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Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their
regenerative and immunomodulatory properties. They are capable of modulating
macrophage plasticity depending on various microenvironmental signals. Current
studies have shown that metabolic changes can also affect macrophage fate and
function. Indeed, changes in the environment prompt phenotype change. Therefore, in
this review, we will discuss how MSCs orchestrate macrophage’s metabolic plasticity and
the impact on their function. An improved understanding of the crosstalk between
macrophages and MSCs will improve our knowledge of MSC’s therapeutic potential in
the context of inflammatory diseases, cancer, and tissue repair processes in which
macrophages are pivotal.
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INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) are multipotent cells with the capacity of differentiating
into cells from the mesodermal tissue such as adipocytes, chondrocytes, and osteoblasts cells (1, 2).
MSCs are heterogeneous stromal cells that exert pleiotropic effects, including inhibition of
inflammation and apoptosis through their capacity to produce bioactive molecules. Moreover,
MSCs are well described for their immunoregulatory properties since they can control cells from
innate and adaptive immune systems (3). Therefore, MSC-based therapy has been under evaluation
for the last 15 years due to these properties for several relevant diseases (3). MSCs actively interact
with components of the innate immune system displaying mainly anti-inflammatory effects (4).
Indeed, they can regulate a cells’ response from innate immune systems such as dendritic cells,
natural killer cells, and macrophages. Currently, we know that MSCs can orchestrate pro-
inflammatory conditions (5) and tissue repair through the regulation and promotion of
macrophage polarization towards an anti-inflammatory phenotype expressing high levels of
org June 2021 | Volume 12 | Article 6247461
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arginase 1 (Arg1) (6), metalloproteinase-9 (MMP-9) (7), and
CXCR4/stromal cell-derived factor (SFD-1) axis (8). MSC’s total
capacity to control macrophage fate and functions is beneficial
for several diseases such as myocardial infarction (9), acute
kidney ischemia (10), diabetes (11, 12), and arthritis (13).
However, there is a significant gap between MSC-based clinical
trials and the underlying mechanisms of interaction with other
cells. Therefore, a better understanding of the underlying
mechanisms of MSC-mediated regulatory functions in
macrophages would improve their therapeutic potential.
Recently, the role of cell metabolism in macrophage functions
has been intensively investigated (14–19). The pivotal role of
their metabolic status on their phenotype and different processes
could be relevant for improving the therapeutic potential of
MSCs in macrophage-mediated diseases. Recently, metabolism
has been a widely studied field considering its role in cell fate and
functions. In this context, the signals sensed from the external
environment are crucial to coordinate the macrophage
polarization towards either a pro- or anti-inflammatory
phenotype and the consequential impact in the progression of
some pathologies’ severity. Therefore, in this review, we
synthesize macrophage response evidence driven by
mesenchymal stem cell-mediated metabolic reprogramming
and how this regulation will finally impact the progression of
several inflammatory and autoimmune diseases.
MACROPHAGE PLASTICITY,
AND FUNCTION

M1 and M2 Macrophage
In healthy individuals facing an injury or infection, there is a
sequential inflammatory response ending in the resolution of
inflammation and tissue repair (20). In this context, monocytes,
found in the bone marrow, bloodstream, or spleen, play an
imperative role (21). Wounds and infected sites recruit
monocytes where they differentiate into different macrophage
subsets, including pro-inflammatory macrophage. Mills et al.
described this concept during the 2000s showing that
macrophage could generate a CD4 T-helper 1 (Th1) response,
while others induced a response from CD4 T-helper 2 (Th2) (22).
Therefore, they assigned such names as M1-like and M2-like
macrophage subtypes referring to pro-and anti-inflammatory
macrophages, respectively. Polarization is the transition process
from an M1-like towards an M2-like phenotype (23), associated
with both activation and resolution of inflammation, respectively
(22). In sum, M1-like macrophage can be defined as pro-
inflammatory cells, responsible for initiating the immune
response (24) and characterized by high levels of CD80, CD86,
and MHCII, among others (25, 26). Recently, CD38, the
transmembrane receptors Gpr18, and formyl-peptide receptor 2
(Fpr2) have been described to be specific for M1 macrophage
(25–27). The production of interferon-g (IFN-g) due to tissue
damage, the presence of pathogens or cytokines [such as
macrophage and granulocyte colony-stimulating factor (GM-
CSF) (28, 29)] by T lymphocytes (CD4 or CD8), natural killers
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(30, 31), or lipopolysaccharide (LPS) recognition expressed by
pathogens, causes macrophage activation towards an M1
phenotype (32). In response, M1 macrophages increase the
secretion of pro-inflammatory mediators such as nitric oxide
(NO), tumor necrosis factor-a (TNF)-a, interleukin (IL)-6, IL-15,
IL-12, IL-23, IL-1b (21), and additionally increase the ability to
present antigens (29). M2-like macrophages, (also called
alternatively activated macrophage) have an anti-inflammatory
phenotype, relevant in immunity regarding the resolution of the
inflammatory process, elimination of cell debris, promoting
angiogenesis, regeneration, and wound healing of damaged
tissue, parasitic helminths, tumor growth, and metastasis (33,
34). In general, M2 macrophages express high levels of CD206
and CD163 and low levels of CD80, CD86 (co-stimulatory
molecules), and MHCII (35, 36). Several factors in the
microenvironment induce macrophage polarization towards the
M2 phenotype, including IL-4, IL-10, IL-13, IL-21, and IL-33
(37). M2macrophages are generally characterized by an increased
secretion of the anti-inflammatory cytokine IL-10 (38).

Likewise, upon stimulation using classic macrophage
differentiation and activation (LPS or IFN-g) or using
alternative activation (IL-4 or IL-13), macrophage undergoes
insightful metabolic reprogramming critical in activating their
cellular mechanisms and successfully defying the infection
during inflammation resolution (14, 15, 39). Therefore, we will
discuss this sophisticated regulation of the metabolism on a
macrophage’s fate and how this affects their functionality.

Metabolism Regulation on M1
Macrophage Polarization: Enhanced
Glycolysis and a “Broken” Krebs Cycle
Support Their Phenotype and Function
A microenvironment enriched with TNF-a and IFN-g, or with
LPS, will induce monocytes to activate/differentiate into M1
macrophage (40). M1 activates their metabolism and
antimicrobial activity through the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase system, thereby
producing reactive oxygen species (ROS) (41). However, high
production of ROS could ultimately be detrimental to the body
itself. Thus, this response’s inhibition occurs by increasing the
amount of M2 macrophage, either by converting M1
macrophage or by recruiting pro-inflammatory monocytes that
switch to an anti-inflammatory profile (42, 43). The presence of
IL-4 and IL-13 promotes the M2 phenotype (44). There are
variations within the M2 phenotype: M2a, M2b, and M2c, whose
differences are related to each subtype’s activator molecules (45).
The metabolic reprogramming of immune cells represents a new
exciting field that has improved our understanding of immune
cell and macrophage function. However, how the external signals
provided by other cell types within the altered tissue can promote
macrophage metabolic reprogramming has to be further
investigated. Here, we summarize M1-like and M2-like
macrophage’ main metabolic pathways, highlighting those that
could be modulated by MSCs (Figure 1).

