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Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic

polysaccharide comprised of repeating disaccharides, modified with sulfate groups at

various positions. Except for hyaluronan (HA), GAGs are covalently bound to core

proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact

with a variety of physiologically active molecules, including cytokines, chemokines, and

growth factors, and control cell behavior during development and in the progression of

diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another

type of GAG, and HA are well reported as regulators for leukocyte migration at sites of

inflammation. There have been many reports on the regulation of immune cell function by

HS and HA; however, regulation of immune cells by CS has not yet been fully understood.

This article focuses on the regulatory function of CS in antigen-presenting cells, including

macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan,

and the cell surface proteoglycan, syndecan.

Keywords: chondroitin sulfate, glycosaminoglycan, proteoglycan, antigen-presenting cell, receptor type of protein

tyrosine phosphatase sigma

INTRODUCTION

Glycosaminoglycans (GAGs) are linear polysaccharides consisting of repeating disaccharide units
and modified with sulfate groups at various positions on the sugar residues. The GAG chains
retain negatively charged domains due to characteristics of the sulfate groups, allowing for the
absorption of water and other positively charged soluble ligands, such as chemokines (1, 2),
cytokines (3), growth factors (4, 5), and cell surface receptors (6, 7). They are classified into
chondroitin sulfate/dermatan sulfate (CS/DS), heparin/heparan sulfate (HP/HS), hyaluronan (HA),
and keratan sulfate (KS).

At the site of injury or infection, macrophages release cytokines to activate endothelial cells,
and HS on endothelial cells binds to L-selectins on leukocyte, leading to leukocyte rolling (8).
Macrophages also release substantial amounts of chemokines that bind to GAGs at the endothelial
surface (9). Leukocytes adhere to endothelial cells firmly and then migrate through the endothelial
barrier. Therefore, the roles of GAGs in inflammation and immunity are linked to chemokines
due to their highly polar nature. HA is best studied in clinical applications for its influence on
inflammation, and its role is varying depending on its molecular weight. High-molecular-weight
HA has anti-angiogenic, anti-inflammatory, and immunosuppressive effects (10). Conversely,
low-molecular-weight HA promotes angiogenesis, inflammation, and cell migration (10, 11). HA
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forms provisional matrices with a CS proteoglycan (PG) versican.
In the versican-null lung, there are no such matrices, and
numbers of infiltrated leukocytes do not increase (12). The
HA–versican interaction is important for the recruitment of
inflammatory cells including neutrophils, macrophages, and T
cells (13, 14). An early work showed a significant increase in CS
synthesis in the normal lung after intravenous administration of
a single dose of endotoxin (15).

Therefore, PGs accumulate in inflammatory areas and induce
inflammatory cell infiltration. Increasing evidence suggests an
anti-inflammatory activity of CS through suppression of pro-
inflammatory cytokine activities (16–18). While the structure–
function relationship of CS is controversial, we aim to introduce
the latest information on the role of CS in inflammation.

STRUCTURE OF CHONDROITIN SULFATE

Chondroitin sulfate (CS) is a natural biomacromolecule
abundantly distributed in virtually all invertebrates and
vertebrates and involved in many biological processes (19, 20).
Based on its structure, chain length, and sulfation patterns,
CS provides specific biological functions at molecular, cellular,
and organ levels, such as cell adhesion, cell division and
differentiation, morphogenesis, organogenesis, and neural
network formation (6, 21). CS is composed of a repeating
glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc)
and modified with sulfate groups at varying positions on sugar
residues. The major disaccharide structures of CS are as follows:
a non-sulfated unit (CH, GlcA-GalNAc), a monosulfated unit at
the C-4 position of the GalNAc residue (chondroitin 4-sulfate:
CSA, GlcA-GalNAc4S), a monosulfated unit at the C-6 position
of GalNAc (chondroitin 6-sulfate: CSC, GlcA-GalNAc6S),
a disulfated unit at the C-4 and C-6 positions of GalNAc
(chondroitin 4, 6-sulfate: CSE, GlcA-GalNAc4S6S), a disulfated
unit at the C-2 position of GlcA and the C-4 position of GalNAc
(chondroitin 2,4-sulfate, GlcA2S-GalNAc4S), a disulfated unit
at the C-2 position of GlcA and the C-6 position of GalNAc
(chondroitin 2, 6-sulfate: CSD, GlcA2S-GalNAc6S), and a
trisulfated unit at the C-2 position of GlcA and the C-4 and
C-6 positions of GalNAc (GlcA2S-GalNAc4S6S). Certain GlcA
residues are epimerized to iduronic acid (IdoA); the chain
containing IdoA residues is designated as CSB or DS (Figure 1).

