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Metabolic Control of Smoldering
Neuroinflammation
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University of Cambridge, Cambridge, United Kingdom

Compelling evidence exists that patients with chronic neurological conditions, which
includes progressive multiple sclerosis, display pathological changes in neural metabolism
and mitochondrial function. However, it is unknown if a similar degree of metabolic
dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it
remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia
and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of
chronic active lesions), and (i) whether these alterations underlie a unique pathogenic
phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell
metabolism and mitochondrial function govern the function of chronic active microglia
and macrophages brain infiltrates and identify new metabolic targets for therapeutic
approaches aimed at reducing smoldering neuroinflammation.

Keywords: microglia, macrophages, metabolism, immunometabolism, mitochondria, smoldering inflammation,
progressive multiple sclerosis

INTRODUCTION

Cellular metabolism is at the foundation of all biological activities (1). While the metabolic processes
that support cellular bioenergetics and survival have been extensively studied (2, 3), the role of
metabolism in guiding complex cellular functions is yet to be completely understood. Extensive
metabolic rewiring occurs in cells to adapt to the local microenvironment in physiological
conditions (4), during development (5), and in conditions of disease (6), as cells try to preserve
their functions under the shifting availability of energetic substrates.

In this review, we discuss how the regulation of nutrient uptake and consumption is regulated in
myeloid cells, when instructed by physiological cues, and as they undergo polarisation in the context
of neuroinflammation. Specifically, we highlight how the regulation of their metabolism changes
homeostatic cell activities to guide cell activation and signalling in the persistently inflamed central
nervous system (CNS).

SMOLDERING NEUROINFLAMMATION IN PROGRESSIVE MS

Multiple sclerosis (MS) is a chronic inflammatory condition of the CNS that is characterized by
demyelination with axonal and neuronal degeneration (7). Most MS patients (~85%) present a
relapsing-remitting course (RR), while the remaining ~15% show a primary progressive (PP) disease

Frontiers in Immunology | www.frontiersin.org 1

June 2021 | Volume 12 | Article 705920


https://www.frontiersin.org/articles/10.3389/fimmu.2021.705920/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.705920/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lp429@cam.ac.uk
mailto:spp24@cam.ac.uk
https://doi.org/10.3389/fimmu.2021.705920
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.705920
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.705920&domain=pdf&date_stamp=2021-06-23

Peruzzotti-Jametti et al.

Metabolic Control of Smoldering Neuroinflammation

course characterised by continuous neurological deterioration
without definable relapses (8). As the disease evolves, the
majority of RR MS patients also advance to a secondary
progressive (SP) disease course, usually after 15-20 years from
disease onset (9). Despite great successes in the development of
therapies for RR MS and disease-modifying therapies that delay
the conversion to SP MS (10), progressive MS patients still have
limited treatment options (9, 11, 12). Unfortunately, effective
treatment of progressive MS remains elusive due to the
occurrence of specific degenerative mechanisms that
characterize progressive MS, which are distinct from RR MS
and are not sufficiently targeted by the approved
immunomodulatory compounds (9).

In RR MS, active plaques predominate, and lesions show a
diffuse perivascular and parenchymal T cell infiltration that is the
substrate of clinical attacks (13). However, as the disease evolves,
there is a shift from a T cell mediated adaptive immune response
towards an innate immune activation (13, 14). In fact,
progressive MS, like many other neurodegenerative CNS
diseases [such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), and Huntington’s disease], is characterized by a persistent
state of CNS inflammation that is driven by myeloid cell
activation (8, 15-18).

In progressive MS, myeloid cells are present in the normal
appearing white matter (NAWM), in subpial cortical lesions,
and, most importantly, in smoldering plaques (13, 19).
Smoldering plaques are histopathologically defined as slowly
expanding lesions that are characterized by a rim of activated
myeloid cells and a slow expansion of the pre-existing plaque
edge (19, 20). Here, increased activation of myeloid cells
correlates with demyelination and axonal loss, leading to
higher clinical disability in patients with progressive MS (8, 14,
18). Indeed, current magnetic resonance imaging (MRI) tools
aimed at assessing chronic active and smoldering lesions have
emerged as a diagnostic tool to predict secondary disease
progression (21, 22), as well as clinical progression in PP MS
patients (23).

These data suggest that a slowly expanding, myeloid-
mediated, smoldering neuroinflammation is the core feature
from which progression starts and evolves in MS. Therefore,
understanding the mechanisms underpinning chronic myeloid
cell activation in the CNS may hold the promise of identifying
new targets to treat and/or delay disease progression (24).

MYELOID CELLS DYNAMICS IN
NEUROINFLAMMATION

Far from being a homogenous cell population, the cellular
makeup of CNS myeloid cells is instead spatially and
temporally heterogenous, being under tight regulation by
(patho)physiological cues that determine beneficial and/or
detrimental immune cell activation (25). Recent single cell
technologies have unveiled how the immune landscape of

the brain drastically changes with fluctuations in the
neuroinflammatory status (26).

In the healthy CNS, immune function is exclusively attributed
to parenchymal and extra-parenchymal myeloid cells. Within
the brain parenchyma, the most immune-privileged
compartment of the CNS, the only resident myeloid cells are
microglia (27). Microglia are specialized macrophages that are
seeded into the brain from the extra-embryonic yolk sac during
embryogenesis (28), and they have key roles in synaptic pruning,
phagocytosis, and immune surveillance (29). During early CNS
development, microglia are distinguished by several unique
transcriptional markers (Argl, Rrm2, Ube2c, Cenpa, Fabp5,
Sppl, Hmoxl1, and Ms4a7) associated with cell cycle,
phagocytosis, lipid metabolism, and surveillance, which
highlights the ongoing maturation of these cells (30). Microglia
exhibit dynamic heterogeneity that fluctuates throughout the life
of the mouse with the highest diversity occurring in the
developmental stage, followed by a decline during adulthood,
and increased heterogeneity during CNS diseases (30). In fact,
during CNS maturation, healthy adult parenchymal microglia
lose their developmental heterogeneity and begin to express
“homeostatic” markers (P2ryl2, Fcrls, Clqa, Selplg, and
Tmem119) related to lipid metabolism and immune cell
interaction (30-32). Interestingly, this transition is seemingly
regulated by Maf bZIP transcription factor B (MAFB), which
controls myeloid cell differentiation and cellular responses to
viral infection (31).

