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Glioma is the most malignant primary tumor of the central nervous system and is
characterized by an extremely low overall survival. Recent breakthroughs in cancer
therapy using immune checkpoint blockade have attracted significant attention.
However, despite representing the most promising (immunotherapy) treatment for
cancer, the clinical application of immune checkpoint blockade in glioma patients
remains challenging due to the “cold phenotype” of glioma and multiple factors
inducing resistance, both intrinsic and acquired. Therefore, comprehensive
understanding of the tumor microenvironment and the unique immunological status of
the brain will be critical for the application of glioma immunotherapy. More sensitive
biomarkers to monitor the immune response, as well as combining multiple
immunotherapy strategies, may accelerate clinical progress and enable development of
effective and safe treatments for glioma patients.
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INTRODUCTION

In recent years, novel immunotherapies targeting the immune component of the tumor
microenvironment have shown great promise for the clinical management of tumors. Among
various therapeutic strategies, drugs targeting immune checkpoint molecules are being heralded as a
breakthrough in cancer immunotherapy.

Glioma is the most common and deadliest primary brain tumor of the central nervous system
(CNS), with a 5-year survival of less than 10%. Glioblastoma multiforme (GBM) accounts for ~50%
of glioma cases and is characterized by a 5-year survival rate of less than 5%, corresponding to a
grade IV tumor by the World Health Organization (WHO). Unfortunately, the current gold
standard of GBM treatment (total resection plus adjuvant radio-chemotherapy) represents only a
palliative option for patients, and the median survival after diagnosis is less than 15 months (1).

A striking recent clinical success of checkpoint inhibitors across multiple solid tumors (2, 3) has
sparked interest in immune-targeted strategies for glioma treatment. However, the CNS is
commonly considered an “immunologically privileged” site as the blood-brain barrier (BBB)
inhibits direct contact between the brain and immune system. Considering the unique
accessibility and tissue composition of brain, it is therefore not trivial to design effective
immunotherapeutic strategies. Herein, we review the unique immunology and tumor
microenvironment of the brain. Furthermore, we describe various immune checkpoint blockade
strategies, as well as the mechanisms of resistance to immunotherapy.
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THE CNS IS IMMUNOLOGICALLY
“UNIQUE” RATHER THAN “PRIVILEGED”

The term “immunologically privileged” has been commonly used
to describe the failure of the brain to reject heterotopic tissue
following transplantation in the past decades. Our understanding
of this special characteristic of brain immunology largely
originates from experiments by Peter Medawar in the 1940s
(4). Although allogeneic tissue transplantation in other areas of
the body can lead to immune rejection which continues to the
CNS, there is a lack of convincing explanations for the fact that
this systemic immune state cannot be initiated from the CNS.
Medawar attributed this phenomenon to the lack of lymph nodes
and lymphatic vessels in the CNS, which result in the perceived
absence of efferent information of the CNS, although this view
has been recently disproven (5–12). A series of studies have
demonstrated that leukocyte lymphatics exist in the dura sinus
and transport antigens from the dura to cervical lymph nodes (9–
12). These findings propose an interesting mechanism by which
cerebrospinal fluid mediates the immune communication
between CNS and circulation via a glial-lymphatic pathway (5–
8). Given the existence of an afferent system between the brain
and peripheral immune system, many propose that CNS is
immunologically “unique” rather than “privileged.”

For the most part, the BBB is responsible for this “unique
immunology” of the brain. Structurally, the BBB consist of a bio-
membrane between vascular endothelial cells and glial cells.
Functionally, the BBB is a dynamic network between
circulation and brain that blocks the diffusion of large,
hydrophilic molecules or organisms while allowing the influx
of small, hydrophobic molecules (13). Except for a few species,
such as Neisseria meningitides and Streptococcus pneumoniae
which are able to enter the brain circulation via specific
mechanisms, the vast majority of blood-borne pathogens are
excluded from the brain (14). Given that the CNS is rarely
exposed to pathogens, the brain has been believed to only exhibit
limited immunity due to poor tolerance of the brain tissue to
inflammation. Another unique immunological characteristic of
the brain is its resident immune cell population. Originating
from myeloid precursors born in the yolk sac, microglial cells
(MG) invade the CNS during early embryonic development and
serve as the primary resident immune cells (15, 16), while most
other immune cell subtypes do not exist in CNS. However,
contrary to the previous view that the brain only exhibits
limited immunity, recent studies have demonstrated that the
systemic immune system is fully involved in the cytotoxic
response to CNS antigens (17). After inflammatory
stimulation, specific antigens are recognized by MG and
presented to activated lymphocytes via the glial-lymphatic
pathway, after which a large number of immune cells can
easily penetrate the BBB, inducing a strong inflammatory and
subsequent immune response (18–20). Despite this, both innate
inflammatory and adaptive immune responses have to be tightly
regulated as unrestrained inflammation-mediated intracranial
hypertension can have serious consequences. Although the
concept of immunological privilege of the brain has been
Frontiers in Immunology | www.frontiersin.org 2
overturned, the unique immunological environment of the
CNS still represents a significant hurdle for therapies targeting
immune checkpoints blockade in the brain.
THE IMMUNE MICROENVIRONMENT
OF GLIOMA

