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HIGHLIGHTS

(1) We develop computer-aided diagnosis system for unilateral hearing loss detection in

structural magnetic resonance imaging.

(2) Wavelet entropy is introduced to extract image global features from brain images.

Directed acyclic graph is employed to endow support vector machine an ability to

handle multi-class problems.

(3) The developed computer-aided diagnosis system achieves an overall accuracy of

95.1% for this three-class problem of differentiating left-sided and right-sided hearing

loss from healthy controls.

Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative

disease. Now more and more computer vision based methods are using to detect it

in an automatic way.

Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical

Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing

loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC).

Method: We treat this as a three-class classification problem: RHL, LHL, and HC.

Wavelet entropy (WE) was selected from the magnetic resonance images of each

subjects, and then submitted to a directed acyclic graph support vector machine

(DAG-SVM).

Results: The 10 repetition results of 10-fold cross validation shows 3-level

decomposition will yield an overall accuracy of 95.10% for this three-class
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classification problem, higher than feedforward neural network, decision tree, and naive

Bayesian classifier.

Conclusions: This computer-aided diagnosis system is promising. We hope this study

can attract more computer vision method for detecting hearing loss.

Keywords: unilateral hearing loss, sensorineural hearing loss, wavelet entropy, support vector machine, directed

acyclic graph, confusion matrix, computer aided diagnosis

INTRODUCTION

Sensorineural hearing loss (SNHL) belongs to a type of hearing
loss. The roots are located in either inner ear, or vestibulocochlear
nerve, or central auditory processing center (Koylu et al., 2016).
Among reported hearing loss, 90% are SNHLs. Its distinctive
feature is that the loss usually falls in high-frequency region
or a notch at some frequency (Lin et al., 2016). Only 2% of
SNHLs have bilateral hearing impairments and most patients are
unilateral hearing loss (UHL, Eftekharian and Amizadeh, 2016).

Except hearing loss (mild, moderate, severe, profound, or
total), SNHL patients suffer from deficiency of diseases, especially
brain functions. Take as examples, SNHL is shown to be
correlated with lower intelligence (Martínez-Cruz et al., 2009),
directional brain network, Meniere’s Disease (Teranishi et al.,
2012), neonatal hyperbilirubinemia (Khalid et al., 2015), motor
proficiency (Martin et al., 2012), neurodevelopmental disorder
(Chilosi et al., 2010), speech and language delay (Prosser et al.,
2015), etc.

In the past, scholars have used fMRI and DTI to research the
SNHL problems. Profant et al. (2014) used MR morphometry
and DTI to study SNHL. Vaden et al. (2016) used fMRI to prove
the trial-level word recognition benefit from cingulo-opercular
activity was equivalent for both hearing loss groups. Li Z. et al.
(2015) studied functional connectivity using rest-state fMRI. In
all, either fMRI or DTI costs lengthy time for scan, hence, in
this study, we aim to develop a computer-aided diagnosis (CAD)
tool for automatically detecting left-sided hearing loss (LHL) and
right-sided hearing loss (RHL) from healthy controls (HC) based
on structural MRI (SMRI).

The tool can work since SNHLs have difference with
healthy subjects in brain structures. Those alterations can
be clearly found in advanced neuroimaging modalities,
such as magnetic resonance imaging (MRI). Yang et al.
(2014) proved UHL patients showed decreased gray
matter volume in bilateral posterior cingulate gyrus and
precuneus, left superior/middle/inferior temporal gyrus,
and right parahippocampal gyrus and lingual gyrus.
Hribar et al. (2014) proved manual volumetry revealed
preserved GM volume of the bilateral HG and significantly
decreased WM volume of the left HG in the deaf. Shiell
et al. (2016) investigated the cortical thickness of cats,
and found the right hemisphere planum temporale

Abbreviations: SNHL, Sensorineural hearing loss; UHL, Unilateral hearing loss;
LHL, Left-sided hearing loss; RHL, Right-sided hearing loss; HC, Healthy control;
MRI, Magnetic resonance imaging; PTA, Pure tone average; MNI, Montreal
neurologic institute; DAG, Directed acyclic graph; FNN, Feedforward neural
network; DT, Decision tree, NBC, Naive Bayesian classifier.

supports enhanced visual motion detection ability in deaf
people.