Within the CNS borders, such as the dural meninges, the
cellular make-up is mostly dominated by T and B cells with a
minority of cells constituting macrophages and monocytes. This
diverse and complex immune surveillance network facilitates the
interaction between lymphocytes and macrophages at specialized
immune hubs located along the dural sinuses (33). Border-
associated macrophages (BAMs) [also known as CNS-
associated macrophages] localized in the leptomeninges,
perivascular space, and choroid plexus, are responsible for
immune surveillance, together with a small proportion of other
immune cells, such as dendritic cells (DCs) and neutrophils (34).
BAMs share similar transcriptional markers with microglia [AifI
(encoding Ibal), Csflr, and Cx3crl] (30, 35) and some
transcriptional signatures of developing microglia overlap with
BAM clusters (Ms4a7, Ccrl, and Mrcl), possibly suggesting
ongoing maturation status (30).

In the context of neuroinflammation, the brain immune
landscape drastically changes. In mice affected by experimental
autoimmune encephalomyelitis (EAE), an animal model of MS,
the CNS is predominantly populated by short-lived infiltrating
cells (Ly6Chi and Ly6Clo monocyte-derived cells [MdCs]) and T
cells that infiltrate during the acute phase of disease through a
“leaky” blood-brain barrier (BBB) (34). Here, BAM cell numbers
decrease and their phenotype becomes more homogenous, with
nearly all BAMs exclusively expressing MHCII and CD38 (34).
At the peak of disease, microglia downregulate homeostatic
markers and shift their phenotype towards a pro-inflammatory
state whereby they overexpress IFN-y-responsive genes [H2
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(encoding MHCII) and Scal], which imply increased microglia-
T cell interactions. Exclusively to the peak phase of EAE, four
sub-populations of disease associated microglia (DAM) emerge
(daMG1-4), which are distinguished by their unique expression
patterns of chemokines, cytokines, and cysteine proteases (36).
Although all four populations are specific to EAE, only three are
identified within demyelinating lesions (daMG2-4) and exhibit
similar downregulation of homeostatic genes (P2ry12'°,
Tmem119'°, Md1™). DaMG2 upregulates Cd74, Ctsb, and Apoe
but proliferate less compared to the daMG3, whereas daMG3
expresses high levels of Cxcl10, Tnf, and Ccl4. Finally, daMG4
overexpress Ccl5, Ctss, and Itm2b (36). Further studies
investigating myeloid cells in chronic EAE are required to
understand whether these daMG profiles are transient.
Nonetheless, similar findings are observed in the brain of
patients with MS, where specific DAMs downregulate the
expression of homeostatic genes (TMEMI119, P2RY12, and
SLC2A5) and upregulate APOE and MAFB in late-active
demyelinating lesions (37). These clusters were highly enriched
in CTSD, APOCI1, GPNMB, CD74, HLA-DRA, and HLA-DRB,
which further supports the notion of increased microglial
heterogeneity during CNS insult not only in EAE but also in
the MS brain (38). Of note, analogous DAM transcriptional
changes are also confirmed in the 5xFAD animal model of AD,
cuprizone-mediated demyelination, and facial nerve axotomy
where downregulation of canonical microglial genes (P2ry12/13,
Cx3crl, Tmem119) is coupled with the upregulation of genes
related to phagocytosis and lipid metabolism (Apoe, Lpl, Cst7,
Ctsd, Tyrobp, and Trem2) (26).

Understanding how these unique, disease-specific, microglial
phenotypes can be targeted to promote a beneficial phenotype
that ultimately ameliorates smoldering CNS inflammation is a
current research challenge that will certainly uncover new
therapeutic avenues.

GLUCOSE AND GLUTAMINE
METABOLISM

Strong evidence has revealed that changes in the reactive states of
macrophages and microglia can be regulated by their cellular
metabolism (24). How the unique metabolic environment of the
brain regulates the effector function of myeloid cells in
health and disease is only now starting to be uncovered.

The CNS has intrinsic high metabolic demands associated
with neural activity, as ~20% of the body’s glucose and oxygen
is used by the CNS, despite only accounting for 2% of the
total body weight (39). Glucose is shuttled from the blood
via specialized glucose transporters (GLUTs) to provide
fuel for cellular functions (40). Despite the high utilization of
glucose by the CNS, only a small pool of nutrient reserves
is stored as glycogen (41, 42). Therefore, tight regulation
of glucose metabolism is critical for brain physiology, as
disturbed glucose metabolism may contribute to several
neurodegenerative diseases (43, 44).

Microglia require a large amount of energy to perform
homeostatic functions. This is accomplished by microglia
preferentially utilizing glucose as the main source of metabolic
fuel, which is transported into microglia primarily by GLUT1, 3,
and 5 (45, 46) to support oxidative metabolism. In oxidative
metabolism, glucose is broken down into pyruvate through
glycolysis, which is shuttled into the mitochondria where it is
utilized by the tricarboxylic acid cycle (TCA) to drive oxidative
phosphorylation (OXPHOS); ultimately producing adenosine
triphosphate (ATP) (47) (Figure 1). Oxidative metabolism is
the primary source for energy of microglia under homeostasis, as
shown by transcriptomic analysis of ex vivo isolated mouse brain
microglia, which express the full complement of genes required
for both glycolytic and oxidative energy metabolism (48, 49). The
ability of microglia to utilize glucose as a primary substrate for
energy production has been mainly investigated in vitro.
Primary rat microglia and the BV2 microglial cell line cultured
in the presence of 2-deoxyglucose (2DG), which inhibits
hexokinase 2 (HK2) and blocks glycolysis, leads to ATP
depletion and cell death (50), indicating a reliance of microglia
on glucose utilization for normal functioning. During
experimental glucose starvation, primary microglia isolated
from CD-1 IGS mice and the BV2 microglial cell line are able
to maintain oxidative metabolism using other available substrates
(glutamine, lactate, pyruvate, ketone bodies) (51). The reliance of
microglia on oxidative metabolism through glucose has been
recently confirmed in vivo in mice. Using endogenous
fluorescence lifetime imaging (FLIM) of intracellular
nicotinamide adenine dinucleotide phosphate (NADPH), as
well as time-lapse two-photon imaging, microglia have been
observed to maintain a glycolytic profile under resting
conditions (52). Further, in conditions of aglycemia, microglia
switches from glycolysis to glutaminolysis of extracellular
glutamine, a major substrate for the generation of both
excitatory and inhibitory neurotransmitters (53), in a
mechanistic target of rapamycin (mTOR)-dependent manner to
maintain OXPHOS and their immune surveillance functions (52).
This suggests that microglia display bioenergetic versatility and,
like peripheral macrophages, possess the ability to adapt its
metabolic pathways to use substrates available in the local
environment (51).