The unique brain immunology leads to a particular tumor
microenvironment of glioma. A variety of peripheral immune
components are present in this glioma microenvironment,
including myeloid derived suppressor cells (MDSCs), natural
killer cells (NK cells), macrophages, neutrophils, CD4+ helper T
cells (Th), CD8+ cytotoxic T lymphocytes (CTLs), and regulatory
T (T reg) cells (21, 22), while their infiltration ratio is remarkably
low numbers in gliomas compared to other tumors.
Furthermore, various tumor-derived cytokines and chemokines
reprogram infiltrating immune cells, which causes them to
acquire unique functional phenotypes and transform into
tumor-associated immune cells. These tumor-associated
immune cells can therefore have profound effects on
progression, recurrence, and therapeutic resistance of glioma
by inducing inflammatory or anti-inflammatory responses
(Figure 1).

Tumor-Infiltrating Lymphocytes
As the most important component of the immune response in
the tumor microenvironment of most solid tumors, tumor-
infiltrating lymphocytes (TILs), represented by CD4+ Th,
CD8+ CTLs, and CD4+/CD25+/FoxP3+ T reg (23–26), are only
present in remarkably low numbers in the CNS compared to
other tumor types. CD4+ Th and CD8+ CTL populations
increase with tumor malignancy, starting at 39% in WHO
grade II tumors, rising to 73% in WHO grade III, and 98% in
grade IV (22). Meanwhile, a correlation between increased CD8+

CTL counts and improved patient outcomes has previously been
reported (27). T reg cells have a suppressive role in the adaptive
immune response and inhibit the proliferation of Th cells and
CTLs by secretion of suppressive cytokines (26).

The limited activity and number of TILs in the brain is
predominantly caused by the unique immunological status of
the brain which encourages only limited immunity in order to
prevent an inflammation-mediated intracranial hypertension
crisis. In response to tumor-derived inflammatory stimulation,
T reg cells secrete anti-inflammatory interleukin-10 (IL-10) and
transforming growth factor b (TGF-b) in order to dampen an
inflammatory immune response against the tumor (28, 29). In
addition to immunosuppressive mechanisms of the CNS,
expression of certain genes by the tumor itself also
contributes to low levels of TILs. For instance, glioma cells
produce a high level of indolamine 2, 3-dioxygenase (IDO)
which activates suppressor T cells by depleting tryptophan
from the tumor microenvironment (30). Besides, tumor-
derived Fas ligand promotes apoptosis of activated T cells
and leads to an immune escape of tumor cells by inhibiting
dendritic cells and maturation of T cells (31). Overexpression of
November 2020 | Volume 11 | Article 578877
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programmed cell death-ligand 1 (PD-L1) in glioma cells
prevents activation of T cells and induces T cell apoptosis via
binding to programmed death 1 (PD-1), a well-known
inhibitory immune checkpoint molecule (32, 33). Moreover,
an overexpression of CTLA-4 mRNA and protein, a strong
CD4+ T cell and CD8+ CTL inhibitor, is caused by lack of
CD80/86 co-stimulatory molecules (22). Therefore, a
comprehensive understanding of tumor heterogeneity and the
role of T cells in glioma is of critical importance for the design
of therapeutic targets.