Finally, CAD tools are not expected to replace otologists,
but to assist them to make more accuracy diagnosis (Yuan,
2015; Amir and Lehmann, 2016; Choi et al., 2016). Computer
vision, machine learning (Yang, 2016), and image processing
(Zhang et al., 2016) techniques will be used to help us
develop this CAD tool. To our best knowledge, this is the
first study to develop CAD tool for SNHL detection based on
SMRI. The rest of this paper is organized as follows. Section
Materials provides the materials. Section Methodology offers the
methodology. Section Results and Discussions gives the results
and discussions. Finally, Section Conclusions concludes the
paper.

TABLE 1 | Demographic data of all subjects.

LHL RHL Control F/x2/t P

Age (year) 51.7±9.6 53.9±7.6 53.6± 5.4 0.305 0.739

Gender (m/f) 8/7 6/8 8/12

Education level (year) 12.5±1.7 12.1±2.4 11.5± 3.2 0.487 0.618

Disease duration (year) 17.6±17.3 14.2±14.9 – 0.517 0.610

PTA of left ear (dB) 78.1±17.9 21.8±3.2 22.2± 2.1 156.427 0.00

PTA of right ear (dB) 20.4±4.2 80.9±17.4 21.3± 2.2 167.796 0.00

Data are mean ±SD, LHL, left-sided hearing loss; RHL, right-sided hearing loss; PTA,

pure tone average; m, male; f, female; F/x2/t means the score calculated by F-test or

Pearson’s chi-squared test or Student’s t-test.

FIGURE 1 | Frequency-dependent hearing level of a LHL subject.
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FIGURE 2 | Brain Extraction Result.

MATERIALS

Our study consisted of 49 subjects: 20 HCs, 15 LHLs, and 14
RHLs. The inclusion criterion was moderate-to-severe sudden
sensorineural UHL. The exclusion criteria for all participants
were known neurological or psychiatric diseases, brain lesions
such as tumors or strokes, taking psychotropic medications, and
contraindications to MR imaging. This study was approved by
the Ethics Committee of Southeast University, and a signed
informed consent form was obtained from every subject prior to
entering this study.

We used a clinical audiometer to perform pure tone
audiometry with six different octave frequencies (0.25, 0.5, 1, 2, 4,
and 8 kHz), in order to measure the pure tone average (PTA) and
reflect hearing performance (Yang et al., 2016). All patients were
diagnosed with UHL with hearing deficit in either unilateral ear
(PTA ≥ 40 dB) and normal hearing in both ears (PTA ≤ 25 dB).
The patients included were all right-handed and 41 to 60 years

old. For each patient, the hearing loss was sudden and persistent.
None used a hearing aid on the impaired ear. Table 1 shows that
the control group was well matched to the patient group in terms
of age, sex, and education level. The audiogram of the affected ear
of each patient is shown in Figure 1.

Scanning was implemented by a Siemens Verio Tim 3.0T MR
scanner (Siemens Medical Solutions, Erlangen, Germany). All
subjects lie as still as possible with eyes closed and not to fall
asleep. In total 176 sagittal slices covering the whole brain were
acquired, using an MP-RAGE sequence. The imaging parameters
were: TE = 2.48 ms, TR= 1900 ms, TI = 900 ms, FA = 9◦, FOV
= 256× 256 mm, matrix= 256× 256, slice thickness= 1 mm.