It has been well documented that M1 macrophages induced
by IFN-g and/or TLR ligands like LPS mainly exhibit dependency
June 2021 | Volume 12 | Article 624746
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FIGURE 1 | Metabolic pathways altered in M1 and M2 macrophage. macrophage metabolic pathways can be altered by microenvironment molecules as glucose,
interleukines and LPS/IFN-g according to the macrophage subtype polarization, where M1 macrophage (A) affected pathways correspond to glycolysis and Krebs
cycle while in M2 macrophage (B), the OXPHOS and the FAO pathways are the ones which can be altered.
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on the Warburg effect (aerobic glycolysis) by increasing
glycolysis and lactate release (14, 15, 17, 39, 46–48).
Inflammatory LPS-stimulated macrophages enhance glucose
consumption by up-regulating the glucose transporter, GLUT1,
to facilitate a rapid glucose uptake (49). Indeed, GLUT1
is the leading rate-limiting glucose transporter in pro-
inflammatory macrophage, and its overexpression displays a
hyperinflammatory state characterized by increased expression
of inflammatory mediators (50). These increased pro-
inflammatory environments could be reversed by inhibiting
glycolysis by 2-DG, which blocks early steps in glycolysis (50).
Notably, glycolytic metabolic adaptation in M1 macrophage
results from the stabilization of the transcriptional factor
hypoxia-inducible factor 1-a (HIF-1a) (50, 51). HIF-1a, a
master regulator of glycolysis, mediates the transcriptional
induction of many glycolytic enzymes (51). LPS signaling
activates HIF-1a, positively regulating the pro-inflammatory
cytokine IL-1b that binds directly to the IL-1b promoter and
other HIF-dependent genes, including those encoding enzymes
in glycolysis and GLUT1 (52). Likewise, several enzymes of the
glycolytic route are up-regulated in M1 macrophage, such as an
isoform of phosphofructokinase-2, u-PFK2, to potentiate the
glycolytic flux (53, 54).

Despite glycolysis being relatively inefficient to produce
adenosine triphosphate (ATP), it can provide intermediate factors
for the biosynthesis of macromolecules. The main example is
glucose-6-phosphate which can enter the pentose phosphate
pathway (PPP), allowing the production of NADPH and ribose-
5-phosphate. In this context, LPS is promoted in the up-regulation
of macrophage of hexokinase activity along with augmented
glucose-6-phosphate dehydrogenase (G6PD) expression and
activity, correlating with increased pro-inflammatory cytokines
such as IL-6, monocyte chemo-attractant protein-1 (MCP-1),
nitric oxide synthase (iNOS), and TNF-a (55, 56). G6PD is the
first rate-limiting enzyme of PPP; therefore it suggests a
convergence of glucose flux through both the glycolytic and PPP
pathways (56). Moreover, during the oxidative phase of PPP, the
NADPH formed is then used by several enzymes, including the
NADPH oxidase, which generates ROS. Increased ROS production
in M1 macrophage is essential for their anti-pathogen activity (50,
56), while NADPH also acts as an antioxidant defense (57).

One of the main metabolic signatures of LPS-stimulated
macrophage is determined by associated defects in the Krebs’s
cycle activity (39, 51). The Krebs cycle catabolizes Acetyl-CoA,
generated in glycolysis, through a series of enzymatic reactions
(58). HIF-1a induces the expression of the enzyme pyruvate
dehydrogenase kinase (PDK), which inactivates pyruvate
dehydrogenase (PDH) therefore limiting pyruvate-derived
acetyl-CoA to incorporate into the Krebs cycle (54, 59). To
maintain redox potential in M1 macrophage, pyruvate is
converted into lactate, thus restoring NAD+ and following the
glycolytic pathway, a key point considering that the
mitochondrial oxidative phosphorylation system (OXPHOS) is
impaired in M1 macrophage (14, 15, 39, 47, 60, 61). The decrease
of carbon flux towards the Krebs cycle in pro-inflammatory
macrophage profoundly impacts pathways and metabolites
Frontiers in Immunology | www.frontiersin.org 4
generated by this cycle as a consequence of metabolic
reprogramming towards a high glycolytic activated status (14,
15). Moreover, several researchers have revealed that the
disruption of the Krebs cycle has deep implications in the
macrophage inflammatory phenotype (18, 62). They promote
oxidative phosphorylation in a “broken” Krebs cycle after citrate
and after succinate (14, 62). For example, the first broken step
occurs by a reduced expression of the enzyme isocitrate
dehydrogenase (IDH), which produces a‐ketoglutarate (a‐KG)
from isocitrate. This alteration leads to the accumulation of
citrate. Citrate is converted into oxaloacetate and acetyl-CoA
and its synthesis of pro-inflammatory regulators such as nitric
oxide (NO), ROS, prostaglandins, among others, drives the pro-
inflammatory properties in these cells (63). Citrate is exported by
mitochondrial citrate carrier (CIC) towards the cytosol since it’s
the only space where it could be metabolized, and its inhibition
impacts the inflammatory mediators previously mentioned (63,
64). Accumulated citrate can be metabolized into itaconate (60,
65). The enzyme involved in this conversion is aconitate
decarboxylase 1 (encoded by Acod1, also referred to as Irg1),
and its elevation is consistent in M1 macrophage (60, 65). Several
works have pointed out that itaconate is one of the main
metabolites produced by M1 macrophage (59, 60, 65). Another
reaction is represented by the impairment in the succinate
dehydrogenase (SDH) function in M1 macrophage, which
catabolizes succinate to fumarate, thus the second breakpoint
drives the accumulation of succinate (60). Succinate acts as a
pro-inflammatory signal that inhibits prolyl hydroxylases
(PHDs), which finally stabilizes HIF-1a. HIF-1a induces the
expression of pro-inflammatory cytokines such as IL-1b and
genes dependent on HIF-1a, such as enzymes implicated in the
glycolytic pathway, and thus impacts by enhancing the glycolysis
process which is essential for inflammatory macrophage
activation (51, 66, 67). This event favors the excess of succinate
being transported out of the mitochondria, impairing the PHDs
function and thus, HIF-1a activation (68). Another anaplerotic
pathway activated in M1 macrophage is the aspartate‐
argininosuccinate shunt supply, malate. Considering the
dysfunctionality of SDH, it induces an increase in malate
levels. The aspartate‐argininosuccinate shunts are coupled with
the urea cycle, which is relevant for NO and IL-6 production and
therefore for M1 macrophage function (60).

Metabolism Regulation of M2 Macrophage
Polarization: Enhanced OXPHOS and FAO
Promote Their Phenotype and Anti-
Inflammatory Effect
Several studies have pointed out that M2 macrophage do not
show an increase in glycolytic activity and are not required for
M2 differentiation (15, 39, 48). However, other studies have
shown that following IL‐4 stimulation, M2 increases the use of
glucose (46, 60, 69, 70). On the other hand, HIF-2a activation,
another isoform of HIF, is primarily observed in M2 macrophage
and induces the expression of Arg1, while inhibiting the
production of NO (71). Moreover, M2 macrophages express
PFKFB1, a particular isoform of PFKF. The PFKFB1 isoform has
June 2021 | Volume 12 | Article 624746
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high activity, which transforms fructose‐2,6‐bisphosphate into
fructose‐6‐phosphate much more efficiently, therefore
diminishing glycolytic rate (54).

In contrast to M1, M2 macrophages exhibit an entire Krebs
cycle that is coupled to OXPHOS activity (14, 72). The
stimulation of IL-4-stimulated macrophage promotes the
increase of Acetyl-CoA production, which is controlled by
protein kinase B (Akt)-mammalian Target of Rapamycin
(mTORC1) pathway that induces the enzyme Acyl, responsible
for its production (70). Acetyl-CoA participates in epigenetic
reprogramming of M2 macrophage through the fine regulation
of a subset of M2 genes (70). Moreover, the inhibition of
mitochondrial ATP synthase using oligomycin suppresses IL-4-
stimulated M2 in terms of its surface markers, genes, and
functions (70, 72). Under this context, glucose drives the Krebs
cycle to mitochondrial respiration in M2 macrophage. Similarly,
these inhibitions in M2 preclude the ability to decrease pro-
inflammatory cytokines such as IL-6, TNF-a and IL-12, also, IL-
4, but not LPS/IFN-g induction in macrophage, induces an
increase in cellular mitochondrial mass (73). Furthermore,
opposing the high production of NO in M1 macrophage as
part of several inflammatory functions, the production of NO in
M2 macrophage is low, allowing OXPHOS to be sustained (16).