Thus, CS possesses a heterogeneous structure and physical–
chemical profile in different species and tissues and is

Abbreviations: CS, chondroitin sulfate; GAG, glycosaminoglycan; HA,

hyaluronan; PG, proteoglycan; CSPG, chondroitin sulfate proteoglycan; HS,

heparan sulfate; DS, dermatan sulfate; HP, heparin; KS, keratan sulfate; GlcA,

glucuronic acid; GalNAc, N-acetylgalactosamine; CSA, chondroitin 4-sulfate;

CSC, chondroitin 6-sulfate; CSD, chondroitin 2,6-sulfate; CSE, chondroitin

4,6-sulfate; IdoA, iduronic acid; ECM, extracellular matrix; VAR2CSA, variant

surface antigen 2-CSA; APC, antigen-presenting cell; DC, dendritic cell; PAMP,

pathogen-associated molecular pattern; DAMP, damage-associated molecular

pattern; PRR, pattern recognition receptor; TLR, Toll-like receptor; MHC, major

histocompatibility complex; TNF-α, tumor necrosis factor-alpha; IL, interleukin;

LPS, lipopolysaccharide; IFN, interferon; EAE, experimental autoimmune

encephalomyelitis; CNS, central nervous system; RPTPσ, receptor type of protein

tyrosine phosphatase sigma; LAR, leukocyte common antigen-related; SLRP, small

leucine-rich proteoglycan; LRR, leucine-rich repeat; LDL, low-density lipoprotein;

SDC, syndecan.

responsible for the various and more specialized functions in
the extracellular matrix (ECM). To understand the structure–
function relationship of CS, our group developed a sequence
determination method of synthesized CS dodecasaccharides (22)
and generated a CS library via chemo-enzymatic synthesis (23).
This CS library showed that CSA interacts with a malarial
variant surface antigen 2-CSA (VAR2CSA) protein and may
potentially serve as a target in therapeutic strategies against
placental malaria (24).

THE EFFECT OF CHONDROITIN SULFATE
ON ANTIGEN-PRESENTING CELLS (IDEM
FOR MACROPHAGES AND DENDRITIC
CELLS)

Antigen-presenting cells (APCs), including macrophages,
dendritic cells (DCs), and B cells, trigger innate immunity by
different mechanisms (Figure 2). In the innate immune system,
the recognition of extracellular pathogen is mainly mediated
by macrophages and DCs in the mononuclear phagocyte
system. They recognize pathogen-associated molecular patterns
(PAMPs) brought by microbes and damage-associated molecular
patterns (DAMPs) produced by damaged host cells through
antigen-specific surface receptors, including pattern recognition
receptors (PRRs) (25). Toll-like receptors (TLRs) represent
a major PRR family. Once their extracellular domains bind
PAMPs or DAMPs, the TLRs trigger an intracellular signaling
pathway to activate various transcription factors such as nuclear
factor-κB (NF-κB). After recognizing their specific molecular
patterns, APCs internalize antigens by phagocytosis, process
them, and display the fragment of antigen on their surface with
major histocompatibility complex (MHC) (26, 27). In general,
macrophages remain at the inflammatory sites to eliminate
pathogens and apoptotic cells by phagocytosis and clearance and
produce pro-inflammatory cytokines. In contrast, DCs can travel
to the draining lymph nodes and stimulate T cells (28, 29).