Preprocessing was performed using FMRIB Software Library
(FSL) v5.0. The brain extraction tool (BET) was employed to
extract brain and remove skulls. The results were shown in
Figure 2, where the red lines outline the edges of extracted brains.

Afterwards, all brains of 49 subjects were normalized to a
standard Montreal Neurologic Institute (MNI) template and

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2016 | Volume 10 | Article 106

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wang et al. WE and DAG-SVM for Detection of UHL in MRI

resampled to 2 mm isotropic voxels using FLIRT and FNIRT
tools. Then, the normalized images were smoothed with a
Gaussian kernel. Figure 3 shows the results. Three experienced
otologists were instructed to select the optimal slice of each
patient that covers his/her majority hearing regions, and the
selected slice is around 40-th, which contains the significant
discrepancy information between SNHLs and HCs. The selected
slice of each patient is different.

METHODOLOGY

Computer vision (CV) technique (Wu, 2012a; Ji, 2014; Meireles
et al., 2016) is used to help develop the CAD system that
can distinguish LHLs and RHLs from HCs. The feature is

FIGURE 3 | Normalization and Gaussian kernel results. (A) Before. (B)

After.

defined as a piece of information for solving the computational
task (here is to detect HL). Traditional CV methods used
local features, like edges, corners, blobs, and interesting points
& regions (Lee D. H. et al., 2016). Nevertheless, recently
researches showed global features may also give the equivalent
performances (Li B. et al., 2015). Wavelet entropy (WE) as
a novel global feature has attracted attentions from various
disciplines.

Wavelet Entropy
WE is a new method developed to analyze transient features of
complicated signals (Hosseini et al., 2015; Phillips et al., 2015;
Sun, 2015), such as the brain image in this study. The value of
WE has a physical meaning of the order/disorder degree of the
signal with multiscale time-frequency resolution.

WE consists of two steps: discrete wavelet decomposition and
entropy calculation (See Figure 4). In the first step, the discrete
wavelet decomposition was performed to the given MR brain
image, and four subbands (LL1, LH1, HL1, and HH1) were
yielded. Here L and H represents the low- and high-frequency
coefficients. The LL1 was further decomposed into four smaller
subbands as LL2, HL2, LH2, and HH2. Thus, we obtain 3∗n+ 1
subbands for a n-level decomposition. In the second step, entropy
was calculated over each subband. In total, the WE can reduce
a 256 × 256 brain image to a (3∗n+ 1)-element vector. The
pseudocode of WE is listed below in Table 2.

From Table 2, we know that two factors (wavelet family
and decomposition level) are needed to perform a WE. We
will discuss the wavelet family in following section and the
decomposition level in Section Optimal Decomposition Level.

Wavelet Family
There are many wavelet families: crude wavelets, infinite regular
wavelets, orthogonal wavelets, biorthogonal wavelet pairs, and
complex wavelets. In this study, we choose a particular case of
biorthogonal wavelet pairs (Gawande et al., 2015), viz., B-splines
biorthogonal compactly supported wavelet pairs (bior, in short).
Compared to other wavelets, bior have excellent advantages
of symmetry with FIR filters (Uzinski et al., 2015), vanishing
moments for decomposition, and regularity for reconstruction.

FIGURE 4 | Diagram of a 2-level decomposition: (A) original MR brain image; (B) one-level decomposition subband; (C) two-level decomposition

subband; (D) Wavelet entropy (WE) vector. (B,C) are in wavelet coefficient domain. L, low-frequency subband; H, high-frequency subband; digits after L/H

represents the decomposition level, E, entropy; WE, wavelet entropy.
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There are many different combinations of parameters
for bior wavelets. Usually a “bior r.d” means a B-spline
biorthogonal compactly supported wavelet with reconstruction
order of r and decomposition order of d. In this study, we
choose the bior5.5 wavelet. Figures 5, 6 shows all relevant
functions of decomposition and reconstruction processes for
bior5.5.