The ability of macrophages to shift or reprogram their
metabolism to changes in the microenvironment is a key
feature that underlies the complex, long-term changes of these
cells under inflammatory conditions. In fact, immune cell
polarization after inflammatory activation leads to drastic
reprogramming of cellular metabolism pathways. A key finding
is that macrophages exposed to an inflammatory stimulus shift
their metabolism from oxidative metabolism to aerobic glycolysis
(54), with a concomitant increase in the enzymatic activity of
enzymes involved in glucose metabolism (55) and several
transcription factors, including hypoxia-inducible factor-1
alpha (HIF1o) and mTOR (56) (Figure 1). This metabolic
switch occurs when macrophages are first faced with an
immune challenge to support and enable the rapid production
of ATP (57) - regardless of the availability of oxygen - which is
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FIGURE 1 | Glucose metabolism in microglia under homeostatic and inflammatory conditions. Under homeostatic conditions, extracellular glucose is transported
into microglial cells through specialized glucose transporters, where it is converted into pyruvate through cytoplasmic glycolysis. Pyruvate is then actively transported
across the mitochondrial membrane to drive the TCA cycle. The energy and metabolites produced in the TCA cycle can then support the expression of the
homeostatic microglial genes P2ry12 and Tmem119, which facilitate microglial functions of synaptic pruning and immune surveillance. In pro-inflammatory conditions,
microglia have a broken TCA cycle and increase the expression of membrane transporters to facilitate the uptake of glucose and glutamine, thus driving enhanced
glycolysis and glutaminolysis. Glycolysis is supported by increased expression of the rate-limiting enzymes of glycolysis HK2 and PFKBPS. This leads to the
increased generation of lactate and ATP to compensate for the broken TCA cycle, and shunting of metabolites into the pentose phosphate pathway. The increased
glycolysis is sustained by the activation of nuclear transcription factors HIF 1o and mTOR that support the synthesis and production of cytokines for secretion. Green
arrows = homeostatic effects. Red arrows = pro-inflammatory effects. GLUT, glucose transporter; TCA, tricarboxylic acid cycle; GLT, glutamate transporter; HK2,
hexokinase 2; PFKBP3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphate-3; HIF1c, hypoxia inducible factor 1 o; ATP, adenosine triphosphate; mTOR,
mechanistic target of rapamycin; TNFo, tumor necrosis factor alpha; 111, interleukin-1p; 116, interleukin-6.

similar to the Warburg effect described in cancer cells (58). Here,
the increased consumption of glucose by activated macrophages
leads to the generation of downstream products, such as glucose-
6-phosphate and pyruvate, which feed into the pentose
phosphate pathway (PPP) and TCA cycle, respectively. The
PPP facilitates the synthesis of proteins, nucleotides, and
reactive oxygen species (ROS) to support cellular function
during immune challenge (59).

Despite the extensive study of metabolic reprogramming in
macrophages during inflammation, very little emphasis has yet
been placed on assessing metabolism in microglia under
neuroinflammatory conditions. Early studies investigating the

links between metabolism and microglial activation identified
metabolic modifications similar to those observed in peripherally
activated macrophages, such as a shift from oxidative
metabolism towards a more glycolytic profile after exposure to
pro-inflammatory stimuli such as the toll-like receptor (TLR)
ligand lipopolysaccharide (LPS). BV2 microglia treated with LPS
exhibit increased lactate production and decreased
mitochondrial ATP production, which is indicative of a shift to
glycolysis (60). Another study confirmed the increased glucose
consumption and glycolytic enzyme activity in parallel with
increased anaerobic glycolysis and PPP utilization following
LPS and IFN-y treatment (61). Mouse primary microglia
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treated with IFN-y result in a metabolic switch towards glycolysis
and the retention of iron nanoparticles that is thought to be
driven by 6-phosphofructo-2-kinase/fructose-2,6-biphosphate
(PFKFB)3, an enzyme involved in glycolysis (62). The
treatment of primary microglia with LPS for 24 hours also
causes a shift from OXPHOS to glycolysis (63), which is
mediated through the activation of the mTOR pathway and
leads to enhanced ROS production (64). The metabolic switch is
abolished following the addition of the phosphatidylinositol 3’-
kinase antagonist LY294002, rapamycin or torinl, which all
suppress the phosphorylation of mTOR (64). Further, 2DG
treatment of primary mouse microglia in parallel with LPS
stimulation inhibits glycolysis with subsequent downregulation
of LPS-induced genes (Il6, Il11f3, and Nos2) and cytokine
production (IL-6 and IL-1B) (65). Recently, primary mouse
microglia treated with IL-1B and IFN-y for 24 hours not only
exhibit increased glucose metabolism but also glutamine
metabolism through glutaminolysis. Interestingly, within this
same study, human microglia-like cells differentiated from
pluripotent stem cells treated with LPS for 24 hours exhibit
increased PFKB3 gene expression and increased glycolysis. The
use of two-photon FLIM imaging to interrogate the metabolic
signatures of individual microglia in acutely prepared mouse
hippocampal slices exposed to LPS revealed an increase in
aerobic glycolysis in microglia that is blocked by the addition
of 2DG (5 mM) (66).