The Role of Chondroitin Sulfate in
Macrophages
Macrophages are typically activated in a pro-inflammatory
phenotype (M1) or an anti-inflammatory phenotype (M2).
Furthermore, M2macrophage is classified into four subdivisions,
M2a, M2b, M2c, and M2d, depending on the applied stimuli
and their protein expression profile (30). M1 secretes various
pro-inflammatory cytokines and chemokines, such as tumor
necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8,
etc., to scavenge pathogens (31), and M2 produces inflammation
inhibitory factors, such as IL-10 and Arginase 1, to avoid
excessive inflammation and promote tissue repair (32). Most
tissue-resident macrophages are not originated from circulating
hematopoietic stem cell-derived monocytes but developed from
embryonic precursors including the yolk-sac macrophage or fetal
liver monocytes (33, 34).

The anti-inflammatory activity of CS has been studied
concerning macrophages. CS influences inflammatory processes
by limiting NF-κB signaling (16, 35) and also inhibits IL-1β-
induced liberation of pro-inflammatory genes, such as IL-6,
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FIGURE 1 | Structure of major chondroitin sulfate (CS) disaccharides. CS is linked to a serine residue of a core protein via a linkage region. Repeating disaccharides

form a linear polysaccharide chain, which is modified with sulfate groups at varying positions on sugar residues. The major disaccharide structures of CS are as

follows: a non-sulfated unit (CH, GlcA-GalNAc); a monosulfated unit at the C-4 position of the GalNAc residue (CSA, GlcA-GalNAc4S); a monosulfated unit at the C-6

position of the GalNAc residue (CSC, GlcA-GalNAc6S); a disulfated unit at the C-2 position of GlcA and the C-6 position of the GalNAc residue (CSD,

GlcA2S-GalNAc6S); and a disulfated unit at the C-4 and the C-6 positions of the GalNAc residue (CSE, GlcA-GalNAc4S6S). Certain GlcA residues are epimerized to

IdoA (CSB or DS, IdoA-GalNAc4S).

nitric oxide synthase 2, and prostaglandin E2 synthase (36,
37). Further, CS blocks lipopolysaccharide (LPS) binding to
CD44 on rat bone marrow-derived macrophages to inhibit the
LPS/CD44/NF-κB pathway (38). In CS structure, CSA and its N-
deacetylated derivative can activate NF-κB in macrophages and
induce TNF-α production (39). In contrast, CSC attenuates the
inflammatory response in macrophages via suppression of NF-
κB nuclear translocation (40). Moreover, CSA or CSC inhibited
the LPS-induced expression of TNF-α, IL-1β, IL-6, and nitric

oxide (NO) on bone marrow-derived macrophages (36). The
functions of the CS sulfated structures on macrophages are still
in argument.

The Role of Chondroitin Sulfate in
Dendritic Cells
Dendritic cells (DCs) are more potent APCs than macrophages
and themajor instructors of T cells (41). In local tissues, including
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FIGURE 2 | Schematic diagram of innate immunity and adaptive immunity. Step 1: Activation of pattern recognition receptors (PRRs) on tissue-resident macrophages

and/or dendritic cells (DCs) by pathogen-associated molecular patterns (PAMPs) resulting in activation of the innate immune response and the following events.

1. Migration of monocytes that mature into recruited macrophages and neutrophils in the systemic circulation.

2. Maturation of DCs, which then migrate to the lymph node.

Step 2: Processing of the antigens and presentation of an antigen on major histocompatibility complex I (MHC-I) or MHC-II to the T cell receptor on T cells.

Step 3: Development of adaptive immunity.

skin and intestine, DCs recognize PAMPs or DAMPs through a
large variety of PRRs and phagocytose the antigens and become
activated during this process. A variety of factors, such as
IL-1 (42) and TNF-α (43), whole bacteria and microbial cell
wall component LPS (44), CpG motifs in bacterial DNA (45),
haptens (44), and apoptotic cells (44), stimulate DC maturation
and promote the expression of MHC-antigen-presenting and
costimulatory molecules. The mature DCs migrate to nearby
lymphoid organs to present the peptide to naive T cells in a
complex with MHC proteins (28). Naive T cells can differentiate
into several types of effector T cells via MHC class II complex
and CD8+ T cells viaMHC class I complex (41, 46–48). Effector
cells include four types of helper T cells, namely, Th1, Th2,
TFH, Th17, and regulatory T cells, depending on the cytokines
they encounter (49, 50). The mature DCs are divided into three
major subsets of conventional DCs (cDC1s and cDC2s) and
plasmacytoid DCs (pDCs). cDC1 has a high intrinsic capacity to
cross-present antigens via MHC class I to activate CD8+ T cells
and to promote Th1. cDC2 influences a wide range of naive T
cell differentiation to Th1, Th2, Th17, and CD8+ T cells (51).
Although pDCs are specialized to respond to viral infection with
a massive production of type I interferons (IFNs), they also act as
APCs and control T cell responses (28).