Support Vector Machine
One-level, two-level, three-level, and four-level decompositions
of WE were submitted to support vector machine (SVM),
to find which level performs the best. SVM is a non-
probabilistic binary linear classifier (Yang, 2015b; Berikol
et al., 2016; Pal et al., 2016), which belongs to supervised
learning model used for regression or classification.
Suppose we have an A-dimensional S-sized dataset
as

{

(xn, yn)|xn ∈ R
A, yn ∈ {−1,+1}

}

, n = 1, ..., S (1)

where n is the index of data. Each xn is a A-
dimensional vector and yn represents its corresponding
class label. SVM will build a model by following
equation:

min
w,b

1

2
‖w‖2 (2)

s.t. yn (wxn − b) ≥ 1 (3)

TABLE 2 | Pseudocode of wavelet entropy.

Algorithm—Wavelet entropy (WE)

Step 1 Import the brain image

Step 2 Choose the wavelet family and decomposition level n

Step 3 Decomposition and generate (3n+ 1) subbands

Step 4 Calculate entropy over each subband

Step 5 Combine all the entropy results to a column vector and output it as the

feature

where w = [w] denotes the weights and b = [b] the
biases. Note that the distances between two hyperplanes are
2/||w||, so formula (2) indicates we need to maximize the
distance between two hyperplanes. In the meantime, equation
(3) prevents the data falling to the margin as largely as
possible.

Soft margin technique (Liu A., 2015) was further introduced
for the condition when hyperplane may not split the samples
perfectly. The model was then transformed to

min
w,ξ,b

1
2 ‖w‖

2 + ε
∑S

n=1 ξn

s.t.

{

yn (wxn − b) ≥ 1− ξn
ξn ≥ 0

, n = 1, ..., S
(4)

where ξn denotes positive slack variables and ε denotes the error
penalty. In the future, some advanced classifiers will be tested,
such as nonparallel SVM, fuzzy SVM (Yang, 2015a), kernel SVM
(Wu, 2012b), SVM decision tree (Dong, 2014), proximal SVM
(Dufrenois and Noyer, 2016), twin SVM (Wang et al., 2016), etc.

Directed Acyclic Graph
Remember SVM is only for binary classification, hence, we
introduce in the directed acyclic graph (DAG) method to
reduce our three-class task (HC, LHL, RHL) to multiple binary
classification problems. DAG technique is based on one vs. one
approach (Lee J. et al., 2016). Suppose there are in total C classes,
the DAG constructs individual classifier (IC) for each pair of
classes, so in total (C− 1)C/2 individual classifiers (Gasemyr,
2016).

After each ij-th individual classifier is trained with the i-th and
j-th class (i= 1,2, ..., C− 1, j= i+ 1, ..., C), we submit a new data
x into each trained individual classifier, obtaining the score (Lij)
of ij-th individual classifier and its output is the sign function of
the score value Lij, viz.,

oij(x) = sgn(Lij(x)) (5)

If the score Lij(x) is larger than zero, then the output oij(x) is+1,
denoting that x does not belong to j-th class; otherwise output

FIGURE 5 | Decomposition for bior5.5. (A) Scaling Function. (B) Wavelet Function. (C) Low-pass filter. (D) High-pass filter.
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FIGURE 6 | Reconstruction for bior5.5. (A) Scaling Function. (B) Wavelet Function. (C) Low-pass filter. (D) High-pass filter.

FIGURE 7 | An example of DAG Technique with C = 4. Root node and

intermediate nodes represent individual classifiers, and the leaf nodes

represented the output label.

is −1, denoting x does not belong to i-th class (Joutsijoki et al.,
2015).

Figure 7 shows an example of using DAG technique to classify
from C = 4 classes. The “1v4” individual classifier notifies that x
does not belong to 1-st class, then the “2v4” individual classifier
indicates that x does not belong to 2-nd class, finally the “3v4”
individual classifier tells that x does not belong to 4-th class.
Obviously, x belongs to 3-rd class. Our method is different from
Dietl and Weiss (2004). They employed wavelet packets and
SVMs to detect cochlear hearing loss. They classified pantonal
and high-frequency hearing loss from normal controls. However,
they did not use the imaging data.