M2 macrophage possesses a high AMP-activated protein
kinase (AMPK) activity (74), a widely conserved metabolic
sensor of AMP/ATP and glycogen in mammalian cells, which
is also pivotal for the induction of oxidative phosphorylation
(OXPHOS) and fatty acid oxidation (FAO) (75). AMPK
increases the expression of proteins associated with OXPHOS,
including peroxisome proliferator-activated receptor (PPAR)-g
coactivator (PGC) 1b (73). PGC-1b coactivators intervene
by linking mitochondrial biogenesis to biological processes
that are associated with increased oxidative metabolism, a
distinctive feature of this coactivator (76). Alternatively,
macrophages activated by IL‐4 strongly induce PGC-1b
expression in a signal transducer and activator of
transcription-6 (STAT6)-dependent manner (73). PGC-1b
coactivates the transcriptional functions of STAT6 (73), a
critical factor that controls the genetic program for long-term
macrophage activation (77) and promotes the maturation of the
M2 phenotype to counterbalance excessive inflammation leading
to enhanced tissue repair (78). The transgenic expression
of the metabolic coactivator protein PGC-1b potentiates
M2 macrophage’s activation, demonstrated by how RNAi
knockdown of PGC‐1b impairs both metabolic and anti-
inflammatory functions of IL-4-activated macrophage (73).
Moreover, under IL-4 stimulation and the inhibition of
OXPHOS, macrophages are incapable of producing LPS-
induced TNF-a, IL‐12p40, and IL‐6 (73). This study supports
a requirement of M2 macrophage for mitochondrial respiration
and confers a pivotal role in PGC-1b to achieve their anti‐
inflammatory functions. Taken together, these results spotlight
that oxidative metabolism could be the acceptable bioenergetics
status to perform the long-term activation, being PGC-1b/
STAT6 axis necessary to couple the metabolic pathways and
less-inflammatory immune functions of M2 phenotype.
Frontiers in Immunology | www.frontiersin.org 5
M2 macrophages consume glutamine at high rates in the
absence of glycolysis to supply OXPHOS (46, 79). Indeed, it has
been well determined that glutamine-deprived M2 macrophages
affect their polarization by decreasing CCL22 production, Irf4,
Klf4, and Il4i1, pivotal molecules in these cells (60, 80).
Remarkably, the deprivation of glutamine in M2 macrophage
displays down-regulation of the Krebs cycle activity, since
glutamine consumes OXPHOS (60). Glutamine could
act at different levels in M2 macrophage; for example,
glutamine provides a substrate for the Uridine-diphosphate-N-
acetylglucosamine (UDP-GlcNAc) synthesis, which is a product
of the hexosamine biosynthetic pathway. This pathway
incorporates metabolites produced from nucleotide synthesis,
glycolysis, glutamine, and Acetyl-CoA. In M2 macrophage,
UDP-GlcNAc is vital for N-glycosylation, owing to the impact
in their function to its inhibition, significantly inhibiting M2
activation markers expressed abundantly, including Relma,
CD206, and CD301 (60). Indeed, it is well recognized that M2
key markers (mannose-binding lectin receptor) are highly
glycosylated (81). This data exposes a critical role of UDP-
GlcNAc synthesis in the M2 polarization (60). Likewise,
glutamine also plays a vital role in epigenetic regulation, since
a-KG production from glutaminolysis is essential for M2
OXPHOS and FAO, affecting the demethylation of M2-specific
marker genes. This induces PHD activity and thus inhibits
HIF-1a expression (60, 82).
MSCs REGULATE THE METABOLIC
REPROGRAMMING OF
MACROPHAGE POLARIZATION

In macrophage, the transition from a pro-inflammatory (M1) to
an anti-inflammatory/pro-regenerative (M2) phenotype, or vice
versa, is marked by the modification of diverse metabolic
pathways, such as (i) glycolysis, (ii) oxidative phosphorylation
(OXPHOS), (iii) tricarboxylic acid cycle (or Krebs cycle), and (iv)
fatty acid oxidation (FAO). We have discussed how metabolic
reprogramming is an essential aspect of the balance between M1
and M2 macrophages. Their dynamics are controlled by the
activity of intracellular signaling mediators activated by
extracellular signals including cytokines, pathogens, and
damage-associated molecular patterns . The strong
inflammatory stimuli provided by a combination of IFN-g and
LPS drive towards an accelerated glycolytic metabolism (14, 15,
17, 39, 46–48) and to a ‘broken’ version of Krebs cycle, with
concomitant accumulation of several metabolites such as
succinate, citrate, and itaconate that sustain the inflammatory
properties of M1 macrophage (18, 39, 51). On the other hand,
cytokines such as IL-4 and IL-13 promote an inflammatory M2
phenotype demonstrated by enhanced OXPHOS and FAO
(19, 47) and increased glutamine metabolism (46, 60, 79). All
this evidence points out to a clear stage on how the regulation
of metabolic reprogramming in macrophage is an interesting
field to explore for its therapeutic potential. In this context,
June 2021 | Volume 12 | Article 624746
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it has been extensively reviewed that MSCs affect macrophage’s
fate through several immunosuppressive molecules (32).
Furthermore, we and others have been discussing data
supporting the insight about how metabolism rewiring
sophisticatedly regulates the macrophage’s fate. Therefore, it is
reasonable to think that MSCs could act beyond polarization
towards an anti-inflammatory M2 macrophage phenotype by
remodeling their metabolic programs and thus, their function.
Indeed, besides the relevance of this incoming review, there are a
couple of reports about how MSCs could metabolically
manipulate macrophage’s fate. These studies lead us to the
following discussions, allowing us to draw a new perspective to
investigate. In the following paragraphs, we develop essential
MSCs molecules in macrophage modulation, summarized in
Table 1.

MSCs can modulate the bioenergetic status driving
macrophage ’s polar izat ion depending on the local
microenvironment. For example, bone marrow-derived-MSCs
(BM-MSCs) potentiate the macrophage-mediated clearance of
pathogens such as Salmonella sp. by increasing their respiratory
bursts in vitro (83). The MSC-mediated metabolic switch on
macrophage is characterized by an increased expression of
inducible NADPH oxidase subunits, such as PHOX p22 and
PHOX p47, and subsequently elevated ROS total levels (83, 88);
while the up-regulation of the SOD2 expression represents a
compensatory antioxidant mechanism (83). It is important to
mention that the amount of ROS being generated has a pivotal
role in the metabolic differences of M1 and M2 macrophages
and, therefore, in their function. In M2 macrophage,
mitochondrial respiration is adequate, leading to low amounts
of ROS. Conversely, M1 macrophage undergo OXPHOS
dysfunction, succinate accumulation, and high mitochondrial
membrane potential, leading to high ROS production (60, 67, 89,
90). Enhanced ROS production following succinate oxidation
alters HIF-1a and thus IL-1b expression (89, 90). While
mitochondrial ROS production principally occurs in complexes
I and III, it has been shown that, in M1 macrophage, ROS is
mainly generated by reverse electron transport (RET) in complex
I rather than complex III and is required to counteract bacterial
infection (52, 61, 89) effectively. The inhibition of complex I by
either rotenone or metformin decreases LPS-induced ROS and,
in turn, reduces IL-1b expression (67, 91, 92). Thus,
mitochondrial ROS production generated by RET is pivotal for
pro-inflammatory macrophage function, including phagocytosis,
bacterial killing, and sustained inflammation through the
stabilization of HIF-1a, giving way to the secretion of a potent
inflammatory mediator: IL-1b (60, 67, 91, 93). Indeed, several
studies have reported that MSCs enhance the phagocytic activity
of macrophage by altering their differentiation from monocytes
into inflammatory M1 macrophage, measured as an increase in
the expression of typical markers including CD68, CD14, and
CD11b (83, 88, 94–96). Besides, co-culture experiments reveal
that BM-MSCs induce the down-regulation of indicator markers
of antigen-presenting cells in macrophage’s (APC) functions,
including CD80/CD86, CD50, CD54, MHCI/II; as well as a
reduction of pro-inflammatory cytokines, such as IL-6, IL-12
and TNF-a (83). MSCs also produce a decrease in M1
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macrophage-exerted endothelial injury function (a typical
function of M1 phenotype), possibly due to the increase of
MSC-secreted VEGF as a protective effect (83) (Figure 2). It is
possible that MSCs modify macrophage activation in response to
bacterial infection through a mechanism that includes an
increase of mitochondrial ROS production as a consequence of
the accumulation of succinate, by the stabilization of HIF-1a,
which enhances glycolysis. However, further studies will be
necessary to improve our knowledge on the macrophage
metabolic reprogramming mediated by MSC, considering the
succinate/ROS axis as a critical pathway for the macrophage pro-
inflammatory phenotype.