Both sulfate group content and position in CS are important
for Th1 cell-promoted activity of murine splenocytes in terms
of cytokine production (52). CSA exhibits the highest cytokine
production activity in murine splenocytes. In contrast, CSE
decreases Th1-promoted and Th2-inhibitory activity (53). A
CSPG fraction mainly of aggrecan extracted from salmon nasal
cartilage attenuates the severity of experimental autoimmune

encephalomyelitis (EAE), by suppressing the differentiation of
the Th17 lineage, and enhances regulatory T cell expansion
(54). In EAE mice, treatment with CSD disaccharides inhibits
the expression of IFN-γ in the brain (55). CSD treatment also
obviously alleviates the clinical symptoms of EAE by limiting
T cell infiltration and microglial activation. However, CSA
treatment exacerbates EAE symptoms by stimulating T cell
infiltration in the central nervous system (CNS) and inducing
their differentiation into Th1 and Th17 lineages (56). Moreover,
CSC displayed a neuroprotective effect in EAE and may inhibit
the spread of pathogenic T cells in the CNS (57). DCs play a
pivotal role in promoting unbalanced active immune responses,
resulting in the progression of autoimmune diseases. These
results suggest that CS could regulate DC function, which leads
to designated T cell differentiation.

RECEPTORS OF CHONDROITIN SULFATE
ON ANTIGEN-PRESENTING CELLS

Toll-Like Receptors
The components of ECM are recognized by TLRs as DAMPs.
To date, 13 mammalian TLRs have been identified. Each TLR
recognizes specific PAMPs and DAMPs including lipopeptides
for TLR1, TLR2, and TLR6, LPS for TLR4, bacterial flagellin
for TLR5, dsRNA for TLR3, ssRNA for TLR7 and TLR8,
and DNA for TLR9 (58). TLR2 and TLR4 can also be
activated by endogenous ligands or DAMPs (59, 60). A
small proteoglycan biglycan stimulates macrophage activation
via TLR2 or TLR4. The effect is significantly reduced in
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TLR4-mutant and TLR2−/− macrophages and abolished in
TLR2−/−/TLR4-mutant macrophages (61). In cancer-associated
inflammation, tumor-derived versican causes a dysfunction of
DCs via activation of their TLR2 (62). Versican also facilitates
Lewis lung carcinoma metastasis through TLR2 and its co-
receptor TLR6 (63). Although versican and biglycan are CSPGs,
these reports did not mention whether CS or core protein
is responsible for these effects. In macrophage-like cell line,
smaller sized CSA or its disaccharides suppress IL-6 secretion,
whereas no such size-dependent suppression was apparent for
CSC (21). CSA and CSC significantly inhibit NF-κB activity
and inflammatory cytokines via TLR4 (64). To elucidate the
structure–function relationship between CSs and TLRs, further
studies are expected.

Receptor-Type Protein Tyrosine
Phosphatase Sigma
The receptor-type protein tyrosine phosphatase sigma (RPTPσ)
is found as an inhibitor of axonal growth and nerve regeneration
with CS (65), and is a cell-surface protein that has intracellular
tyrosine phosphatase activity and extracellular domains. RPTPσ

is one of the type IIa RPTPs, and others are leukocyte common
antigen-related (LAR) and RPTPδ. Out of the three, RPTPσ is
expressed in several immune cells, including DCs, and is essential
for regulating immune cell activation, cytokine production, and
inflammation (66, 67). RPTPσ interacts with both CS and HP/HS
in the nervous system, with a resembling binding affinity (65, 68,
69). CS and HP/HS compete for the same binding site of RPTPσ

in the first Ig-like domain and result in opposing effects on
axon elongation. Crystallographic analysis suggests that CS can
prevent RPTPσ dimerization, while HS induces RPTPσ clustering
(70). Using a biotin-conjugated CS GAG library composed of
chemoenzymatically synthesized CS species, RPTPσ binds to CSE
with 10-kDa molecular mass, but not to CSA or CSC (71).