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) are the major
i nfi l t r a t i n g immun e c ompon e n t i n t h e g l i oma
microenvironment, accounting for ~50% of all immune cells,
and have an important role in neoplasia, metastasis, immune
escape, and tumor angiogenesis (34, 35). Several studies have
reported that a majority of TAMs are derived from circulating
monocyte-derived macrophages (MDMs), while the remaining
proportion originates from MG (36–38). Immature monocytes
migrate to the tumor microenvironment and develop into
TAMs following exposure to several cytokines (34, 35). In the
glioma microenvironment, tumor- or effector T cell-derived
cytokines promote a change in macrophage effector
mechanisms on a spectrum between a pro-inflammatory
“M1” phenotype with anti-tumor responses, and an
immunosuppressive “M2” phenotype with anti-inflammatory
responses (39). In the early stages of glioma, TAMs inhibit
tumor proliferation via the pro-inflammatory “M1” phenotype,
while in advanced glioma, TAMs are predominantly
characterized by the “M2” phenotype, which generally induces
an immunosuppressive response and immune escape of the
tumor. As a special type of TAMs in CNS, MG also exhibit
similar plasticity to monocyte-derived macrophages (40).
Frontiers in Immunology | www.frontiersin.org 3
Studies have demonstrated that large numbers of infiltrating
TAMs are closely associated with poor prognosis (41) and the
“M2” phenotype has been shown to promote tumor progression
via secretion of immunosuppressive cytokines and factors
promoting angiogenesis (41, 42). Given this evidence, it seems
feasible to block the formation and phenotypic “M2”
transformation of TAMs. In mouse models, CSF-1 receptor
inhibi t ion with smal l molecules e i ther blocks the
transformation of “M2” phenotype or depletes TAMs (43–46),
both of which inhibit glioma progression and invasion.
Meanwhile, some other drugs have also been shown to achieve
their anti-tumor effect by depleting monocytes that serve as
precursors of TAM (47). However, recent studies have expanded
our understanding of macrophage polarization (48) and revealed
a multifaceted response comprising classical M1 and M2
polarization, including expression changes associated with
chronic inflammatory stimuli and exposure to free fatty acids,
which is involved in regulation of bone marrow cell function.
This indicates that the diverse transcriptional programming of
TAMs in glioma extends beyond the simplified view of an “M1”
versus “M2” polarization. Thus, despite the fact that both
depletion of TAMs and targeting “M2” polarization can
represent attractive therapeutic approaches for glioma, a more
comprehensive understanding of TAM phenotypes is required
for efficient and safe treatments of glioma (43, 49, 50).

Myeloid-Derived Suppressor Cells
Chronic inflammation in the tumor microenvironment is
induced by overexpression of pro-inflammatory cytokines,
including CSF-1, VEGF, TGF-b, and tumor necrosis factor a
(TNF-a) (51, 52). These pro-inflammatory cytokines promote
tumor growth, progression, and resistance to immunotherapy
by inducing a transformation of immature myeloid cells into
myeloid-derived suppressor cells (MDSCs). MDSCs are
FIGURE 1 | Cellular composition of glioma immune microenvironment. The figure depicts only a general representation of all the cell types that have been reported
to be associated with tumor cells in glioma immune microenvironment. Green arrow: down-regulation. Red arrow: up-regulation.
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recruited to peripheral lymphoid organs and the tumor
microenvironment from the bone marrow, promoting tumor
cell proliferation via various mechanisms, including
suppression of cytotoxic NK cell activity, inhibition of the
adaptive T cell response, induction of T cell apoptosis and T
reg cell proliferation, and secretion of immunosuppressive
cytokines (53–56). Therefore, MDSCs contribute to
resistance to immunotherapy, and combining treatments
targeting MDSCs with other immunotherapies has become a
promising therapeutic strategy achieving considerable success
(57–61). In glioma, related research has been focusing on
strategies that either inhibit the recruitment (targeting of C-
C motif chemokine ligand 2, VEGF-A, IL-8, and galectin-1) or
the formation of MDSCs from myeloid precursors (targeting of
M-CSF, PI3Kg, TAM-RTKs, and COX-2). Such strategies have
shown great promise in preclinical studies (62). As there is
increasing evidence that the function of MDSCs is tumor type-
dependent, a clear definition of this cell type in glioma remains
warranted (49). Transcriptomic characterizations of MDSCs -
separately from MG and MDMs – should be carried out to
ascertain the suppressive function and mechanisms of
differentiation into MDSCs, which could help to evaluate the
clinical value of MDSCs-targeted therapies in glioma (63).

Tumor-Associated Neutrophils
Completely contrary to their pro-inflammatory function during
infections, neutrophils have been frequently reported to promote
tumor progression and metastasis in recent years (64–66). This
unique relationship between neutrophils and tumor cells could
provide a reasonable explanation for the phenomenon that
circulating tumor cells often escape from immune surveillance
in breast cancer as neutrophils account for the largest proportion
of circulatory leukocytes (66). Besides, current study also
indicated that immunosuppressive tumor-associated
neutrophils (TANs) or granulocytic MDSCs are enriched in
neutrophil-enriched subtypes of triple negative breast cancer
and were associated with acquired immune checkpoint
blockade resistance (67). In the glioma microenvironment,
TANs promote tumor malignancy by mediating angiogenesis
(68). Besides, TAN depletion strategies using a Ly6G+

monoclonal antibody have been shown to prolong overall
survival in preclinical GBM mouse models (69). However, the
mechanisms underlying TAN recruitment to the tumor
microenvironment and the role of TANs in tumor progression
are not yet comprehensively understood and how the
glioma microenvironment heterogeneity affects neutrophil
reprogramming still remains to be unraveled.

