinal 
cord injury as well as disruption of the BBB (Sjögren et al., 1991). 
Many of the events (Risling et al., 1992, Frisen et al., 1998, Lindholm 
et al., 2001, 2002, 2004) that have been observed after lesions in 
the ventral funiculus can be assumed to occur also after this type 

Figure 2 | A diagram illustrating the number of significantly regulated 
genes in selected categories after avulsion and avulsion plus replantation. 
The x-axis indicates the number of genes that have undergone significant 
changes in expression. Note that this number includes both up- and down-

regulated genes. The number of cell death genes is similar in the two groups, 
while genes related to neurite development and neurogenesis show a much 
more prominent response after replantation than after avulsion only. The 
inflammatory response is more obvious after avulsion than after replantation.
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Table 1 | replantation vs control. Cluster analysis of regulated genes, 

employing the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID). It was possible to group responding genes into 

functional-related gene groups (GO – Gene Ontology search terms) and 

cluster analysis of enriched biological themes. The Enrichment score is based 

on the mean value of the −log of the p-values (EASEscore) for the members 

in that cluster. A cut-off value of 2.0 was used, which corresponds to a 

p-value <0.01. The most enriched cluster contains themes for neurite 

development and neuron differentiation.

Term Count p-Value

FuNCTioNAl group 1 eNriChmeNT sCore: 8.67

GO:0007399 ∼ nervous system development 121 1,20E-24

GO:0030182 ∼ neuron differentiation 50 6,24E-11

GO:0048699 ∼ generation of neurons 53 2,54E-10

GO:0031175 ∼ neurite development 36 3,36E-09

GO:0048667 ∼ neuron morphogenesis 33 4,35E-09

during differentiation

GO:0032990 ∼ cell part morphogenesis 36 1,42E-06

GO:0048468 ∼ cell development 104 1,73E-05

GO:0000902 ∼ cell morphogenesis 47 3,63E-04

GO:0032989 ∼ cellular 47 3,63E-04

structure morphogenesis

FuNCTioNAl group 2 eNriChmeNT sCore: 7.64

GO:0007269 ∼ neurotransmitter secretion 27 2,61E-12

GO:0045055 ∼ regulated secretory pathway 28 1,35E-11

GO:0048489 ∼ synaptic vesicle transport 18 4,79E-10

GO:0006887 ∼ exocytosis 26 1,72E-09

GO:0003001 ∼ generation of a signal 29 2,31E-09

involved in cell–cell signaling

GO:0045045 ∼ secretory pathway 40 4,46E-08

GO:0032940 ∼ secretion by cell 42 4,81E-07

GO:0016079 ∼ synaptic vesicle exocytosis 11 6,48E-07

GO:0016192 ∼ vesicle-mediated transport 47 1,21E-04

GO:0051649 ∼ establishment of 74 3,80E-04

cellular localization

FuNCTioNAl group 3 eNriChmeNT sCore: 5.79

GO:0044255 ∼ cellular lipid 62 1,75E-07

metabolic process

GO:0008610 ∼ lipid biosynthetic process 37 3,74E-07

GO:0006694 ∼ steroid biosynthetic process 18 1,35E-06

GO:0016125 ∼ sterol metabolic process 18 1,98E-06

GO:0008202 ∼ steroid metabolic process 24 6,15E-05

FuNCTioNAl group 4 eNriChmeNT sCore: 3.68

GO:0048878 ∼ chemical homeostasis 37 3,37E-05

GO:0006873 ∼ cellular ion homeostasis 30 1,50E-04

GO:0019725 ∼ cellular homeostasis 33 1,81E-03

FuNCTioNAl group 5 eNriChmeNT sCore: 3.19

GO:0046942 ∼ carboxylic acid transport 18 2,35E-04

GO:0015849 ∼ organic acid transport 18 2,63E-04

GO:0006865 ∼ amino acid transport 14 6,20E-04

GO:0015837 ∼ amine transport 14 4,56E-03

FuNCTioNAl group 6 eNriChmeNT sCore: 2.54

GO:0006631 ∼ fatty acid metabolic process 24 1,43E-04

GO:0006633 ∼ fatty acid biosynthetic process 10 7,74E-03

GO:0016053 ∼ organic acid biosynthetic process 10 2,21E-02

Table 2 | Avulsion vs control. A cluster analysis of the response to avulsion. 

Themes related to inflammatory response are enriched in this analysis.