BV2 microglia, and the B6M7 microglial cell line, treated with
LPS and IFN-y exhibit the expected metabolic shift towards
enhanced glycolysis and increased gene expression of GLUTI.
The inhibition of GLUT1 with STF31 in pro-inflammatory
conditions specifically prevents the increase in microglial
glucose uptake and attenuates the upregulation of
inflammatory cytokines TNF-co, IL-1fB, IL-6, and CCL2 in
vitro, whereas an intraperitoneal injection of STF31 in a mouse
model of light-induced retinal degeneration leads to reduced
microglia activation and retinal degeneration in vivo (46). In BV2
and primary mouse microglia cultured in a hypoxic environment
(1% oxygen), HK2, the first rate-limiting enzyme in glycolysis, is
increased and correlates with enhanced glycolysis (67). Here, the
pharmacological inhibition of HK2 with lonidamine impairs the
activation profiles of both BV2 and primary microglia under
hypoxia. HK2 blockade prevents ischemic brain injury by
repressing microglia mediated neuroinflammation in a rat
experimental model of stroke in vivo (67).

These studies suggest that under inflammatory conditions,
microglia exhibit an increased glycolysis to OXPHOS ratio,
similarly to what occurs in peripherally activated macrophages
and during the Warburg effect of cancer cells. In summary, these
studies strongly indicate that microglial polarization results in
significant changes in the preferred metabolic pathway, from
oxidative metabolism in homeostasis to a reliance on glycolysis
and glutaminolysis in pro-inflammatory states.

Therefore, focusing on small molecules and/or drugs that
promote oxidative metabolism over glycolysis will have profound
impacts in the way we approach neuroinflammatory and
neurodegenerative conditions.

LIPID SENSING AND SIGNALLING IN
MYELOID CELLS

Lipids are fundamental building blocks of cell membranes and
myelin in the brain (68-70). In the context of CNS damage,
including demyelinating diseases, lipids play a key role in
modulating inflammatory responses and contribute to
metabolic dysfunction, which is an important aspect of disease
pathophysiology (71, 72). In particular, the metabolism of lipids
is central to both homeostasis and inflammatory responses in
CNS myeloid cells, where it plays vital roles in respiration,
activation, inflammatory signalling, migration, and
phagocytosis (70, 73). Indeed, recent transcriptomics studies
have provided indirect evidence supporting drastic changes in
the lipid metabolism of activated microglia, as seen by the
upregulation of lipid metabolism genes such as Trem2, Apoe,
Sppl, Cts7, Lpl, and Fabp5 under inflammatory conditions (30,
70, 74, 75). However, the role of these genes and pathways is still
under investigation, especially in diseases where myelin
deposition in the CNS parenchyma can exceed the lipid
processing capacity of myeloid cells (Figure 2) (73, 76, 77).

The basis of the myeloid cell response to lipids is determined by the
carefully regulated composition of phospholipids (PLs) in the cell
membrane. PLs are formed from two fatty acids (FAs), a phosphate
group, and a glycerol or sphingosine molecule. While they are best
known as major components of the cell membrane, PLs are also critical
for vesicle formation, apoptosis, and as metabolic intermediates for the
production of both pro- and anti-inflammatory molecules (70).
Sphingosine containing PLs, also known as sphingolipids, are
prominent signalling molecules in the CNS. Sphingosine-1-
phosphate (S1P), derived from the phosphorylation of sphingosine,
can act as an intracellular intermediate for complex sphingolipid and
phosphatidylethanolamine (PE) synthesis or can be released from the
cell where it can act via autocrine or paracrine signalling through five
different G-protein coupled receptors (SIPR;_s) (78, 79). The exact
role of S1P signalling in myeloid cells remains unclear. The
treatment of LPS stimulated mouse primary microglia with the
S1P structural analog fingolimod, results in the downregulation of
pro-inflammatory cytokines and the upregulation of brain-derived
neurotrophic factor and glial-derived neurotrophic factor (80).
However, in vitro evidence suggests that both S1P and fingolimod
act via astrocytes, rather than myeloid cells or neurons, to suppress
chronic neuroinflammation (81, 82). Other data suggests,
instead, that signalling through S1PR, ; activates the NF-xB
pathway and polarizes microglia towards a pro-inflammatory,
amoeboid phenotype in vitro and in mouse models of cerebral
ischemia (83-86). Ultimately, further research is required to
elucidate the myeloid-specific role of SIP signalling in
chronic neuroinflammation.

Myeloid cells express specialized scavenger receptors
(SCARs) that sense and uptake extracellular lipids, including
FAs. The class-B SCAR CD36, also known as FA translocase, is a
phagocytic receptor that is widely expressed on microglia and
peripheral myeloid cells to facilitate long chain FA uptake and
low-density lipoprotein binding (87). Under demyelinating
neuroinflammatory conditions, such as MS, CD36 is necessary
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for the phagocytosis of myelin debris (88, 89). Here, myelin
internalization promotes anti-inflammatory lipid-responsive
signalling pathways, like the peroxisome proliferator-activated
receptor-y (PPARY) pathway, which in turn upregulates CD36
(88,90, 91). This further supports the notion that CD36 serves an
anti-inflammatory role as pro-inflammatory microglia have been
demonstrated to downregulate CD36 in vivo (91) and the in vitro
inhibition of CD36 in microglia and bone marrow-derived
macrophages (BMDMs) promotes inflammation while

FIGURE 2 | Lipid metabolism in microglia under homeostatic and inflammatory conditions. In microglia, CD36 and TREM2 play a key role in the response to
extracellular lipids. CD36 promotes lipid-responsive signalling pathways (like the PPARy and LXR pathways), which in turn increase FAO and further upregulate Cd36.
TREM2 activation (via ligands such as ApoE) results in the suppression of homeostatic microglial genes (P2ry12, Tmem119, and Cx3cr1), the activation of mTOR
signalling, and the upregulation of lipid processing genes (such as Apoe, Lpl, and Fabp5). Despite mMTOR increasing both FAS (through the cleavage and activation of
SREBP-1) and glycolysis (which are canonically associated with a pro-inflammatory activation of myeloid cells), it appears that the role of TREM2 is to support
correct lipid metabolism. In fact, TREM2 deficient microglia show the formation of intracellular cholesterol crystals that activate the inflammasome pathway. On the
contrary, the downstream gene Fabp5 seems to play a key role in determining the pro-inflammatory activation of myeloid cells, possibly via inhibition of PPARy
signalling and FAQ. In pro-inflammatory microglia, a broken TCA cycle is coupled with an upregulated mitochondrial CIC, which increases citrate export from the
mitochondria to the cytosol, where it is converted into acetyl-CoA for FAS by ACLY. The resultant increase in FAS supports the expansion of the ER and Golgi, and
the increased production of pro-inflammatory cytokines. Green arrows = homeostatic effects. Red arrows = pro-inflammatory effects. PPARY, peroxisome
proliferator-activated receptor vy; LXR, liver X receptor; FAO, fatty acid oxidation; mTOR, mechanistic target of rapamycin; FAS, fatty acid synthesis; ACLY, ATP citrate
lyase; CIC, citrate carrier; TCA, tricarboxylic acid cycle; SREBP-1, Sterol regulatory element binding protein 1; TYROBP, TYRO protein tyrosine kinase-binding
protein; TREM2, Triggering receptor expressed on myeloid cells 2; Lpl, Lipoprotein Lipase; P2ry12, Purinergic Receptor P2Y12; Tmem119, Transmembrane Protein