RPTPσ acts as a receptor to inhibit autoimmune-related
inflammation by preventing DC hyperactivation (66). Since
RPTPσ is crucial for suppressing immune responses mediated by
DCs, the CS function through RPTPσmight contribute to various
immune-related diseases.

CD44
CD44 is a transmembrane glycoprotein that exhibits extensive
molecular heterogeneity. The CD44 ectodomain is responsible
for binding HA; low-molecular-weight HA triggers TLR-
mediated inflammation (72–74). In macrophages, biglycan and
HA induce autophagy through interaction with CD44 (75, 76).
Besides biglycan and HA, versican (77), osteopontin (78, 79),
and macrophage migration inhibitory factor (80) are also ligands
of CD44. The cytoplasmic domain modulates inflammatory
signaling in a ligand-dependent manner via TLR2 and TLR4
activity (76, 79, 80).

CD44 is dramatically overexpressed on the surface of activated
macrophages found at sites of inflammation, as such, it has
been widely used as a receptor for targeted drug delivery
(81–83). Given the relationship between CS and CD44, CS
can be used to modify nanoparticles to enhance the cellular
uptake of nanoparticles via CD44-mediated endocytosis (84, 85).

Remarkably, CS exhibits a high affinity for CD44 and facilitates
cell internalization via CD44-mediated endocytosis (86, 87).

THE ROLE OF CORE PROTEIN IN
CHONDROITIN SULFATE PROTEOGLYCAN

Versican
Versican is a large CSPG in the ECM and comprises a core
protein of approximately 400 kDa, with approximately 20
attachment sites for CS side chains (88, 89). The core protein
contains an N-terminal G1 domain and a C terminal G3 domain,
with CS-attached domains between the two globular domains,
and comprises four alternative splicing forms (V0, V1, V2, and
V3). Versican interacts with HA at the G1 domain and other
ECMmolecules at the G3 domain. Versican acts on inflammatory
responses as a DAMP via cell surface proteins such as CD44
(77, 90), CD162 (91), TLR2, TLR6, and CD14 (63, 92).

The versican gene is upregulated in monocytes/macrophages
in some pro-inflammatory states, such as myocardial infarction
(93), coronary stenosis (94), and autoimmunity (95–97).
Experiments performed in vitro using classically activated
murine bone marrow-derived macrophages treated with LPS
showed that M1 type of macrophages exhibited a high expression
level of versican mRNA, as well as versican accumulation
(98). In human monocyte-to-macrophage differentiation
and polarization, the versican gene expression level of M1
macrophages is higher than that of M2 macrophages (99). CSA
and V1 core protein were upregulated in the perivascular cuff
of multiple sclerosis and EAE and migration of leukocytes
including macrophages across the glia limitans into the CNS
parenchyma (100).

Versican secreted by Lewis lung carcinoma cells interacts with
TLR2 on DCs and sensitizes DCs to respond with IL-6 and IL-10
by increasing the expression of cell surface receptors for IL-6 and
IL-10 (62). This result indicates the protumor properties of intact
versican. On the other hand, versikine, a degradation product
of versican, also interacts with TLR2 on macrophages and acts
with antitumor properties (101–103). Versikine is a 70-kDa N-
terminal fragment (104), including the G1 domain and lacking
CS-attached and the G3 domains. As the intact versican possesses
a lot of functional domains including CS, there might be different
manners to interact with TLR2.

We previously showed that embryonic fibroblasts, which
express the mutant versican lacking the A-subdomain of the G1
domain, attain cell senescence (105). As there is a higher content
of CSC and CSE in their conditioned media, the CS composition
of the mutant versican could be altered (106). Changes in CS
composition are probably caused by the changed core proteins.