Experiments
The CAD system was in-house developed using Matlab 2015a,
and run on IBM laptop with 3 GHz Intel i3 dual-processor and 8
GB RAM. With the help of DAG, the classifier is decomposed as

FIGURE 8 | Diagram of the DAG-SVM for the hearing loss

classification. L, LHL; R, RHL; H, HC.

three binary classification problems as shown in Figure 8. Here
we establish three classifiers, LHL-v-RHL, LHL-v-HC, and HC-
v-RHL. The three classifiers are then connected in the style of
DAG.

A 10 × 10-fold cross validation were implemented for
statistical analysis. First, we divide the dataset into 10-folds, 9-
folds for training 1-fold for validation. DAG-SVM was trained
each time and the confusion matrixes over the validation fold
were combined to form a full confusion matrix. Then, the above
procedure repeats 10 times.

The parameters of SVM are set as follows: ε equals to 0.05 by
experience, C equals to 2 since each individual SVM handles a
two-class classification problem. S varies in each run since the
sum of the sizes of nine training folds are different, but we list the
detailed statistical result in Table 4.

RESULTS AND DISCUSSIONS

Wavelet Decomposition
One, two, and three levels decomposition was implemented
over all brain images. Figure 9A shows the original brain
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FIGURE 9 | Decomposition results. (A) Original Image. (B) 1-level decomposition. (C) 2-level decomposition. (D) 3-level decomposition. (E) 4-level decomposition.

image. Figure 9B shows the 1-level decomposition with
four subbands. Figure 9C shows the 2-level decomposition
with seven subbands. Figures 9D,E show the 3-level
with 10 subbands, and 4-level with 13 subbands,
respectively.

Optimal Decomposition Level
To decide which decomposition level performs the best for
our task, we submit the generated 4, 7, 10, and 13 WEs
in the last step to the DAG-SVM classifier. The overall
accuracy was listed in Table 3 and it was defined as the
ratio between the number of correctly classified brains and
total brains. Four WEs obtains an accuracy of 92.24%, 7
WEs obtains an accuracy of 94.08%, 10 WEs obtains the
highest accuracy of 95.10%, and 13 WEs obtains an accuracy
of 94.29%.

Statistical Analysis
Table 4 illustrates how we obtain the result of 95.10% for a three-
level WE. Each row shows the results of different runs, and each
column shows the result of different folds. In the last column, we
calculated the accuracy of each run. In the last row, we averaged
the results of each run.

TABLE 3 | Classification Accuracy vs. decomposition level.

Decomposition level WE Number Overall Accuracy

1 4 92.24%

2 7 94.08%

3 10 95.10%

4 13 94.29%

Bold represents the best.

Confusion Matrix
The confusion matrix over 10 runs is drawn in Table 5.
We read the table in a row-wise way. The second row
indicates that 194 HCs are recognized correctly, 4 HCs are
recognized as LHLs, and 2 HCs are recognized as RHLs. The
third row indicates that 141 LHLs are recognized correctly,
6 LHLs are recognized as HCs, 3 LHLs are recognized as
RHLs. The final row indicates that 131 RHLs are recognized
correctly, 4 RHLs are recognized as HCs, and 5 RHLs are
recognized as LHLs. Table 6 lists the performances over each
single class (i.e., a single class versus the combination of
other two classes), which can be directly calculated from
Table 5.
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TABLE 4 | The experiment results of 3-level decomposition.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total Acc. (%)

Run 1 3 (4) 5 (5) 5 (5) 4 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 47 (49) 95.92