reducing anti-inflammatory signalling pathways [e.g., PPARY
and liver X receptor] (88).

Another extracellular lipid sensing molecule with
implications for chronic neuroinflammation is triggering
receptor expressed on myeloid cells 2 (TREM2). TREM2 is a
microglia-specific transmembrane receptor with several
proposed ligands including ApoE (92), anionic or zwitterionic
lipids, PL (93), PE, and phosphatidylserine, which become
exposed on the cell surface during apoptosis (94). The binding
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of TREM2 to extracellular ligands results in the suppression of
homeostatic microglial genes and a shift towards an activated
phagocytic state (74, 75). It also leads to the activation of mTOR
signalling, a pathway that has critical implications for both
glycolysis (95) and lipid metabolism (95). In fact, TREM2 has
emerged as an innate immune receptor that impacts microglia
metabolism through the basic activation of mTOR signalling,
which supports long-term cell trophism, survival, growth, and
proliferation rather than drastic metabolic reprogramming (95).
A recent study used cell type-specific lipidomics to demonstrate
that TREM2 is not necessary for myelin uptake by microglia,
rather it is required for the upregulation of lipid processing genes
involved in lysosome function, cholesterol transport, and
cholesterol metabolism, such as Apoe and Lpl (96, 97). Global
TREM?2 deficiency hinders the efflux of cholesterol from
microglia in vitro and in vivo and enhances the neurotoxic
effect of cuprizone in mouse models of chronic demyelination (96).

Therefore, defective lipid metabolism in TREM2 deficient
microglia could result in the accumulation of intracellular
cholesterol crystals that damage lysosomes and activate the
inflammasome pathway (76).

Understanding the link between lipid sensing, uptake, and
intracellular metabolism is therefore key in identifying further
targets for therapeutic approaches aimed at resolving
chronic inflammation.

LIPID METABOLISM

FAs are transported into mitochondria and used to fuel
mitochondrial OXPHOS, a process known as fatty acid f3-
oxidation (FAO) (Figure 2). Changes in FAO in response to
inflammatory mediators has been well characterized in peripheral
macrophages (98), and more recent studies in microglia have
drawn many parallels between these myeloid cells. In peripheral
macrophages in vivo, alternative activation via IL-4 increases
FAO through PPARY signalling (99). Alternatively activated
microglia also increase FAO (61, 100), but the involvement of
PPARy signalling has yet to be confirmed. Most importantly,
increasing FAO reduces the response to inflammatory
perturbations such as LPS in SIM-A9 mouse microglia cells
(101), while the inhibition of FAO in human macrophage-
differentiated THP-1 monocytic cells (102) and mice microglia
in vitro and in vivo (103) has the opposite effect. Therefore, FAO
positively regulates anti-inflammatory responses possibly by
minimizing FA metabolites that cause endoplasmic reticulum
(ER) stress and act as precursors of pro-inflammatory molecules
(70). In line with this, a deficiency in lipoprotein lipase (LPL), a
catalyst for the release of FAs that is required for FAO in
microglia, causes a shift in microglia metabolism towards
glycolysis and increased pro-inflammatory activation (100).

In addition to LPL, lipid metabolism for processes such as
FAO can be facilitated through fatty acid binding proteins
(FABPs). FABPs are a family of 14-15 kilodalton (kDa) lipid
chaperones that reversibly bind hydrophobic molecules, including
FAs, and transport them to specific nuclear compartments (104).

In homeostasis and activation, peripheral myeloid cells express
the FABP isoforms FABP4 and FABP5 (105). Microglia express
FABP5 only during development or upon activation (30),
suggesting a specific role for FABP5 in activated microglia,
which has yet to be discerned. In another type of immune cell,
regulatory T cells (Treg), FABP5 loss of function results in
decreased OXPHOS and impaired lipid metabolism, ultimately
increasing Treg IL-10 production and promoting Treg
immunosuppressive activity (106). Furthermore, FABP5
inhibition in CD4" T cells increases PPARY expression and
skews T cell differentiation away from effector T cells (e.g., Thl,
Th17) and towards Tregs in vitro (107). The same study found
that systemic FABP5 inhibition reduces inflammation and
improves clinical scores in mouse models of EAE (107). In
FABP5 knock out BMDMs, stimulation with inflammatory
(LPS and IEN-y) or anti-inflammatory (IL-4) mediators results
in significantly higher expression of anti-inflammatory factors
(105, 108). These findings suggest that loss of FABP5 function
promotes anti-inflammatory responses in macrophages. Thus,
while little is known about the role of FABP5 in microglia, it
represents an interesting target that could be manipulated to
alter PPARY signalling and lipid metabolism to reduce
chronic neuroinflammation.