Biglycan
The small leucine-rich proteoglycans (SLRPs) in the ECM
regulate cell function in the inflammatory sites. Their core
proteins have leucine-rich repeat (LRR) motifs and are attached
with the CS and/or DS side chains. Biglycan is one of the SLRPs
(107, 108) and consists of a 42-kDa core protein containing
10 LRRs and up to two covalently bound CS and/or DS side
chains. Biglycan interacts with types I, II, III, and VI collagen
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and regulates collagen fibrillogenesis (109–112). This regulation
is mediated by the core protein, whereas the CS/DS side chains
maintain interfibrillar space by extending outward from the
protein core (113). The soluble form of biglycan initiates and
perpetuates the inflammatory response by activating TLR2 and
TLR4, and biglycan-deficient mice are less susceptible to death
caused by TLR2- or TLR4-dependent sepsis (61). It is important
that the biglycan core protein directly binds to CD44, and
the GAG side chains enhance this interaction (75). Both the
biglycan core protein and GAG side chain are also necessary
for IL-1β maturation of macrophages (114). Sulfated CS/DS side
chains are also implicated in lipid retention by direct interaction
with low-density lipoprotein (LDL). In atherosclerotic plaque,
LDL colocalizes with biglycan. The interaction between LDL
and PGs promotes modification and aggregation of LDL, and
uptake of LDL by macrophages leads to foam cell formation
(115). Therefore, biglycan core protein plays a pivotal role in the
suppression of inflammation and the transition from innate to
adaptive immunity (116). Recently, an excellent review reported
that biglycan, HA, and versican as the matrix-derived DAMPs
regulate TLR-, CD14-, and CD44-signaling cross talk between
inflammation and autophagy (85).

Syndecan
The syndecan (SDC) family of cell surface heparan sulfate
proteoglycan mediates cell–cell and cell–matrix interactions via
the GAG chains and is also important in the regulation of
inflammation. SDCs are type I transmembrane proteoglycans
and consist of four distinct members whose ectodomain varies
among the members. SDC1 is widely expressed in epithelia and
leukocytes. SDC2 is mainly expressed in endothelial cells and
fibroblasts. SDC3 is expressed in neural tissues (117). SDC4
is abundant in many cell types and a soluble protein isoform
lacking the transmembrane and cytoplasmic domains (118).
Though HS is usually covalently attached to SDCs, SDC1 and
SDC3 also bear two CS chains (119). Deletion of SDC1 leads
to an exacerbation of allergic asthma (120). SDC4-deficient
mice exhibit increased susceptibility to endotoxin shock (121).
Although ubiquitous SDC4 expression is low in a steady state,
SDC4 expression elevates in mice post-LPS stimulation of
macrophages (122). Immature DCs express increased glypican-
1 and SDC1 compared to mature DCs, whereas mature DCs
express glypican-3, which was not present in immature DCs
(123). Research has illustrated that SDC1 on DC negatively
regulates DC migration; therefore, lower SDC1 expression levels
are often associated with mature DCs (124). Furthermore, the
functional switch from SDC1 to SDC4 expression during DC

maturation controls DCmotility and subsequent migration from
peripheral sites to lymphoid tissues (125).

CONCLUSION

This mini-review described regulation of CS on APCs with
their different structures through their specific receptors at
inflammatory sites. CS exhibits both pro- and anti-inflammatory
activities with their heterogeneous structures. Even with the same
structure, CS affects differently depending on the target cells

and their microenvironments. Regarding their sulfation patterns,
CSC and CSD have anti-inflammatory activity, whereas CSA
has both pro- and anti-inflammatory activities. In many cases,
CSE has a potential anti-inflammatory activity, although a recent
report suggests its stimulatory effect on tumor progression with
the pro-inflammatory activity (6). Regarding the CS chain length,
short chains such as oligosaccharides or disaccharides mostly
activate inflammation, whereas the long chains serve as anti-
inflammatory factors. CS structure and length may vary by the
different core proteins and their expressing cells. To understand
detailed CS functions in immunity, further investigations into the
structure–function relationship of CS are needed.
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