Term Count p-Value

FuNCTioNAl group 1 eNriChmeNT sCore: 7.63

GO:0007166 ∼ cell surface receptor 172 8,11E-11

linked signal transduction

GO:0050907 ∼ detection of chemical 94 3,71E-08

stimulus during sensory perception

GO:0007600 ∼ sensory perception 102 4,19E-06

FuNCTioNAl group 2 eNriChmeNT sCore: 4.39

GO:0009617 ∼ response to bacterium 15 6,72E-07

GO:0032496 ∼ response to lipopolysaccharide 6 2,70E-04

GO:0002237 ∼ response to molecule 6 3,80E-04

of bacterial origin

FuNCTioNAl group 3 eNriChmeNT sCore: 4.15

GO:0042127 ∼ regulation of cell proliferation 44 7,94E-06

GO:0048522 ∼ positive regulation of 64 1,89E-04

cellular process

GO:0008284 ∼ positive regulation of 24 2,31E-04

cell proliferation

FuNCTioNAl group 4 eNriChmeNT sCore: 3.99

GO:0002526 ∼ acute inflammatory response 19 2,41E-07

GO:0002443 ∼ leukocyte mediated immunity  14 4,06E-06

GO:0002460 ∼ adaptive immune response based 

on somatic recombination of immune receptors 13 9,91E-06 

built from immunoglobulin superfamily domains

GO:0002449 ∼ lymphocyte mediated immunity 12 2,87E-05

GO:0050776 ∼ regulation of immune response 15 9,76E-05

GO:0002682 ∼ regulation of immune 15 1,64E-04

system process

GO:0051240 ∼ positive regulation of multicellular 16 3,55E-04

organismal process

GO:0006956 ∼ complement activation 10 3,71E-04

GO:0050778 ∼ positive regulation of 12 9,04E-04

immune response

GO:0002684 ∼ positive regulation of 12 1,21E-03

immune system process

GO:0002455 ∼ humoral immune response 6 1,49E-03

mediated by circulating immunoglobulin

GO:0006958 ∼ complement activation,  6 1,49E-03

classical pathway

FuNCTioNAl group 5 eNriChmeNT sCore: 3.26

GO:0042127 ∼ regulation of cell proliferation 44 7,94E-06

GO:0008285 ∼ negative regulation of 23 2,39E-04

cell proliferation

GO:0048523 ∼ negative regulation of 49 8,88E-02

cellular process

FuNCTioNAl group 6 eNriChmeNT sCore: 2.55

GO:0048534 ∼ hemopoietic or lymphoid 19 1,43E-03

organ development

GO:0002520 ∼ immune system development 19 2,12E-03

GO:0030097 ∼ hemopoiesis 17 4,19E-03

GO:0030099 ∼ myeloid cell differentiation 11 5,12E-03

(Continued)
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mater as a conduit to enter the replanted root (Risling et al., 1991). 
It seems possible that the replanted ventral root, with its reactive 
Schwann cells, may have a trophic and neuroprotective effect on 
injured motoneurons. Previous studies indicate that ventral root 
replantation can be neuroprotective for motoneurons (Hoang and 
Havton, 2006; Eggers et al., 2010). Thus, replantation appears to 
elicit a number of important events in the spinal cord that may be 
partly beneficial with respect to regrowth to the replanted root. The 
acute changes in gene expression that were detected in the present 
study should therefore be assumed to be related to the initiation 
of a large number of biological changes that occur after this type 
of injury and surgery. Important themes that were affected were 
related to neurite growth, cell death, inflammation, and synaptic 
transmission.

Micro arrays have been employed to identify changes in gene 
expression after ventral root avulsion (Hu et al., 2002; Yang et al., 
2006). The study by Hu et al. (2002) revealed increases in the expres-
sion of genes coding for proteins involved in the apoptosis cascades, 
as well as decreases in expression of genes related to energy metabo-
lism, transporter proteins, ion channels, and receptors. It was also 
shown that cathepsins, metalloproteinases, and proteasome-related 
protein products were highly up-regulated in motor neurons fol-
lowing axotomy. The study by Yang et al. (2006) showed a decreased 
expression of genes that are known to facilitate neuronal survival 
and axonal regeneration.

Careful mapping of gene regions regulating neurodegeneration 
has revealed that the gene response linked to neurodegeneration 
after avulsion is closely related to T cell infiltration and major his-
tocompatibility complex class II expression on microglia (Lidman 
et al., 2003; Olsson et al., 2005). The kinetics of the avulsion lesion 
has been summarized by Olsson et al. (2005): During the first few 
days following the injury, a first phase of microglial activation can 
be detected. After approximately 1 week the activated cells begin 
to express MHC class II. This is paralleled by a sparse lymphocyte 
infiltration and commencing death of axotomized cells. During the 
second and third post-operative weeks approximately 50–75% of 
the axotomized cells disappear.

These studies have generated important data relevant for 
understanding of how degeneration of motoneurons is initi-
ated following avulsion injury. The present study, however, is 
to our knowledge the first direct comparison of the response 
to avulsion and replantation based on micro arrays with aid of 
cluster analysis. The results suggest that this type of gene ontology 
comparison can be a powerful and effective way to deal with the 

FuNCTioNAl group 7 eNriChmeNT sCore: 2.08

GO:0007067 ∼ mitosis 15 2,73E-03

GO:0000087 ∼ M phase of mitotic cell cycle 15 3,52E-03

GO:0022403 ∼ cell cycle phase 21 8,20E-03

GO:0000279 ∼ M phase 17 9,70E-03

GO:0000074 ∼ regulation of progression 20 1,94E-02

through cell cycle

GO:0051726 ∼ regulation of cell cycle 20 2,15E-02

Table 2 | Continued

Term Count p-Value

(Continued)

Table 3 | Avulsion vs replantation. A cluster analysis of the response to 

avulsion compared to the response to replantation after avulsion. Themes 

relating to synaptic transmission are enriched.