Fatty acid synthesis (FAS) is the generation of FAs from the
breakdown of the metabolite acetyl-CoA and co-factor NADPH
by fatty acid synthases and acetyl-CoA carboxylase in the
cytoplasm. Acetyl-CoA is generated from citrate via the
cytoplasmic enzyme, ATP citrate lyase (ACLY), which is
activated in inflammatory macrophages (109). Of note, the role
of some of these players can be ambivalent, as IL-4 stimulation of
macrophages activates Akt-mTORCI pathway to phosphorylate
and activate ACLY, leading to increased histone acetylation and
the upregulation of a subset of M2 genes (110). Myeloid cells
challenged with LPS increase FAS through a combination of
metabolic and transcriptional pathways. Metabolically, in vitro
macrophages isolated from histiocytoma and treated with LPS
were shown to upregulate mitochondrial citrate carrier (CIC),
which exports citrate to the cytosol where it is converted into
acetyl-CoA, which is then available for FAS (111). It is also
known that LPS increases glycolysis in macrophages, driving flux
through the PPP which increases the availability of NADPH for
FAS (112, 113). Transcriptionally, LPS activation has been
demonstrated to activate mTOR signalling in primary rat
microglia and mouse N9 microglia cell lines (114). mTOR
activation has been widely shown to increase FAS through the
cleavage and activation of sterol regulatory element-binding
protein-1, the transcriptional regulator of lipogenesis (112, 113).

Together, the resultant increase in FAS supports the
expansion of the ER and Golgi, allowing for increased
production of pro-inflammatory cytokines such as IL-6, TNFo,
and IL-12 (115). The disruption of FAS reduces both ER and
Golgi expansion and pro-inflammatory cytokine secretion in
DCs (115), but these findings have yet to be confirmed in
myeloid cells.

The emerging field of lipidomics, the improvement of
complimentary high throughput techniques, and additional
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experimental work aimed at assessing the fate of lipids in
intracellular organelles (e.g., mitochondria) will reveal exciting
roles for lipid metabolism in regulating myeloid cell function
and, ultimately, chronic neuroinflammation.

MITOCHONDRIAL DYNAMICS IN
MYELOID CELLS

Mitochondrial dynamics in tissues, including the CNS and the
immune system, are regulated by complex mechanisms (116,
117). Far from being isolated organelles inside cells,
mitochondria participate in an active network that is regulated
by the local events of fission and fusion, as well as a global control
through cellular signalling and metabolic pathways (118).

Fission is mainly controlled by the GTPase dynamin-related
protein 1 (DRP1), which is further regulated by several adaptor
proteins, such as the mitochondrial fission factor, as well as the
mitochondrial dynamics proteins of 49 and 51 kDa and the
mitochondrial fission 1 protein (119). DRP1 functions by
assembling into oligomeric spirals that constrict and cut the
mitochondrion apart by working in concert with dynamin-2
(120). DRPI activity is further controlled by post translational
modifications whereby phosphorylation of serine (Ser) residues
Ser 638 or Ser 616 blocks or enhances mitochondrial fission,
respectively (121, 122). Fusion is a two-step process that is
regulated by the dynamin-like GTPases mitofusin 1/2 on the
outer mitochondrial membrane and optic atrophy 1 (OPA1) on
the inner mitochondrial membrane. Long forms (L-OPA1) are
proteolytically cleaved by peptidases to generate short forms (S-
OPA1) to balance fusion (123). Given its location within the
inner mitochondrial membrane, OPA1 plays a key role in
maintaining cristae morphology, mitochondrial DNA
(mtDNA), and supercomplex assembly (124). It is this fine
balance between fission and fusion events that regulates key
cellular processes, including mitophagy, mitochondrial
transport, calcium homeostasis, and mitosis/apoptosis, thus
modifying cell metabolic states via a bidirectional cross
talk (125).

Upon pro-inflammatory activation, myeloid cells undergo
major changes in the structure and function of their
mitochondrial network that are linked with extensive
metabolic rewiring (Figure 3). Activated amoeboid microglia
in demyelinated cerebellar white matter show greater numbers of
small and short mitochondria than the ramified microglia in
wild-type (WT) mice suggesting a link between mitochondrial
fission and microglial cell activation (126). Interestingly, these
changes seem to partially differ between macrophages and
microglia during neuroinflammation. Using Ccr2rfp/*:
Cx3crlgfp/*mice, in which tissue-resident microglia and
infiltrating monocyte-derived macrophages were labelled with
green fluorescent protein and red fluorescent protein
respectively, microglia are described to have longer and thinner
mitochondria and spherical nuclei than monocyte-derived
macrophages in spinal cord tissues at the onset of EAE (126).

Interfering with the mitochondrial dynamics of microglial
cells has shown to affect their activation both in vitro and in vivo.
In vitro studies suggest that LPS induces mitochondrial
fragmentation in microglia via DRP1 signalling thus inducing
mitochondrial ROS (mtROS) generation (126). Treating
microglial cells in vitro with mitochondrial fission inhibitor 1
(Mdivi-1), an inhibitor of DRPI, blocks LPS-induced
mitochondrial fragmentation and increases mitochondrial
membrane potential, ROS production, and accumulation of
intracellular TCA cycle intermediates (e.g., succinate), which is
indicative of impaired OXPHOS (63). In vivo, microglia isolated
from the brains of animals following induction of systemically
driven neuroinflammation and con-current treatment with
Mdivi-1 (from P1 to P3) show attenuated expression of genes
related to pro-inflammatory activation (e.g., iNOS, Ptgs2)
suggesting that controlling mitochondrial fission in vivo may
intrinsically recue microglial activation (63).

Thus, modulating the mitochondrial dynamics of myeloid
cells may also have extrinsic effects on neighbouring CNS cells.
Indeed, fission events followed by the release of fragmented and
dysfunctional microglial mitochondria propagate neuronal death
through activation of naive astrocytes to the neurotoxic Al state
(127). Following from this model, regulating fission and fusion in
microglia might reduce the release of dysfunctional extracellular
mitochondria, thus lessening the propagation of damage from
activated microglia to astrocytes and from astrocytes to neurons.
This mechanism is strictly dependent on the altered function of
extracellularly released mitochondria, as intact extracellular
astrocytic mitochondria instead provide neuroprotection (127-
129). Recent work from our group has shown that delivering
functional extracellular mitochondria (via extracellular vesicles)
is effective in re-establishing normal mitochondrial function in
myeloid cells in vitro and in vivo during neuroinflammation
(130). Further studies will be needed to identify the applicability
of these findings to the cure of progressive MS and other
neurodegenerative disorders (131).

MITOCHONDRIAL METABOLISM OF
MYELOID CELLS

Inhibition of mitochondrial respiration drives the pro-
inflammatory activity of myeloid cells and prevents their
repolarization to an anti-inflammatory phenotype (132).
Reduced OXPHOS is linked with major changes to the
mitochondrial metabolism that drive diverse intracellular and
extracellular signalling functions (Figure 3) (24).