Natural Killer Cells
A variety of mechanisms suppressing the activity of natural killer
(NK) cells, the most efficient innate cytotoxic lymphocytes, have
been identified during tumor cell progression. Similar to normal
cells, glioma cells can inhibit antigen presenting cell (APC)-
mediated recognition and NK cell-mediated killing through
expression of MHC class I molecules (MHC I) that interact
with NK cell immunoglobulin-like receptors (KIRs) (49).
Besides, infiltrating NK cells in the glioma microenvironment
Frontiers in Immunology | www.frontiersin.org 4
have been reported to be commonly nonfunctional, largely
owing to the combined negative regulatory effect of TAMs,
MDSCs, and T reg cells (49, 70).
IMMUNE CHECKPOINT BLOCKADE
STRATEGY AND INHIBITORS

There is no doubt that among various immunotherapies, despite
that checkpoint blockade might not be the most promising
treatment for glioma, it has been the immunotherapy most
developed in clinical use. Via a combination of specific
antibodies and checkpoint molecules, effector T cells can be
reactivated and exert tumor cell cytotoxicity. In the next
paragraphs, we describe classical immune checkpoint
molecules and their inhibitors (Table 1).

PD-1/PD-L1
PD-1 and its ligands PD-L1/2 are the most comprehensively
studied immune checkpoint molecules to date. PD-1 negatively
regulates T cell receptor-mediated signaling transduction
pathways and, in combination with PD-L1, inhibits activation
and cytotoxic T cell effects and blocks the production of
inflammatory factors, resulting in T cell inactivity. Expression
of PD-1 on immune cells is tightly regulated. For instance, PD-1
expression appears on the surface of T cells shortly (less than
24 h) after T cell activation and decreases with the elimination or
clearance of the antigen (49). Under chronic inflammatory
conditions or in cancer, antigens repetitively stimulate CTLs
to maintain high levels of PD-1 expression, eventually resulting
in T cell exhaustion and depletion. Tumor-expressed PD-L1 is
regulated by several mechanisms, including phosphatidylinositol
3-kinase (PI3K) signaling pathway activation and TIL-secreted
interferon g (IFN-g) (71). In glioma, PD-L1 is predominantly
expressed on tumor cells and TAMs and negatively relates to
patient outcome (72–74). To date, two anti-PD-1 antibodies
(Nivolumab, Pembrolizumab) and three anti-PD-L1 antibodies
(Atezolizumab, Avelumab, Durvalumab) have been put into
clinical application and have achieved dramatic successes
against a variety of solid tumors (75–77). However, they have
so far not been approved for clinical treatment of GBM despite
numerous preclinical successes reported over the past decades
(78–83). For instance, in the preclinical GL261 model, anti-PD-1
treatment success is dosage dependent, with the best outcome
reported being a cure rate of 50% (81, 83). Anti-PD-1
monotherapy has been observed to result in an increased ratio
of CD8+ CTLs to T reg cells, and enhanced efficacy when
combined with radiation and other checkpoint inhibitors
(81, 83).

Schalper et al. (84) reported treatment of 30 GBM patients
(3 primary, 27 recurrent) with preoperative and postoperative
nivolumab (NCT02550249), resulting in increased transcription
of chemokines, infiltration of TILs, and diversity of TCR in
tumor microenvironment. While no patients with recurrent
GBM benefited from treatment as measured by overall survival
(OS), two of the three primary GBM patients survived for 33
November 2020 | Volume 11 | Article 578877
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TABLE 1 | Current clinical trials of immune checkpoint blockade.

Clinical trials Stage Targets Drugs

Monotherapy
NCT02017717 (CheckMate⁃143) III PD-1 Nivolumab
NCT02617589 (CheckMate⁃498) III PD-1 Nivolumab + radiation
NCT02667587 (CheckMate⁃548) III PD-1 Nivolumab + radiation + TMZ
NCT02648633 III PD-1 Nivolumab
NCT03718767 II PD-1 Nivolumab
NCT03797326 II PD-1 Pembrolizumab
NCT02852655 II PD-1 Pembrolizumab
NCT02337686 II PD-1 Pembrolizumab
NCT02968940 II PD-L1 Avelumab + radiation
NCT03047473 II PD-L1 Avelumab + TMZ
NCT03341806 I PD-L1 Avelumab
Combined with other checkpoint molecules
NCT03707457 I PD-1+IDO1 Nivolumab + INCB024360
NCT04047706 I PD-1+IDO1 Nivolumab + BMS986205
NCT02658981 I PD-1+LAG-3 Nivolumab + BMS986016
NCT03493932 I PD-1+LAG-3 Nivolumab + BMS986016
NCT03233152 I PD-1+CTLA-4 Nivolumab + Ipilimumab
NCT03422094 I PD-1+CTLA-4 Nivolumab + Ipilimumab
NCT02311920 I PD-1+CTLA-4 Nivolumab + Ipilimumab+TMZ
NCT02794883 II PD-L1+CTLA-4 Durvalumab + Tremelimumab
Combined with VEGF/VEGFR
NCT03743662 II PD-1+VEGF Nivolumab + BEV + radiation
NCT02336165 II PD-L1+VEGF Durvalumab + BEV
NCT03291314 I PD-L1+VEGFR Avelumab + Axitinib
NCT02052648 I/II IDO1+VEGF Indoximod + BEV + TMZ
Combined with CAR-T
NCT03726515 I PD-1+CAR-T Pembrolizumab + CAR⁃EGFR-III⁃T
NCT04003649 I PD-1+CTLA-4+CAR-T Nivolumab + Ipilimumab + CAR-T
Combined with vaccines
NCT02529072 I PD-1 Nivolumab + DC vaccines
NCT02287428 I PD-1 Pembrolizumab + NeoVax vaccines
NCT03750071 I/II PD-L1 Avelumab + VXM01 vaccines

PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; IDO1, indoleamine 2,3-dioxygenase; LAG-3, lymphocyte-activation gene 3; CTLA-4, cytotoxic T-
lymphocyte associated protein 4; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; CAR-T, chimeric antigen receptor T-cell; TMZ,
temozolomide.
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month and 28 months, respectively. CheckMate⁃143 phase III
trial (NCT02017717) found no OS benefit when comparing
nivolumab with bevacizumab (anti-VEGFA) in the treatment
of recurrent GBM (median OS 9.8 vs. 10.0 months) (85). In the
CheckMate⁃498 trial (NCT02617589), newly diagnosed GBM
patients with unmethylated O6-methylguanine-DNA
methytransferase (MGMT) promoter who received nivolumab
plus radiotherapy did not benefit from this treatment compared
with radiotherapy plus temozolomide (TMZ) as measured by OS
(86). More recently, similarly disappointing results have been
reported in the CheckMate-548 study (NCT02667587). Here,
newly diagnosed GBM patients with methylated MGMT
promoter did not show a PFS benefit with anti-PD-1
treatment; the OS effect is still pending (87). Primary results of
a study by Lukas et al. (88) reporting on a clinical trial using
atezolizumab, an anti-PD-L1 antibody (NCT01375842), showed
that increased CD4+ T cells and IDH mutation indicated better
treatment efficiency of atezolizumab.

CTLA-4
Cytotoxic T-lymphocyte associated protein 4 (CTLA-4)
expression on activated T cells or T reg cells was the first
Frontiers in Immunology | www.frontiersin.org 5
identified member of the immunoglobulin superfamily, and also
the first immune regulation molecule used in targeted therapy.
CTLA-4 inhibits T cell co-stimulatory signaling pathways by
combining with ligands CD80 and CD86 expressed on APCs
(89). Unlike PD-1, CTLA-4 signaling occurs at the early stages of
T cell activation, and CTLA-4 is mainly expressed on T cells of the
lymph node (90). In preclinical experiments, anti-CTLA-4
monotherapy prolonged OS in the GL261 syngeneic mouse
model (81). Although CTLA-4 blockade strategy results in an
increased median survival with 25% cure rate, the response of
monotherapy was still considered limited as combined application
of anti-PD-1 therapy or radiotherapy can remarkably improve
efficacy (81, 90). Reardon et al. (81) also reported that combination
of anti-CTLA-4 and anti-PD-1 therapy increased the cure rate to
75%. For further investigation, CTLA-4 blockade as a
monotherapy or in combination with anti-PD-1 treatment is
therefore currently being tested in a phase III clinical trial in
patients with recurrent GBM (NCT02017717).

B7 Family
In recent years, there have been increasing numbers of studies
investigating immune checkpoint molecules of the B7 family. In
November 2020 | Volume 11 | Article 578877
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addition to PD-L1 (B7-H1), studies have investigated B7-H3
(CD276), B7-H4, B7-H5 (Vista), B7-H6, and B7-H7 (HHLA2),
amongst others. B7-H3 and B7-H7 have a dual function,
enabling both co-stimulation and co-inhibition (91). By
interacting with specific ligands, these molecules can therefore
have different roles in tumor progression. For instance, recent
research points out that B7-H3 positively relates to the Toll-like
receptor signaling pathway and the poor survival of glioma
patients, while it has also been reported to co-stimulate
immunological function and be involved in anti-tumor
functions (92–95). Similarly, B7-H7 shows the same
phenomenon in various solid tumors (96, 97). Inhibiting NK-
mediated recognition of B7-H6 is an important mechanism of
the tumor immune escape. NK cells eliminate B7-H6-expressing
tumor cells either directly via cytotoxicity or indirectly by
cytokine secretion, which highlights a role for the tumor-
induced “self”-molecule B7-H6 in alerting innate immunity
(91). Both B7-H4 and B7-H5 have co-inhibitory functions on
the immune system (91), although research on these and other
members of the B7 family is still in progress. As the largest
immune checkpoint family, the function and mechanisms of B7
family members in glioma remains largely unknown. Thus, a
more comprehensive understating of the function of the B7
family in glioma could help to explore more effective therapeutic
targets in immunotherapy.