One of the key metabolic sensors carrying the macrophage
polarization/function is AMPK and mTOR, which integrate the
external signals given by nutrient availability/deficit (97, 98).
AMPK is a conserved serine/threonine kinase that regulates
energy homeostasis and metabolic stress. When the cellular
AMP/ATP ratio is high (low cellular energy charge), AMPK is
activated, switching off ATP-consuming anabolic pathways and
switching on ATP-producing catabolic pathways. AMPK acts by
inhibiting anabolic pathways, and in parallel inducing catabolic
pathways, such as FAO. AMPK also regulates carnitine
palmitoyltransferase 1a (CPT1a), a facilitator of long‐chain
Frontiers in Immunology | www.frontiersin.org 7
fatty acid transportation through the outer mitochondrial
membrane (75), thus regulating the uptake of fatty acids.
Furthermore, AMPK is a coordinator in the production of pro-
inflammatory cytokines by the acetylation of nuclear factor kB
(NFkB) (99) through Sirtuin1, a downstream target of p-AMPK
(100). Thus, AMPK is an inhibitor of the pro-inflammatory
process initiation (100). Indeed, it has been well demonstrated
that AMPK and mTOR are critical players for the function of
M2-like macrophage through the FAO metabolism (19). AMPK
activity is enhanced in IL-10 or TGF-b-stimulated macrophage
(74). In contrast, LPS stimulation in macrophage results in a
significant reduction of p-AMPK, and also AMPK ablation
promotes the increase of TNF-a, IL-6 and cyclooxygenase 2
(COX-2) expression (74). CPT1a is also relevant for M2
polarization, owing to their inhibition to etomoxir decrease in
the induction of arginase activity (73). AMPK activation and
CPT1a expression in macrophage under different stimuli (pro-
or anti-inflammatory) could be altered, promoting macrophage
polarization towards an anti-inflammatory phenotype (74, 101).
However, under IL-4 and colony-stimulating factor (M-CSF)
activation (an essential factor in macrophage growth and
survival) in macrophage, mTORC1 or mTORC2 signaling
promotes glucose metabolism (69, 70). In this case, interferon-
FIGURE 2 | MSC regulates the metabolic fate of macrophage. MSC enhances the phagocytic activity of M0, but the inflammation generated by the M1 results in an
increase in glycolysis, PPP, and a decrease in Krebs’s cycle. MSC provokes PGE2, TGF-b, INOS, and IDO to induce M2-like macrophage that mainly have an
OXPHOS metabolic status and secrete IL-10, Arg1, and TGF–b which will reduce autoimmune disease progression, enhance wound healing, and accelerate tumor
growth. CAMs, classically activated macrophage; AAM. alternatively activated macrophage.
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regulatory factor-4 (IRF-4), an inductor of a set of M2-specific
marker genes such as arginase 1, mannose receptor, FIZZ1 and
Ym1 (80), in turn, acts as an upstream signal for mTORC2’s
activation playing a role in glucose metabolism that supports M2
activation and polarization (69). The inhibition of mTORC2
affects M2 macrophage activation and loss of capacity to battle
helminth infection, one of the main protective responses exerted
by these cells against parasitic infection (69). mTOR is important
in supporting the glycolytic metabolism of M2 macrophage and
their function through the expression of some of their markers.
However, mTOR’s role is controversial on M1-like and M2-like
macrophage. Indeed, it has been reported that mTOR’s function
depends on the context, owing to the negative regulator of
mTORC1, Tsc1, which can repress the M2-like macrophage
phenotype while enhancing the activation of M1-like
macrophage (70, 79). Based on this, MSCs influence the
metabolic program and thus, the phenotype of M1 and M2
macrophage is already activated. MSCs co-cultured with IL-4-
stimulated macrophage enhance p-AMPK and Sirtuin1
expression level but also decreases p-mTOR (83). At the same
time, BM-MSCs provoke an increase of genes related to M2
phenotypes in IL-4-stimulated macrophage, such as anti-
inflammatory cytokines IL-10 and TGF-b, scavenger receptors
including CD205, CD206, CD163, CD36, and DC-SIGN (83).
MSCs not only increase typical markers and some of the
signature metabolic molecules of the M2 phenotype but also
induce an anti-inflammatory M2 phenotype in M1 macrophage.
MSCs co-cultured with LPS/IFN-g-stimulated macrophage affect
the glycolytic status of these cells by decreasing the genetic
expression of GLUT1 and hexokinase 2 (HK2), and the
phosphorylation of mTOR (Ser2448), which are metabolic
features of M1 macrophage. In parallel, the genetic expression
of CPT1a, as well as AMP-activated protein kinase (AMPK)
phosphorylated (p-AMPK) (Thr172 [a2]) is increased in
macrophage in contact with MSCs (83). Besides, BM-MSCs
induce in LPS/IFN-g-stimulated primary human macrophage
the up-regulation of transcripts associated with M2 phenotype
and simultaneously down-regulates the expression of some
classical transcripts related to M1 macrophage (83). Under this
context, MSCs induce an FAO metabolism on both M1 and M2
macrophage by the AMPK-mTOR axis. Also, MSCs enhance
interferon-regulatory factor-4 (IRF-4) expression levels (100),
which participate in M2 macrophage polarization by inducing
Arg1, mannose receptor, Ym1, and FIZZ1 expression (102).
MSCs could improve the resistance during helminth infection
by increasing IRF4-mTORC2 axis activation and stabilizing the
genes that drive M2 macrophage polarization. However, it has
not yet been evaluated.

Furthermore, mTOR also participates in the modulation of
lipid metabolism in macrophage through PPARg, which is one of
the main molecules regulating the expression of genes that
control FAO (103). In macrophage, the pharmacological
inhibition of lipid metabolism either by blocking the activity of
PPARg and mTOR leads to abnormal lipid droplet formation
(85, 104). The source of the fatty acid that fuels FAO in M2
macrophage is mainly triacylglycerol. The uptake of
Frontiers in Immunology | www.frontiersin.org 8
triacylglycerol is facilitated through the CD36 receptor, which
is implicated in the endocytosis of triacylglycerol-rich
lipoprotein particles (105, 106). Lipolysis of triacylglycerol by
lysosomal acid lipase (LAL) is crucial in providing the fatty acids
that fuel OXPHOS. Thus, both increase OXPHOS metabolism
and spare respiratory capacity (SRC). This event leads to the
expression of genes and the long-term survival rate that sustains
the M2 macrophage phenotype (107). The inhibition of lipolysis
consistently reduces M2 macrophage activation and counteracts
its response to challenge the infection caused by helminths (107).
Notably, the expression of enzymes important for FAO,
including acyl CoA dehydrogenase and enoyl CoA hydratase,
is significantly enhanced by IL-4 (73). MSCs-produced
immunosuppressive molecules can affect the bioenergetic status
associated with lipids metabolism in macrophage. The
conditioned medium obtained from adipose-derived MSCs
(ASC) enhances the expression and activity of Arg1 in
macrophage, favoring its transition towards the M2 phenotype
(85). Furthermore, after being exposed to an ASC-derived
conditioned medium, macrophage exhibited lipid droplet
formation and thus PGE2 secretion through the up-regulation
of COX-2 and phospholipases cPLA2-a (i.e., enzymes related to
eicosanoids production) (85). The ASC-derived conditioned
medium rescues the lipid metabolism of macrophage by
promoting an increase of PPARg expression, p-AKT (Ser473)
and p-mTOR (Ser2448). Therefore, MSCs promote an enhanced
FAO metabolic status and inhibition of the glycolytic
metabolism in macrophage, features of anti-inflammatory M2
macrophage in detrimental pro-inflammatory M1 macrophage,
respectively (Figure 2). In turn, these metabolic reprogramming
processes are driven by MSCs through the tight regulation of
molecules such as AMPK, mTOR, Sirtuin1, either at the mRNA
or protein levels. MSCs possess the ability to skew already active
M1 pro-inflammatory into anti-inflammatory M2 macrophage
to resolve the hyper-inflammatory state shifting its metabolic
reprogramming (83), which underlay pivotal mechanisms in
macrophage’s fate decision, as we previously mentioned.