Term Count p-Value

eNriChmeNT sCore: 6.62

GO:0031644 ∼ regulation of neurological 38 1,88E-10

system process

GO:0051969 ∼ regulation of transmission of 35 1,72E-09

nerve impulse

GO:0044057 ∼ regulation of system process 43 2,09E-06

GO:0010646 ∼ regulation of 79 4,82E-03

cell communication

eNriChmeNT sCore: 6.17

GO:0006873 ∼ cellular ion homeostasis 52 3,77E-08

GO:0019725 ∼ cellular homeostasis 56 7,93E-07

GO:0048878 ∼ chemical homeostasis 56 1,01E-05

eNriChmeNT sCore: 5.55

GO:0006836 ∼ neurotransmitter transport 32 1,65E-14

GO:0046903 ∼ secretion 41 1,23E-07

GO:0007269 ∼ neurotransmitter secretion 16 3,01E-07

GO:0003001 ∼ generation of a signal involved 21 6,62E-06

in cell-cell signaling

GO:0032940 ∼ secretion by cell 31 8,37E-06

GO :0006887 ∼ exocytosis 21 2,31E-05

GO:0048489 ∼ synaptic vesicle transport 11 1,40E-04

GO:0016079 ∼ synaptic vesicle exocytosis 8 5,76E-04

GO:0016192 ∼ vesicle-mediated transport 33 1,71E-01

eNriChmeNT sCore: 3.96

GO:0050905 ∼ neuromuscular process 15 2,12E-05

GO:0008344 ∼ adult locomotory behavior 14 7,91E-05

GO:0007628 ∼ adult walking behavior 8 7,47E-04

eNriChmeNT sCore: 3.48

GO:0051046 ∼ regulation of secretion 34 1,62E-05

GO:0017157 ∼ regulation of exocytosis 12 2,14E-04

GO:0051049 ∼ regulation of transport 48 3,77E-04

GO:0060341 ∼ regulation of cellular localization 33 4,03E-04

GO:0060627 ∼ regulation of 18 4,53E-04

vesicle-mediated transport

GO:0051047 ∼ positive regulation of secretion 18 9,21E-04

GO:0051050 ∼ positive regulation of transport 27 2,11E-03

eNriChmeNT sCore: 3.43

GO:0034728 ∼ nucleosome organization 16 1,434E-05

GO:0065004 ∼ protein-DNA complex assembly 16 2,063E-05

GO:0006334 ∼ nucleosome assembly 15 2,560E-05

GO:0034622 ∼ cellular macromolecular 25 1,072E-02

complex assembly

GO:0006325 ∼ chromatin organization 22 9,082E-02

eNriChmeNT sCore: 2.90

GO:0006865 ∼ amino acid transport 16 2,082E-04

GO:0015837 ∼ amine transport 19 4,010E-04

GO:0046942 ∼ carboxylic acid transport 20 1,491E-03

GO:0015849 ∼ organic acid transport 20 1,617E-03

GO:0015804 ∼ neutral amino acid transport 7 2,709E-03
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complex  information that is generated by micro arrays. The data 
appears compatible with the notion that replantation initiates a 
significant growth response. The data of the present study show 
that the number of regulated genes related to neurite formation 
is much higher in the replanted animals, whereas the number of 
regulated cell death genes is similar in the two situations. Our 
data suggest that the inflammatory response is more prominent 
in animals subjected to avulsion without replantation. These data 
indicate that the axonal regenerative response from replanta-
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neuroprotective effects. Inflammatory changes that may precede 
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animals subjected to avulsion only, although infiltration with 
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maximum at this stage (cf. Olsson et al., 2005). Thus, this part of 
the inflammatory response may be dependent on resident cells, 
such as microglia. It should also be pointed out that a regulation 
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been shown to function as a molecular tag for synaptic removal. 
The molecular interactions that localize C1q specifically to weak 
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C1q and C3 and thus are likely to be responsible for the removal 
of unwanted synapses (Eroglu and Barres, 2010). It should not 
be excluded that similar mechanisms could be activated dur-
ing the early stage following ventral root avulsion and could be 
involved in the removal of excitatory glutamate synapses (Lindå 
et al., 2000).

In a recent study we have observed differences between 
rotational and penetrating brain injuries with the same type 
of gene arrays and gene ontology analysis (Risling et al., 2010). 
Interestingly, the regenerative response that was observed in 
the present study after replantation could not be detected 24 h 
after a penetrating brain injury (Risling et al., 2010), further 
emphasizing the unique response following the replantation. It 
is concluded that this type of gene expression analysis can be of 
value for the examination of time points for critical events after 
neurotrauma and that the events after a superficial lesion in the 
spinal cord has some differences compared to a superficial lesion 
in the brain. We suggest that gene ontology can be a valuable 
tool that can be used to establish the time window for a delayed 
ventral root replantation, since the method seems capable to 
detect important differences between a regenerative and a non-
regenerative response.

Table 3 | Continued
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