IDO, LAG-3, and TIM-3
Indoleamine 2,3-dioxygenase (IDO) is the key enzyme of the L-
tryptophan metabolism via the kynurenine pathway. Although
IDO expressed on tumor cells and dendritic cells (DCs) is not a
typical checkpoint molecule, it can inhibit T cell activation by
modulation of the tryptophan metabolism which has an
important role in the function of T cells (98–101). Metabolites
of tryptophan also induce T cell apoptosis (101). Besides, an
interaction of kynurenine and TGF-b can induce FoxP3
expression in T cells, which results in T reg cell polarization
(102, 103). Preclinical models have shown that clinical trials with
IDO inhibitors did not meet the expectations (104).

Lymphocyte-activation gene 3 (LAG-3) has four extracellular
immunoglobulin superfamily-like domains which bind to MHC
II, and is responsible for transmission of inhibitory signals (105).
In addition to MHC II, another ligand for LAG-3 is Gal⁃3, which
is involved in the inhibition of CD8+ CTLs (106). Tumor-derived
antigens induce LAG-3 overexpression and thereby lead to the
depletion of CD8+ CTLs (107). Research in mouse xenografts
revealed that co-targeting of PD-1 and LAG-3 on TILs can limit
tumor growth, which is likely superior to a single inhibitory
mechanism (108, 109). Given this finding, recent trials have
focused on anti-PD-1 and anti-LAG-3 combination therapies
rather than monotherapies. However, the vast majority of this
research in still in preclinical stages.

T cell immunoglobulin domain and mucin domain protein-3
(TIM-3) is expressed on CD4+ and CD8+ T cells, monocytes, and
macrophages (110). TIM-3 regulates T cell depletion and is
involved in tumor immunosuppression and immune escape via
binding to its ligand Gal-9 (110). Clinical trials reported that
GBM patients with overexpression of TIM-3 have higher tumor
Frontiers in Immunology | www.frontiersin.org 6
malignancy, a lower quality of life, and worse prognosis
(111, 112).

Although several checkpoint-related molecules have been
discovered, there have been none as influential as PD-1 and
CTLA-4, and the efficiency of the vast majority of checkpoint
inhibitors in glioma remains doubtful. While single checkpoint
inhibition is the standard of care in many tumor entities,
checkpoint molecules cooperate or antagonize each other in
tumor progression, making it difficult for a single checkpoint
inhibitor to play a decisive role in systemic immunity. Therefore,
combination of checkpoint inhibitors seems to be more efficient
than monotherapy.
LESSONS FROM CLINICAL FAILURES

There is no doubt that immunotherapy holds promise for the
treatment of glioma. However, even promising preclinical data are
rarely translated into clinical success in glioma. Two factors
complicate the clinical translation for glioma treatment. Firstly,
glioma has a “cold tumor” phenotype, which is associated with a
poor response to immunotherapy. Owing to the unique
environment of CNS, even after inhibiting checkpoint molecules
to induce T cell responses against glioma, antigen-specific TILs
remain at relatively low levels. Second, current preclinical models
have only limited capacity to reflect the real tumor heterogeneity
of glioma. Generally, GBM can be classified into four subtypes:
classical, proneural, neural, and mesenchymal, with high
heterogeneity between each subtype (113, 114). There are
remarkable differences in gene expression among these four
subtypes, which suggests that targeting checkpoint molecules
therapies may only be effective for some subpopulations
expressing specific genes, but not for other subpopulations.
These two factors interact to form resistance mechanisms at all
phases of the antitumor immune response: intrinsic resistance
prevents the initiation of a response; adaptive resistance
deactivates tumor-infiltrating immune cells; and acquired
resistance protects the tumor from elimination in the face of
attack by the immune system. Even though dramatic immune
responses have been observed in preclinical models using a variety
of immunotherapy strategies, patients rarely benefit from these
treatments, owing to the extensive immunosuppressive
mechanisms of glioma (115, 116). However, these mechanisms
render glioma a valuable model for studying how resistance allows
tumors to escape immunotherapy.

Intrinsic Resistance
Intrinsic tumor resistance can be classified into three groups:
patient-intrinsic factors (including sex, age, and HLA genotype),
tumor-intrinsic factors (including the host immune system and
tumor-associated stroma), and environmental factors (117–119).
Among them, tumor-intrinsic factors, relating to the genetic,
transcriptional or functional profile of the tumor cells, are the
main determinants of response and resistance (116).