Run 2 3 (4) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 48 (49) 97.96

Run 3 4 (4) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 48 (49) 97.96

Run 4 4 (4) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 3 (5) 5 (5) 5 (5) 47 (49) 95.92

Run 5 4 (4) 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 5 (5) 5 (5) 5 (5) 48 (49) 97.96

Run 6 2 (4) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 5 (5) 46 (49) 93.88

Run 7 4 (4) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 48 (49) 97.96

Run 8 4 (4) 3 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 5 (5) 5 (5) 5 (5) 46 (49) 93.88

Run 9 4 (4) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 5 (5) 5 (5) 4 (5) 4 (5) 46 (49) 93.88

Run 10 4 (4) 4 (5) 5 (5) 4 (5) 4 (5) 5 (5) 4 (5) 4 (5) 5 (5) 3 (5) 42 (49) 85.71

Average 95.10

F, Fold; x(y) means our classifier correctly predicts x brains out of y brains, Acc. means the accuracy for every run, Average gives the averaged accuracy over 10 runs.

Comparison with Manual Method
We compared our method with manual method. Three
experienced observers (O1, O2, O3) with clinical experiences
longer than 10 years in neuroradiology are invited to give
decisions over those 49 subjects, and their reports are listed in
Table 7. The accuracies of three observers are of 36.73, 32.65, and
38.78%, respectively.

Comparison with State-of-the-Art Method
There are many other popular classifiers used for classifying
MR images. Kale et al. (2013) employed feedforward neural
network (FNN). Scherfler et al. (2016) used decision tree (DT)
as the classifier. Vasta et al. (2016) utilized naive Bayesian
classifier (NBC). In this study, we compared the proposed DAG-
SVM with FNN (Kale et al., 2013), DT (Scherfler et al., 2016),
and NBC (Vasta et al., 2016). The features were the same as
three-level WEs, the statistical analysis is all set to 10 × 10-
fold cross validation, and the optimal parameters of classifiers
were obtained by grid searching. The results are listed in
Table 8.

DISCUSSIONS

The WEs in Figure 9 were obtained after performing entropy
calculation over each subband, namely, 4 WEs for 1-level
decomposition, 7 WEs for 2-level decomposition, 10 WEs for
3-level decomposition, and 13 WEs for 4-level decomposition.
As it expects, more WEs will provide more information.
Nevertheless, too many WEs will deteriorate the performance
of the classifier. In this paper, we tested 4, 7, 10, and
13 WEs.

The support vectors are difficult to display due to four reasons:
(i) They are in high-dimensional feature space; (ii) The classifier
is regarded as a “black box” from the view of computer scientists;
(iii)We have three individual classifiers, and their support vectors
are different; (iv) The 10 × 10-fold statistical analysis make us
to run the classifier training 100 times, and the support vectors
at each time are different. Further, several other research teams

TABLE 5 | Confusion Matrix.

HC LHL RHL

HC 194 4 2

LHL 6 141 3

RHL 4 5 131

HC, healthy control; LHL, left-sided hearing loss; RHL, right-sided hearing loss.

TABLE 6 | Performance over each class.

Class Sensitivity Specificity Precision Accuracy

HC 97.00% 96.55% 95.10% 96.73%

LHL 94.00% 97.35% 94.00% 96.33%

RHL 93.57% 98.57% 96.32% 97.14%

HC, healthy control; LHL, left-sided hearing loss; RHL, right-sided hearing loss.

also used SVMs without displaying the support vectors (Chen
et al., 2015; Liu G., 2015; Tan et al., 2015; Chen M. Y. et al.,
2016). This is like a face recognition system that recognizes
faces quite well with a too complicated inner structure to
display.