Considering that MSC-secreted immunosuppressive
molecules could be involved in M2 macrophage’s metabolic
switch, the inhibition of the enzyme COX-2 that catalyzes the
conversion of arachidonic acid into PGE2 has proven to recover
the metabolic profile of M1 macrophage. This recovery is
characterized by the increase of the GLUT1 expression and
TNF-a secretion, as well as the down-regulation of CPT1a, p-
AMPK, and Sirtuin-1 on macrophage. Therefore, MSC-secreted
PGE2 could be a candidate involved in the macrophage
polarization by modulating the metabolic program in the
interface between pro-inflammatory and anti-inflammatory
macrophage (83). PGE2 signaling drives the migration of M2
macrophage to the wound healing area (108). However, how
MSCs-derived PGE2 could affect the metabolic program of
macrophage remains to be elucidated. On the other hand, it
has been reported that MSCs promote an anti-inflammatory M2-
like phenotype from monocytes undergoing differentiation into
dendritic cells (DC), which is mediated by MSC through the
release of lactate (86). The inhibition of lactate production in
June 2021 | Volume 12 | Article 624746
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umbilical cord-derived MSCs (UC-MSCs) was abrogated with
oxamic acid, an inhibitor of the enzyme lactate dehydrogenase,
consequently resulting in the decrease of the expression of typical
M2 genes including CD14, CD16, CD68, IL-10, and a high
expression of CD1a (86). Furthermore, the conditioned
medium of MSCs induces a decrease in mitochondrial biomass
and an increase in spare respiratory capacity in monocytes
differentiated towards DC (86). However, whether MSCs-
derived lactate might be affecting the metabolism of
macrophage remains unknown. In addition to classic
immunosuppressive molecules secreted by MSCs, a novel
mechanism of immunosuppression involving the secretion of
extracellular vesicles (EVs) has been recently reported. EVs
represent a novel path of cell-to-cell communication given by
the release of vesicles ranging between 30-150 nm, which has
moved into the center of attention because of their biological
effects in receptor cells (86, 109). Lipids, proteins, and nucleic
acids (including mRNAs, miRNAs, and other non-coding RNAs)
are the main components of the exosome cargo whose profile
content largely depends on the function and metabolic state of
their parent cells since the EVs-cargo represents the contents of
their cell’s origin (110). For example, it has been reported that
miRNAs can modulate macrophage metabolism (111, 112). A
recent study performed by Showalter et al. reported that MSCs-
derived exosomes previously cultured under serum deprivation
and hypoxic conditions carry several metabolites (84). MSCs-
derived exosomes incorporate 21 different metabolites, including
glutamine, adenosine, arginine, isoleucine, UDP-N-
acetylglucosamine, 5’-deoxy-5’-methylthioadenosine, aspartic
acid, palmitic acid, cholesterol, and nicotinamide (84). In this
context, it has been well demonstrated that these metabolites are
altered during immune cell activation, being directly linked to
the functions they exert (47). Therefore, these MSCs-secreted
metabolites could be incorporated by macrophage and driven to
an anti-inflammatory phenotype, but studies to corroborate
these observations are still needed. Thus, how MSCs-derived
EVs containing miRNA or metabolites could modify the
macrophage’s bioenergetic status is an interesting and
unexplored field. This might improve our understanding of
which MSCs-secreted immunosuppressive molecules might be
modulating the role of macrophage in inflammatory diseases or
during inflammation resolution beyond its bioenergetic status. In
summary, the aforementioned data supports a new interesting
field to explore and further study how the bioenergetic status of
macrophage could be one of the underlying mechanisms
following advantageous uses of MSCs under inflammatory
microenvironments, by repolarizing them from an M1 to an
M2 macrophage phenotype mainly through the enhancement of
their OXHOS and FAO metabolism.

The Relevance of Cellular Metabolism on
MSCs-Macrophage Interaction
It is strongly believed that MSC mainly interacts with
macrophages by paracrine action, however, it has been
mentioned that these two types of cells can interact in other
ways. It has been described that macrophages can interact with
Frontiers in Immunology | www.frontiersin.org 9
MSC through phagocytosis, which leads to their polarization into
an M2 phenotype due to the secretion of COX-1, PGE2, and
indoleamine 2,3-dioxygenase by MSC, that induced macrophage
TGF-ß, IL-10, and Arg-1 expression (113–115). Even more, it
has been shown that when macrophages phagocytose apoptotic
MSC (emulating the conditions of injected MSC in vivo), it
induces a signaling cascade in the macrophage which leads to the
downregulation of TNF-a, IL-6 and NO pathways, suggesting a
switch towards an OXPHOS metabolism, and the upregulation
of CD163 and CD206, the characteristic surface markers for M2
macrophages (113, 116).

This data demonstrated that the interaction between
macrophages and MSC goes beyond the paracrine activity of
MSC, but that even apoptotic MSC has a strong and beneficial
therapeutic effect on macrophages. As proposed by Stevens et al.
(2020), apoptotic MSC could release mitochondria, which could
significantly affect the activation of intracellular metabolic
pathways, inducing an OXPHOS metabolism on macrophages,
thus prompting a metabolic reprogramming into an M2
phenotype (115).

As mentioned before, MSC can dynamically interact with
macrophage, being able to modulate their metabolic status.
Therefore, in line with the previously mentioned, in the next
section, we will focus on the metabolic crosstalk between MSC
and macrophage which result in the generation of MSC-educated
macrophage and their potential role in (a) cancer, (b) wound
healing, (c) autoimmunity, and (d) regeneration.

a) Cancer
Cancer is one of the most lethal diseases of the last couple of
decades and can arise from any organ or body structure. Tumors
are composed of cells that have lost the ability to stop growing. A
critical event in the genesis of cancer is the inability of immune
cells of the body to identify and destroy newly formed cancer
cells when their number is low (117).

Among the vast diversity of macrophage phenotypes, tumor-
associated macrophage (TAMs) are macrophage that infiltrates
solid tumors and are the dominant type of myeloid cells in cancer
(25). These macrophages can de-differentiate into and from
myeloid-derived suppressor cells (MDSCs) (118) and express
genes usually associated with alternatively activated M2-like
macrophage, like Arg1, mannose receptor C-type 1 (Mrc1),
and others (25).

Although TAMs are mostly identified as M2-like
macrophage, the characterization of these macrophages is
more complex. Recently, it has been reported that TAMs are
located in tumors that respond to smooth metabolic gradients
that range from oxygen-rich vascular external regions to
ischemic regions, where there is a lactic acid accumulation and
nutrient deprivation (25, 119). In this context, because there is a
combination of inflammatory and anti-inflammatory signals,
such as TNF-a and IL-13, it results in a dynamic phenotype
that escapes the usual macrophage classification. For example,
perivascular TAMs express the M2 characteristic molecule Mrc1,
but they lack the Arg1 marker. Conversely, the combination of
hypoxia and lactate in distal areas of the vascular network
June 2021 | Volume 12 | Article 624746
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directly activates mitogen-activated protein kinase (MAPK)/Ras-
dependent extracellular signal-regulated kinase (ERK) signaling
via proto-oncogene serine/threonine-protein kinase (cRaf),
possibly through NDRG family member 3 (NDRG3), resulting
in the co-expression of Arg1 and nitric oxide synthase 2 (Nos2),
stereotypical M2 and M1 markers, respectively (119).