The mitochondrial metabolism of myeloid cells has been
thoroughly characterized in vitro using pro-inflammatory
BMDMs. Carbon flux analyses have identified two “breaks” in
the TCA cycle: one at the level of isocitrate dehydrogenase
(IDH), the enzyme that converts isocitrate to o-ketoglutarate
(KG) and another at the level of succinate dehydrogenase
(SDH), which regulates the oxidation of succinate to fumarate
(133). These breaks are partially compensated for via an
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FIGURE 3 | Pro-inflammatory conditions lead to morphological and functional mitochondrial alterations of microglia. Microglia in homeostatic conditions have intact
mitochondria with a functioning TCA cycle and conserved fusion of the mitochondrial network through OPA1 and MFN1/2 activities. Succinate signalling through
SUCNR1 in homeostasis is presumably low, but its signalling functions in resting microglia are currently undefined. In pro-inflammatory conditions, mitochondria
undergo DRP1-mediated fission and fragmentation, and show two breaks in the TCA cycle that lead to the intracellular accumulation of specific metabolites (such as
succinate, citrate, and itaconate). Succinate accumulation within mitochondria can drive RET, which produces excessive mtROS through complex I. This
mitochondrial dysfunction creates a pseudohypoxic state that leads to the stabilization of HIF1ow and enhances cytokine production and secretion. Both fragmented
mitochondria and succinate can be released into the extracellular environment where succinate can signal in an autocrine or paracrine manner via SUCNRT, thus
modulating both anti-inflammatory and pro-inflammatory effects. Green arrows = anti-inflammatory effects; red arrows = pro-inflammatory effects. SUCNR1,
succinate receptor 1; TCA, tricarboxylic acid cycle; OPAT, optic atrophy 1; MFN1/2, mitofusin 1/2; DRP1, dynamin-related protein 1; Cl, complex I; ClI, complex II;
Clll, complex Ill; mtROS, mitochondrial reactive oxygen species; RET, reverse electron transport; ATP, adenosine triphosphate; HIF1a, hypoxia inducible factor 1 o
mtROS, mitochondrial reactive oxygen species; TNFa., tumor necrosis factor alpha; I3, interleukin-1; 116, interleukin-6.

enhanced arginosuccinate shunt that feeds into fumarate
and malate or via increased glutaminolysis. However, they
mostly lead to significant metabolic changes that include
the decrease of downstream metabolites such as aKG and
fumarate, with a concomitant increase of itaconate, citrate, and
succinate (24).

The increase of the expression of cis-aconitic acid
decarboxylase (CAD) coded by the immunoresponsive gene 1
sustains the production of itaconate from the accumulated
isocitrate (134, 135). Itaconate has antimicrobial properties (by
inhibiting the citrate-lyase expressed by different bacterial
strains) but can also act as an inhibitor of SDH, limit the levels
of inflammatory cytokines, and modulate the IkBz-ATF3
inflammatory and nuclear factor erythroid 2-related factor 2

(NRF2) signalling axis (136, 137). Citrate, instead, is used as a
precursor for FAS and lipogenesis but also for prostaglandin and
nitric oxide (NO) production, thus sustaining the inflammatory
activity of myeloid cells (133). Finally, succinate accumulation,
which has been attributed to SDH inhibition (136), glutaminolysis
replenishing oKG levels (138, 139), and the gamma-aminobutyric
acid shunt (140), plays major roles in regulating both extracellular
and intracellular inflammatory signalling.

Extracellularly, succinate accumulates in several
inflammatory conditions, including in the cerebrospinal fluid,
but not in the blood, of mice with chronic EAE (141).
Extracellular succinate modulates inflammation via binding to
its cognate succinate receptor 1 (SUCNRI1), thus eliciting
complex responses that are tissue- and context-dependent
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(142). While in DCs the succinate-SUCNRI axis clearly
potentiates the production of pro-inflammatory cytokines (143,
144), its role in the activation of other myeloid cells is still under
investigation. On the one hand, a ‘positive-feedback’ mechanism
has been described in chronic inflammation, where IL-1B
triggers the production and release of succinate from
macrophages, which in turn stimulates SUCNRI1-expressing
cells to maintain chronic inflammation via an autocrine and
paracrine loop (145, 146). On the other hand, recent evidence
suggests that SUCNRI stimulation prompts an anti-
inflammatory phenotype on adipose tissue macrophages and
tumour associated macrophages (147, 148).

Intracellularly, succinate regulates signalling mostly by
enhancing the pro-inflammatory activity of myeloid cells.
Succinate can be transported from the mitochondria via the
dicarboxylic acid transporters to the cytosol where in excess it
impairs prolyl hydroxylase activity by product inhibition leading
to HIF-1o stabilization and activation (140). This phenomenon
has been defined as pseudohypoxia (149) and leads to the
increased production of pro-inflammatory IL-1 (140). The
progressive accumulation of succinate also drives the activity of
SDH, thus promoting mtROS production (150). This process
links mitochondrial activity, cell metabolism, and ROS
production and could be key in treating myeloid mediated
oxidative injury in chronic neuroinflammation.

MITOCHONDRIAL FUNCTION AND
OXIDATIVE INJURY

Recent approaches using toxic RNA sequencing (Tox-seq),
which transcriptionally profiles ROS" innate immune cells, has
helped to identify neurotoxic CNS innate immune populations in
EAE mice (151). When CD11b" cells labelled for ROS
production were analysed by single cell RNA sequencing, a
specific ROS™ microglia cluster is found to display low levels of
homeostatic microglia markers (e.g., P2ry12, Sparc, Cx3crl, and
Tmeml119) but high levels of oxidative stress and pro-
inflammatory genes [e.g., NADPH oxidase subunit 2 (gp91-
phox), Mhcll, Il1b] (151). In addition, several genes are
upregulated in ROS" microglia and macrophages throughout
the oxidative stress network, including glutathione transferases
(Gsto2 and Gstt2), y-glutathione peroxidase (Gpx7), and the
acivicin target genes (Ggtl and Ggt5) (151). When EAE mice
are treated with the compound acivicin, which inhibits the
degradation of the antioxidant glutathione by targeting 7y-
glutamyl transferase, they show decreased oxidative stress and
neurodegeneration, even when treatment is started 80 days after
disease onset (151). These data suggest that targeting ROS
production in innate immune cells is a promising strategy to
treat active chronic neuroinflammation, such as that occurring in
people with progressive MS.