A limitation is that the wavelet subbands are mathematically
generated, thus the results only have mathematical meaning but
they cannot implicate which brain area drives the difference
between the classes. Traditionally, scholars like to measure
the cortical thickness (Marie et al., 2016), generate gray or
white matter maps (Bonnier et al., 2016), since it carries
more information and links better between classification
performance and brain regions. But nowadays, the growth
of artificial intelligence has a trend of creating “black box”
model that let the machine extract a set of task-oriented
image features automatically (Premaladha and Ravichandran,
2016), with better classification performance than traditional
methods. Therefore, our method follows the new idea of
classification.
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TABLE 7 | Comparison of accuracy with manual interpretation.

O1 O2 O3 Our Method

36.73% 32.65% 38.78% 95.10%

O, Observer.

TABLE 8 | Classifier comparison.

Classifier Accuracy

FNN (Kale et al., 2013) 94.08%

DT (Scherfler et al., 2016) 91.84%

NBC (Vasta et al., 2016) 91.02%

DAG-SVM (Proposed) 95.10%

Table 3 shows the overall accuracy results for each
decomposition level. The results indicate 3-level decomposition
with 10 WEs performed the best with the highest accuracy
of 95.10%. Again, this falls in line with our expectation. First,
adding WEs will provide more information, which do good
to the classifier. However, too many features may confuse the
classifier. From Figure 9E, we can see that the smallest subbands
of 4-level decomposition generates is unclear and may be blurred
by neighboring subbands.

Table 6 shows that HC has a sensitivity of 97.00%, a specificity
of 96.55, a precision of 95.10%, and an accuracy of 96.73%.
LHL has a sensitivity of 94.00%, a specificity of 97.35%, a
precision of 94.00%, and an accuracy of 96.33%. RHL has a
sensitivity of 93.57%, a specificity of 98.57%, a precision of
96.32%, and an accuracy of 97.14%. We found that computer
can detect all three classes with an accuracy higher than 96%.
This indicates our method achieved excellent result. The high
accuracy stems from two facts: (i) LHL patients are different
from RHL patients (Fan et al., 2015); and (ii) SNHLs have
difference with healthy subjects in brain structures (Yang et al.,
2014). The situation was similar to the finger tipping task in
fMRI, which the activation of left hand and that of right hand
is distinctive for computers (Kuehn et al., 2015; Sun et al.,
2015).

Table 7 shows that computer programs may replace human
interpretation in terms of brain MR images. The reason why
those three experienced observers fail lies in the difference
between SNHL and HC are difficult to be perceived by human
eye, through which the brain MR images of HL patients appear
normal. The accuracies obtained by human observers are close
to baseline demonstrated this point. This also validated the
success of our CAD system, which is due to the high-sensitivity
of computers for slight pixel gray-level difference and region
atrophy.

Table 8 shows FNN (Kale et al., 2013) achieves an accuracy
of 94.08%, DT (Scherfler et al., 2016) achieves an accuracy of
91.84%, and NBC (Vasta et al., 2016) achieves an accuracy of
91.02%.We can see our method “DAG-SVM” obtains the highest
accuracy of 95.10%. The result shows the superiority of SVM to
other popular classifiers.

CONCLUSIONS

In this paper, we developed a novel CAD for detecting unilateral
hearing loss. To the best known of the authors, we are the first
to apply SVM in UHL detection. The overall accuracy of the
three-class problem is 95.10%, which offers a promising result.

In the future, we will consider other classification tasks, such
as including the classes of pan-tonal and high-frequency hearing
loss. Another research direction is to use advanced optimization
techniques to train SVM, such as hybrid genetic algorithm (Lu,
2016), biogeography-based optimization (Wei, 2015), particle
swarm optimization (PSO, Ji, 2015), chaotic adaptive PSO (Wu
J., 2016), etc.

More feature selection methods will be tested such as
displacement field (Wang et al., 2015), eigenbrain (Phillips,
2016), and fractional Fourier entropy (Sun, 2016). More
classifiers will be tested, for example, the k-nearest neighbors
(Zhou, 2016), artificial neural network (Wu X., 2016), decision
tree (Zhang, 2014), etc.
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