Due to the above, TAMs can acquire an anti-inflammatory
role in tumors, where they have been shown to secrete pro-tumor
signals (120), recruit the anti-inflammatory regulatory T cells
(121) and dampen the T cell response (122). Because of that,
TAMs play an important role in tumor growth, invasion, and
metastasis (123). Furthermore, experimental studies indicate that
increased numbers of TAMs are correlated with drug-resistance
(124, 125) underlying therapy failure and poor prognosis of
cancer (126, 127), as well as a reduced macrophage infiltration
into the tumor, has been associated with diminished tumor
growth (128). For example, Hughes et al. reported that M2
subpopulations of TAMs accumulate around blood vessels in
tumors after chemotherapy, where they promote tumor
revascularization and relapse (129).

Since the functions of TAMs largely depend on their
accumulation and activation in tumor tissues, TAM-targeted
antitumor approaches are mainly based on inhibiting
macrophage recruitment, suppressing TAM survival,
enhancing M1 tumoricidal activity of TAMs, and blocking M2
tumor-promoting activity of TAMs (124). According to this, the
repolarization of TAMs into M1-like macrophage has
successfully produced antitumoral responses in preclinical
murine models (130).

In this context, MSCs have been shown to promote tumor
progression by inhibiting the release of pro-inflammatory
cytokines and increasing the generation of M2-like
macrophage through the secret ion of a variety of
immunomodulatory molecules such as PGE2, IL1RA, TGF-b,
and IL-8 (32, 131). The M2 polarization is produced by an
increase in the expression of Arg1 and IL10, and by a decrease in
the expression of IL1-b and TNF-a (132) (Figure 2).
Interestingly, the tumor regulation exerted by MSCs appears to
be modulated by the tumor itself. Pelizzo et al. characterized
MSCs isolated and expanded from tumor tissues in pediatric
patients diagnosed with neuroblastomas (NB-MSCs). Cell cycle
analysis showed that MSCs had a higher number of cells in the
G0-G1 phase compared to MSCs from healthy donors, thus
supporting the essential role of MSCs in regulating cancer
dormancy (19). Also, transcriptomic profiling results indicated
that NB-MSCs were enriched with EMT genes, key in the
initiation of metastasis (133). Analogously, the characterization
of MSCs from patients with myeloproliferative neoplasms shows
the lower median expression of CD146, a higher percentage of
nestin-expressing MSCs, lower proliferative potential, reduced
osteogenic differentiation capacity, and lower capacity to support
long-term hematopoiesis in vitro than MSCs from healthy
donors (134).

It has been shown that MSCs can exert an immunomodulatory
effect on macrophage via cell-to-cell contact and paracrine actions
(132). Thus, MSC–derived exosomes, which contain TGF-b, C1q,
Frontiers in Immunology | www.frontiersin.org 10
and semaphorins can also induce the differentiation of MDSCs into
M2-polarized macrophage at tumor beds by driving Programmed
Death-ligand 1 (PD-L1) overexpression and by inducing
differentiation of macrophage with enhanced L-Arginase activity
and IL-10 secretion (135). Analogously, MSC–conditioned medium
increased mRNA and protein levels of Arg-1, CD206, and Ym1
expressions in macrophage (136). Also, it has been reported that
malignant tumor cells can recruit MSC from surrounding tissue or
the circulation, mediated via PDGF-b receptors on MSCs, and
stimulate the angiogenesis process, resulting in tumor progression
and metastasis (132).

Interestingly, in contrast to the tumor-promoting effect of
MSCs described previously, MSCs that over-express Sirtuin 1
(MSC-Sirt1) can inhibit prostate cancer tumor growth by
inducing IFN-g production in vivo . IFN-g activates
macrophage and induces them to produce NO by iNOS,
resulting in their increased tumoricidal activity (87). Therefore,
the use of MSCs-Sirt1 is presented as a therapeutic option and
opens the possibility of finding other regulatory proteins capable
of reversing the immunomodulation exerted by MSCs in the
tumor context.

b) Wound Healing
Wound healing definition refers to a superficial, epithelial or deep
level of damage to nerves and muscles in the normal anatomical
function-associated structure of the tissue (137). The healing
process consists of a series of steps mentioned by A. Rivera and
J. Spencer as hemostasis (clot formation), inflammation,
proliferation or granulation, and matrix formation or
remodeling, including an initial bleeding and coagulation
process (137, 138). After the clot is formed, associated with the
microenvironment consisting of IL-1s, TNFs, TGFs, PF4s, etc.,
monocytes migrate to the damaged zone. It is after a period of 48
to 96 hours that these monocytes differentiate into macrophage
(139). However, the presence of other cells can affect the
metabolism of macrophage, which is the case of MSCs. The
interaction between MSCs and macrophage affects the IL-10
secretion on macrophage due to their production of PGE2, a
prostaglandin that contributes to the M2macrophage recruitment
during wound healing (108). PGE2 binds to the prostaglandin E2
receptor-2 (EP2) and EP4 receptor expressed bymacrophage, who
has also been associated with the inflammation modulation by the
cAMP/PKA signaling pathway in macrophage (5, 83, 108, 140,
141). This PGE2 interaction with macrophage through EP2 and
EP4 receptors leads to adenylate cyclase activation and an increase
in cAMP levels, thus activating the PKA pathway. In this cAMP/
PKA pathway, there takes place the phosphorylation of cAMP-
responsive element-binding (CREB) (Serr113), an important
factor in macrophage in a wound healing context, increasing the
transcription of C/EBP-b. This C/EBP-b promotes the expression
of Arg1, Mrc1, and IL-10, the latter being an anti-inflammatory
cytokine that blocks the function of the M1 macrophage (142–
144). This mechanism could be the explanation of how MSCs are
capable of modulating the metabolism of macrophage phenotype
from M1 to M2 polarization in a wound healing context, through
the PGE2 production.
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Moreover, this modulation between MSCs and macrophage
can also occur through the secretion of TNF-stimulated gene 6
(TSG-6) by MSCs, a protein that has shown to inhibit the release
of TNF-a (145). TSG-6 leads to the polarization of M1 towards
M2 macrophage by accelerating the wound healing process (146).
TSG-6 also activates STAT1 and STAT3 while suppressing TLR4/
NF-kB on macrophage (147). In macrophage, STAT1 is
associated with the modulation of gene expression in proteins
of glycolysis, OXPHOS, and the citrate cycle (148). Also, STAT3
is involved in the OXPHOs metabolism, as well as decreasing
ROS production (149). It has been reported that STAT3 deletion
causes a reduction in the activity of complexes I and II (149).
These results suggest that MSCs could be favoring an OXPHOS
metabolism in macrophage and, in turn, inducing M2
polarization through TSG-6 secretion.