Under inflammatory conditions, ROS are produced through
various mechanisms. Cytosolic ROS are produced by the
NADPH oxidase (NOX) family and NO synthases (NOS).
Superoxide, OH™, and H,O, are instead generated in

mitochondria at mitochondrial complex I (CI) and III (CIII),
which are the main sites of mtROS production (152, 153).
Notably, a link exists between these processes where NO
regulates the abundance of TCA cycle metabolites (e.g.,
succinate and itaconate), as well as the catalytic subunits of CI
in inflammatory macrophages (154). This oxidative response is
counterbalanced by the activity of several enzymes (e.g., catalase,
superoxide dismutases, sirtuin 3), coenzymes (e.g., coenzyme Q),
and metabolites (e.g., glutathione) with antioxidant activities
(155). In addition, transcription factors [e.g., NRF2, Kelch Like
ECH Associated Protein 1] control the expression of antioxidant
genes (156), while mitochondrial transporter proteins [e.g.,
uncoupling protein 2] shuttle H* from the intermembrane
space to the mitochondrial matrix, leading to decreased
membrane potential and mtROS production (157). When these
mechanisms are saturated/inhibited, excessive intracellular ROS
production can impact ATP synthesis, cytokine production,
mtDNA mutation, and post-translational modification of
proteins (155). Extracellularly, ROS release from CNS innate
immune cells maintains inflammation, while promoting
neurodegeneration and demyelination (158). Given the
predominant role of mitochondria in ROS production during
inflammation, key potential targets for this new approach reside
in specific mitochondrial proteins and complexes (Figure 3).
CI is a supercomplex of 44 subunits which form three
modules: N module (oxidizing NADH and electron input), Q
module (electron output to ubiquinone) and P module (proton
transport) (159). CI can produce ROS when electrons circulate in
the forward or reverse direction, depending on multiple factors
that include mitochondrial function, cell metabolism, and
cellular type (150). In fact, forward electron transport (FET)
can produce proton leak from CI, but a highly reduced pool of
coenzyme Q and a large membrane potential can also trigger
reverse electron transport (RET) from over-reduced coenzyme Q
back to CI, significantly increasing superoxide production (160).
During FET, blocking CI with rotenone suppresses electron
transport causing electron leak and increased ROS production
(161), while rotenone prevents the electron transport back from
coenzyme Q and significantly reduces ROS production during
RET (152, 160). In microglia and BMDMs, rotenone enhances
ROS and pro-inflammatory cytokine production when cells are
in a resting state (162, 163), which suggests that ROS results from
impaired FET. In line with this, BMDMs displaying a knockout
of the CI subunit Ndufs4 produce more lactate and ROS than
WT BMDMs (164). However, in pro-inflammatory myeloid cells
excess of the SDH substrate, succinate, stimulates RET and
ultimately shifts mitochondrial activity to mtROS production
(150). Accordingly, in LPS-stimulated myeloid cells, especially
after prolonged treatment (8-24 h), ROS and pro-inflammatory
cytokine production are reduced by rotenone, and this effect may
be due to decreased RET (152). Targeting this process, without
altering the normal function of CI and OXPHOS, as recently
shown for ischemia reperfusion injury (165), could be key in
treating chronic neuroinflammatory diseases. CIII is another key
site of mtROS generation, which can be modulated. Similarly to
CI, blocking CIII activity with antimycin A or myxothiazol, for
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example, in unstimulated BMDMs increases ROS production
(166), while in pro-inflammatory BMDMs, blocking CIII
reduced NFxB nuclear accumulation as well as ROS and pro-
inflammatory cytokine production (167, 168).

Altogether these data suggest that interacting with CI or CIII
(dys)functionality may be important to treat CNS inflammatory
disorders. Indeed, the use of CI inhibitors such as rapamycin or
metformin can inhibit mtROS production by inhibiting CI
formation (169) and attenuate the induction of EAE by
restricting the infiltration of mononuclear cells into the CNS
and down-regulating the expression of proinflammatory
cytokines (IFNy, TNF, IL-6, IL-17, iNOS), cell adhesion
molecules, and matrix metalloproteinase 9 (170).

Further studies will be needed to differentiate these effects
from the pleiotropic effects that these molecules have on
metabolic pathways (e.g., mTOR) and CNS cell types (e.g.,
oligodendrocytes) (171-174).

CONCLUSION

The growing interest in immunometabolism has demonstrated
that myeloid cells are well-equipped to quickly adapt to varying
environmental challenges, even when access to carbon sources is
highly variable, such as in conditions of inflammation.
Therapeutically attractive targets have emerged, with preliminary
in vitro and in vivo testing of compounds proving to be promising.
Within this framework, two routes to therapeutic relevance have
emerged, targeted therapies using small molecules and
compounds (175) and non-targeted therapies. In regard to the
latter, the use of dietary intervention (e.g., through the ketogenic
diet and/or exercise) may hold the most direct and clinically
translatable therapeutic approach towards reprogramming
myeloid metabolism from harmful to helpful (176). As
previously discussed, microglia can utilize ketone bodies as an
alternative energy substrate to glucose, and ketosis has been shown
to modulate a range of microglial inflammatory processes and
reduce AP and tau accumulation in AD mice (177). High-fat, low-
carbohydrate ketogenic diets are thought to trigger a shift from
glucose metabolism towards FA metabolism, which in turn yields
increased ketone body concentrations. Interestingly, pre-treatment
of mice with a ketogenic diet decreased microglia activation and
pro-inflammatory cytokine IL-6, IL-1B and TNF-o. levels in the
MPTP mouse model of PD (178). Similarly, oral administration of
ketone body metabolites such as B-hydroxybutyrate have been
shown to reduce microglial inflammation (179), reduce expression
of pro-inflammatory cytokines IL-1f3, IL-6, CCL2/MCP-1 (180),
and inhibit NLRP3 inflammasome activation (181). Metabolic
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