Several studies have demonstrated that tumors can prevent
immune responses by not expressing high-quality neoantigens,
and they can furthermore rapidly suppress immune responses by
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expressing multiple immune checkpoint ligands and
immunosuppressive cytokines (115, 116). Meanwhile, even
with sufficient antigenicity, sensitivity to immune checkpoint
blockade can be disrupted by tumorintrinsic genetic defects in
the IFN g signaling pathway and antigen presentation (120–122).
A disruption in anti-tumor response to the IFN g signaling
pathway can inhibit the Janus kinase (JAK) and (STAT)
signaling pathway, downregulating PD-L1 expression, and
making anti-PD-1 treatment ineffective. Besides, the WNT–b-
catenin signaling pathway has been confirmed to prevent an
anti-tumor immune response by inhibiting dendritic cells and
promoting the immunosuppressive cytokine IL-10 (123–126).
Meanwhile, the MAPK signaling pathway also contributes to
tumor immune escape by upregulation of the expression of the
immunosuppressive cytokines IL6 and IL10 (127).

To date, the heterogeneity of glioma is still considered the
basis for its resistance to a variety of treatments. For instance, the
most extensively studied neoantigen, EGFR variant III, is a
truncated EGFR neoantigen with expression in 19% of newly
diagnosed GBM patients, of which 11% exhibit high levels of
expression (128). Although nearly 82% of recurrent tumors do
not express EGFR variant III, the vast majority of mesenchymal
subtypes shows overexpression of EGFR variant III (129, 130).
This characteristic makes it difficult to stably express specific
antigens to induce a durable anti-tumor immune response.
Besides, despite the fact that adjuvant radio-chemotherapy can
enhance the efficiency of checkpoint blockade strategies, what
cannot be ignored is that radio-chemotherapy has
well-documented immunosuppressive functions inducing other
resistance mechanisms rather than tumor-intrinsic resistance to
immunotherapy, which further reduces the immune responses of
the CNS (131).

Adaptive Resistance
The discovery that tumors can counter attacks of the immune
system by usurping mechanisms that normally prevent
autoimmunity is one of the most impactful findings in the
history of oncology. Although immune checkpoint molecules
may be expressed in various tumors at “baseline,” a remarkable
increase of their expression levels can be observed under
immunological stimulation (132). Thus, immune checkpoint
blockade can trigger strong anti-tumor response. In spite of
the durable clinical responses that PD-1 and CTLA-4 blockade
strategies have achieved in several advanced tumors, it is
undeniable a large proportion of patients do not benefit from
checkpoint blockade (132). One explanation for this is that TILs
can exhibit severe exhaustion, similar to that observed in chronic
viral infections (133). However, while the degree of immune
exhaustion in GBM is severe, it does not appear to be singularly
so, as other tumors that respond poorly to checkpoint inhibitors
use similar adaptive resistance mechanisms (115, 134). Another
explanation is that checkpoint molecules with similar
mechanisms can compensate for each other. For instance,
upregulation of the alternative checkpoint molecule TIM-3 has
been observed in tumors resisting PD-1 blockade (135).
Downregulation of one immune checkpoint generally
upregulates alternative immune checkpoints, eventually leading
Frontiers in Immunology | www.frontiersin.org 7
to the durable immunosuppression and a resistance to the
blockade. Given this mechanism, current clinical trials focus
on overcoming adaptive resistance of PD-1 and CTLA-4
blockade strategies by targeting alternative immune checkpoints.

Acquired Resistance
Acquired resistance of tumor generally refers to the genetic
alternations caused by immunological pressure (115). For
instance, in non-small cell lung cancer (NSCLCs) and
melanoma, significant downregulation of targeted antigens has
been observed in tumor infiltrating region, resulting in the failure
of immune targeted therapy (136, 137). Perhaps therapies that
overcome intrinsic resistance mechanisms will also render
acquired resistance inconsequential by generating a diverse
repertoire of T cell clones targeting high-quality targeted
antigens that rapidly eliminate a tumor before acquired
resistance emerges. However, the exact effects of acquired
resistance on malignant glioma remain unknown, as the low
response and persistence of treatments in glioma have been
considered as an important intrinsic resistance mechanism. In
contrast, recent research reported 66 recurrent GBM patients
who received PD-1 blockade therapy (138). Among them, 17
patients were identified as responders based on brain imaging
and profiling of resected tissue. Tumors in responders were
found to be enriched for alterations in the mitogen-activated
protein kinase pathway and exhibited branched patterns of
evolution, while non-responding tumors more frequently had
mutations in the gene encoding PTEN and non-clonal evolution
patterns (138). Notably, responders had a significantly longer OS
than non-responders (14.3 vs. 10.1 months) (138). Given the
heterogeneity of GBM mentioned above, in addition to intrinsic
resistance, acquired resistance seems to play an important role in
resistance to checkpoint blockade.
HYPOXIA IN THE GLIOBLASTOMA
MICROENVIRONMENT

To date, research has mainly focused on the “seed’s” response to
therapy (i.e., tumor cells themselves), while the problem of “poor
soil” (the tumor microenvironment) is often ignored. Herein, we
further explored the role of hypoxia in the tumor immune
microenvironment. Accumulating evidence indicates that
hypoxia may protect tumors from immune responses through
various mechanisms, including by inhibition of NK and CTL cell
activity, promotion of immunosuppressive cytokines, and by
enhancing immunosuppressive cells (T reg cells, TAMs, and
neutrophils) (139).