Likewise, MSCs exposed to IFN-g and TNF-a promote the
up-regulation of IDO secreted by MSC (150), which in turn
promote M2 anti-inflammatory macrophage polarization from
monocytes (151). Previous studies have also indicated the
possibility that the MSCs-macrophage interaction (in a wound
healing context) leads to a higher expression of CD206, i.e.
acquiring the M2 phenotype (145). This CD206 receptor, also
known as the mannose receptor, regulates serum glycoproteins
which are elevated in wound healing (152). CD206 also helps to
modulate the cytokine secretion by these M2 macrophage,
increasing IL-10 (an anti-inflammatory cytokine) but
decreasing IL-12 (a pro-inflammatory cytokine) (153). For the
mannose receptor expression in macrophage, it looks like the
correct function of the OXPHOS metabolism is necessary, owing
to the suppression of this pathway to cause the decrease of the
CD206 expression (154). Furthermore, UDP-GlcNAc is required
for the adequate glycosylation of the CD206 receptor (154).
Therefore, the alteration of the OXPHOS metabolism and UDP-
GlcNAc, an intermediate of the Krebs cycle, could decrease the
M2 phenotype or the switch from M2 into M1 phenotype, and
MSCs could be participating in these events.

c) Autoimmunity
To maintain homeostasis, the immune system must have an
adequate balance between pro-inflammatory and anti-
inflammatory responses and also be able to distinguish the
nonself (foreign) from the self. If the system fails to provide
adequate control of the inflammatory response and/or attacks
what it is supposed to protect, it can lead to the development of
an autoimmune disease (155, 156). As macrophage play an
important role in maintaining tissue homeostasis and in the
initiation and regulation of inflammation, they can be considered
key players in the pathogenesis of autoimmunity. Indeed,
excessive or uncontrolled inflammation is thought to be a
common symptom of over 80 autoimmune diseases known to
date, including rheumatoid arthritis (RA), experimental
autoimmune encephalomyelitis (EAE), multiple sclerosis (MS),
Crohn’s disease (CD), inflammatory bowel disease (IBD), and
autoimmune hepatitis (37).

Macrophage polarization processes play a key role in the
regulation of the inflammatory responses, where dysregulation
Frontiers in Immunology | www.frontiersin.org 11
can lead to autoimmunity. However, it is unknown whether an
imbalance in the pro-inflammatory/anti-inflammatory
macrophage’s (Figure 1A) ratio is a cause or a consequence of
the different pathogenic processes leading to disease. Under this
context, it has been well determined that a reduction in M2
macrophage, and/or continuous activation of M1 macrophage,
could be playing an important role in the development of
harmful inflammation and autoimmunity (157). Also, M1
macrophage is known to possess a metabolic shift towards
glycolysis, which involves an increase in the glucose uptake,
the conversion from pyruvate to lactate, and the production of
reactive oxygen species (ROS) caused by the lower activity of the
electron transportation chain (17). Furthermore, the detrimental
effects of ROS produced byM1macrophage may also be involved
both in the initiation and progression of autoimmune diseases
(158). Therefore, an increase in the M1/M2 ratio plays an
important role in the pathogenesis of autoimmunity. M1
macrophages show an enhanced glycolytic metabolism, which
allows the secretion of pro-inflammatory mediators that can lead
to the development of chronic inflammation in autoimmune
diseases (159). On the other hand, M2 macrophages exhibit an
OXPHOS metabolism with enhanced catabolic pathways such as
FAO (160).

Previous studies have shown that MSC can modulate the state
of polarization in macrophage where they can promote the anti-
inflammatory macrophage phenotype (161, 162). As we
mentioned before, Vasandan et al., showed that MSC reduced
the expression of GLUT1 and HK2, and increased the expression
of CPT1a, a rate-limiting enzyme for mitochondrial b-oxidation
in M1 macrophage, indicating that MSC modulates the state of
polarization and therefore the activity of macrophage by
inducing metabolic shifts (83). This effect of MSC on
macrophage could be harnessed as a potential treatment for
autoimmune diseases, restoring and inducing an adequate M1/
M2 balance. An increase in the levels of glycolysis is a known
hallmark of immune cell activation including macrophage,
which has led to numerous attempts to treat autoimmune
diseases by targeting (inhibiting) the glycolytic metabolism
(163). It has been demonstrated that when macrophage
precursors are exposed to insulin-like growth factor 2 (IGF-2)
produced by MSC, it promotes an increase in the activity of the
mitochondrial complex V, indicating a commitment toward
OXPHOS metabolism (164). In turn, MSCs-produced IGF-2
induces an anti-inflammatory macrophage’s phenotype, which
has been associated with ameliorating responses in the EAE
model (165, 166). It has also been reported that MSC reprograms
macrophage metabolism by increasing its lipid droplet
biogenesis and PGE2 production (83). This metabolic MSCs-
driven shift on macrophage is mediated through mTOR and
PPARg dependent pathways, proven to have therapeutic effects
in a model of IBD (85). MSC-derived PGE2 interacts with the
EP4 receptor in macrophage and therefore increases the release
of anti-inflammatory cytokine IL-10. The soluble factors released
by MSC, including IL-10, induce an anti-inflammatory
macrophage phenotype through the activation of transcription
factor STAT3 (167). STAT3 has been shown to up-regulate the
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DNA-damage-inducible transcript 4 (DDIT4), which is a
TORC1 inhibitor. Therefore, STAT3 could act by inhibiting
the transition from OXPHOS into glycolysis. In summary, the
inhibition of TORC1 mediated by the upregulation of STAT3
with a glycolytic metabolism (Figure 2), reveal their importance
in the polarization of the anti-inflammatory macrophage (Figure
1B) (168, 169), which could help in the treatment of
autoimmune central nervous system (CNS) autoimmune
diseases such as EAE and MS (170). For example, it has been
reported that MSC-induced macrophages could exert powerful
immunosuppressive and anti-inflammatory activity by inducing
Treg cells and suppressing pro-inflammatory Th1 lymphocytes
(171, 172). MSC-induced macrophages increase the secretion of
amphiregulin (AREG), which is essential for the induction of
Treg and suppress immune responses (171).

d) Regeneration
Regeneration is a process allowing the replacement of damaged
tissue in terms of mass structure and function. It differs from the
repair process which results in the formation of a scar with a
collagen deposit and without the recovery of the functionality in
the original tissue (173–175). In the early stages of embryonic
development, mammals can regenerate certain tissues, organs as
well as entire limbs. However, this capacity declines progressively
during the development (176). In adulthood, the regenerative
capacity of mammalian tissues and organs is very limited for
most of them. Only a few tissues including the liver, pulmonary
epithelium or even skeletal muscle retain the capacity to
regenerate (177, 178).

During tissue regeneration in mammals and vertebrates, the
presence and pivotal role of macrophage has been described
throughout all processes (81, 179). Indeed, they are key players in
the resolution of inflammation and tissue morphogenesis
through the release of trophic factors (180). Macrophage
depletion leads to the inhibition of regeneration (181–183).
The polarization of macrophage, from a pro- to non-
inflammatory phenotype, is also a key step to restore the
homeostasis of the damaged tissue. Recruited within the first
minutes after tissue injury or amputation, pro-inflammatory
macrophage participate in the clearance of dead cells. Non-
inflammatory macrophages are essential for the recruitment of
new progenitor cells and the resolution of inflammation. The
different subpopulations of macrophage are recruited
sequentially according to a tight regulatory process and any
alteration of this well-orchestrated recruitment leads to
deleterious effects in tissue regeneration (181, 182, 184). Thus,
understanding the mechanisms underlying the sequential
recruitment and activation of macrophage in mammalian
tissues able to regenerate and during tissue regeneration in
regenerative vertebrates such as zebrafish is of great interest in
the field of regenerative medicine (174–176, 181).

Skeletal muscle is an interesting model of regeneration to
study and understand the role of the macrophage response (185).
This tissue can regenerate after moderate injury and form new
myofibers (186). Depletion of circulating monocytes in muscle,
via the use of liposomes encapsulating clodronate, showed
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significant regeneration defects (183). Shortly after an injury,
the majority of pro-inflammatory macrophage, positive for
Ly6C, are recruited and start to express some cytokines such as
TNF-a and IL-1b. These macrophage are mainly found when the
necrotic myofibers are phagocytized by the macrophage, and
when the muscle stem cells proliferate. Then, non-inflammatory
macrophage that is negative for Ly6C and positive for IL-10 and
TGF-b, are recruited rapidly after the injury, present during the
whole regeneration process with a predominance at the end of
the regeneration process when the small myofibers increase in
size and the remodeling of the matrix takes place (187, 188). The
alteration of this sequential recruitment of macrophage
subpopulations tightly regulated during the regeneration
process impairs muscle regeneration (189).