CTLs and NK Cells
There are an increasing number of studies investigating the effects
hypoxia on immune cells. For instance, IL-2, an important growth
factor for T and NK cells with a pivotal role in the regulation of the
host’s immune response, has been reported to be exquisitely
sensitive to changes in oxygen tension (140). Hypoxia can cause
a prolonged reduction in IL-2 mRNA expression and inhibit NK
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cell and CTL activity. Meanwhile, hypoxia has also been shown to
reduce the ability of NK cells to release IFNg, TNFa, GM-CSF,
CCL3, and CCL5 (139, 141). In patients with a high risk of
hypoxia, CTLs and NK cells appeared to be in resting status
rather than active (139), revealing that hypoxia might lead to a
state of immune suppression.

Suppressive Immune Cells and Cytokines
Hypoxia is thought to play a key role in TAM polarization. It can
promote the “M2” phenotype and contribute to tumor growth,
immune suppression, and tumor angiogenesis (142–144). In a
bioinformatic study assessing the polarization of cells in the tumor
immune microenvironment, T reg cells, neutrophils, and TAMs
with an “M2” phenotype increased remarkably under hypoxia (139).
Besides, hypoxia also promotes the expression of TGF-b and IL-10,
two well-established suppressive cytokines (139, 142, 145).
FUTURE DIRECTIONS

The extensive immunosuppressive mechanisms in “seed”
(including tumor heterogeneity and alteration of checkpoint
molecules) and “soil” (hypoxia in tumor microenvironment)
complicates the treatment of glioma and explains why
promising preclinical data had rarely been translated into
clinical success. Given this, individualized treatment and real-
time monitoring of treatment response are essential.

Biomarkers
Predicting and monitoring patient responses to treatment have
become an urgent requirement for the clinical development of
immunotherapies. Tumor tissue biopsies remain the gold
standard for diagnosis, but its application is not suitable for
response monitoring. Complex and changeable signals on MRI
furthermore challenge the differentiation of glioma recurrence
from pseudoprogression and radiation brain necrosis. Thus, the
availability of biomarkers has greatly enhanced oncological
practices and is now the basis of precision medicine for many
cancers. However, suitable biomarkers for immunotherapies of
glioma are still unknown. Recently, studies have reported that
anti-PD-1 therapy results in upregulation of T cell- and IFN g-
related gene expression in immune cells, as well as
downregulation of cell-cycle-related gene expression within
tumor cells (84, 138, 146). Anti-PD-1 therapy seems to result
in different responses in tumors with specific genetic
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alternation, including increased clonal expansion of T cells,
decreased expression of PD-1 in peripheral T cells, and
decreased monocytes in circulation (84, 138, 146). Liquid
biopsies are anticipated to become a successful strategy for
biomarker response monitoring in glioma. For instance, tumor
mutation burden (TMB) based on detection of circulating
tumor DNA shows a high correlation with anti PD-1
response (147). Meanwhile, current studies also indicated that
circulating tumor cells (CTCs) of glioma offer unique
advantages for non-invasive monitoring of tumor progression
which could furthermore identify pseudoprogression and
radiation necrosis (148, 149). Taken together, an efficient
biomarker can not only help to choose individualized
treatment, but also timely reflect when patients develop
resistance to adjust the treatment.

Combined Drug Therapy
Immunotherapy resistance of glioma is a result of multiple factors:
intrinsic resistance and adaptive resistance in the early stages of
treatment, and acquired resistance over the period of therapy
mediated by genetic alternations. Owing to unique resistance
mechanisms, monotherapy of checkpoint inhibitors for glioma
does not seem to induce durable anti-tumor responses. Thus,
combined drug therapy, to some extent, may show advantages and
higher efficacy. For instance, in preclinical model, anti-PD-1
combined with anti-TIM-3 synergistically improved survival
(135). Furthermore, the combination of immune checkpoint
blockade and anti-tumor-associated immune cells (TAMs,
MDSCs) also holds promise for the treatment of glioma.
Therefore, a more comprehensive understanding of immune cell
roles in the tumor microenvironment, as well as specific
biomarkers for functional immune cell types and tumor
response, may be necessary for individualized treatment of
patients with glioma in the era of precision medicine.
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