During regeneration, macrophage also responds to metabolic
stimuli (185). Metabolic changes in macrophage occur before the
modification of their inflammatory status. An increase in genes
associated with the Krebs cycle and OXPHOS has been observed
one or two days before the resolution of inflammation in vitro
and could be under the influence of metabolic regulators such as
AMPK (190, 191). Then, a decrease in the expression of
glycolytic genes appears in macrophage subsets. This metabolic
transition from glycolysis to OXPHOS could promote in vivo
1) macrophage polarization towards a non-inflammatory
phenotype, 2) the resolution of inflammation, and 3) the
regeneration of damaged muscle (185).

MSCs have received a lot of attention in regenerative
medicine in recent years in part due to their paracrine
functions and their immunosuppressive potential (192–194).
As described above, they can modulate the metabolism of
macrophage and their inflammatory status by promoting
polarization towards a non-inflammatory phenotype, especially
during wound healing (195). The use of MSC in regenerative
therapy, although extremely promising, has not yet shown a clear
improvement/restoration of tissue functions when administered
in preclinical and clinical models of degenerative diseases such as
osteoarthritis. Although, while MSC anti-inflammatory
properties have been demonstrated via their capacity to
regulate the pathological immune response in vivo resulting in
short-term beneficial effects, their pro-regenerative potential that
could lead to long-term beneficial effects has not yet been
demonstrated (196). Indeed, intravenous injection of ASCs in
an arthritic mouse model shows a decrease in inflammation and
arthritis score. The study of the distribution of ASCs describes
that they do not migrate into the joints but remain localized in
the lung. Moreover, at 10 days after their injection, the cells were
no longer detectable in the tissues. Therefore, they could act at
distance via the secretion of factors, and thus potentially activate
other cells such as macrophage towards repairing phenotype in a
short period (197). It would be interesting to enhance MSCs to
improve their survival and their pro-regenerative effect.
Regarding what we have described in this review on the MSC/
macrophage dialogue, modified MSC could communicate with
macrophage to switch their metabolism and thus their
inflammatory status by directing them towards a pro-
regenerative phenotype and indirectly promoting regeneration.
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CONCLUSION

The metabolic regulation of macrophage is critical for their
phenotype and function. In this context, MSC can induce a
metabolic-associated anti-inflammatory phenotype to improve
several biological processes including wound healing, immune
tolerance, and regeneration. However, there is still little
information regarding the specific mechanisms by which MSC
can modulate the metabolism of macrophages to improve several
diseases. Therefore. to unravel all these mechanisms will finally
bring more information to ensure the safe clinical use of MSC on
clinics and also to develop new strategies to improve their
therapeutic properties.
AUTHOR CONTRIBUTIONS

NL-C and FB-B wrote the main part of the manuscript with
input of CP, MA, CG, CB, FD and the supervision of AMV-L and
Frontiers in Immunology | www.frontiersin.org 13
PL-C. FD, RC-L, and RE-V critically revised the manuscript. All
authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by grants from the Chilean National
Commission for Scientific and Technological Investigation-
CONICYT for National Agency of Investigation and
Develop ANID: “Fondecyt Iniciación” N°11190690; “Fondecyt
Regular” N°1211353 “Programa de apoyo a la formación de
redes internacionales” N°180211; “Programa de Cooperación
Cientı ́fica ECOS-CONICYT” N°PC18S04-ECOS180032
and “Beca Doctorado Nacional” 2019 NL-C N° 2191997.
We also acknowledge the Agence Nationale pour la
Recherche (ANR) for the financial support with the project
“PPAROA” (ANR-18-CE18-0010-02), Inserm and the
University of Montpellier.
REFERENCES

1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause
D, et al. Minimal Criteria for Defining Multipotent Mesenchymal Stromal
Cells. The International Society for Cellular Therapy Position Statement.
Cytotherapy (2006) 8(4):315–7. doi: 10.1080/14653240600855905

2. Vega-Letter AM, Kurte M, Fernández-O’Ryan C, Gauthier-Abeliuk M,
Fuenzalida P, Moya-Uribe I, et al. Differential TLR Activation of Murine
Mesenchymal Stem Cells Generates Distinct Immunomodulatory Effects in
EAE. Stem Cell Res Ther (2016) 7(1):150. doi: 10.1186/s13287-016-0402-4

3. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al.
Mesenchymal Stem Cells: Cell Therapy and Regeneration Potential. J Tissue
Eng Regener Med (2019) 13(9):1738–55. doi: 10.1002/term.2914

4. Bernardo ME, Fibbe WE. Mesenchymal Stromal Cells: Sensors and
Switchers of Inflammation. Cell Stem Cell (2013) 13(4):392–402. doi:
10.1016/j.stem.2013.09.006

5. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, et al.
Mesenchymal Stem Cell-Macrophage Crosstalk and Bone Healing.
Biomaterials (2019) 196:80–9. doi: 10.1016/j.biomaterials.2017.12.025

6. Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A,
Abomaray FM, et al. Human Placental Mesenchymal Stem Cells (pMSCs)
Play a Role as Immune Suppressive Cells by Shifting Macrophage
Differentiation From Inflammatory M1 to Anti-Inflammatory M2
Macrophages. Stem Cell Rev Rep (2013) 9(5):620–41. doi: 10.1007/s12015-
013-9455-2

7. Wise AF, Williams TM, Kiewiet MBG, Payne NL, Siatskas C, Samuel CS,
et al. Human Mesenchymal Stem Cells Alter Macrophage Phenotype and
Promote Regeneration Via Homing to the Kidney Following Ischemia-
Reperfusion Injury. Am J Physiol Renal Physiol (2014) 306(10):F1222–35.
doi: 10.1152/ajprenal.00675.2013

8. Cao X, Han Z-B, Zhao H, Liu Q. Transplantation of Mesenchymal Stem
Cells Recruits Trophic Macrophages to Induce Pancreatic Beta Cell
Regeneration in Diabetic Mice. Int J Biochem Cell Biol (2014) 53:372–9.
doi: 10.1016/j.biocel.2014.06.003

9. Ben-Mordechai T, Holbova R, Landa-Rouben N, Harel-Adar T, Feinberg
MS, Abd Elrahman I, et al. Macrophage Subpopulations are Essential for
Infarct Repair With and Without Stem Cell Therapy. J Am Coll Cardiol
(2013) 62(20):1890–901. doi: 10.1016/j.jacc.2013.07.057

10. Erpicum P, Detry O, Weekers L, Bonvoisin C, Lechanteur C, Briquet A, et al.
Mesenchymal Stromal Cell Therapy in Conditions of Renal Ischaemia/
Reperfusion. Nephrol Dial Transplant (2014) 29(8):1487–93. doi: 10.1093/
ndt/gft538
11. Jin L, Deng Z, Zhang J, Yang C, Liu J, HanW, et al. Mesenchymal Stem Cells
Promote Type 2 Macrophage Polarization to Ameliorate the Myocardial
Injury Caused by Diabetic Cardiomyopathy. J Transl Med (2019) 17(1):251.
doi: 10.1186/s12967-019-1999-8

12. Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of Mesenchymal
Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats:
Identification of a Novel Role in Improving Insulin Sensitivity. Diabetes
(2012) 61(6):1616–25. doi: 10.2337/db11-1141

13. Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ,
et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist
Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem
Cells (2016) 34(2):483–92. doi: 10.1002/stem.2254

14. Kelly B, O’Neill LA. Metabolic Reprogramming in Macrophages and
Dendritic Cells in Innate Immunity. Cell Res (2015) 25(7):771–84. doi:
10.1038/cr.2015.68

15. Pearce EL, Pearce EJ. Metabolic Pathways in Immune Cell Activation and
Quiescence. Immunity (2013) 38(4):633–43. doi: 10.1016/j.immuni.2013.04.005

16. Viola A, Munari F, Sánchez-Rodrıǵuez R, Scolaro T, Castegna A. The
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