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Recent studies of the patterns of chemokine-mediated immune cell recruitment into solid

tumors have enhanced our understanding of the role played by various immune cell

subsets both in amplifying and inhibiting tumor cell growth and spread. Here we discuss

how the chemokine/chemokine receptor networks bring together immune cells within

the microenvironment of skin tumors, particularly melanomas, including their effect on

disease progression, prognosis and therapeutic options.
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INTRODUCTION

Chemokines and their receptors are an intrinsic part of immune cell trafficking. They orchestrate
cell-to-cell interactions during normal immune responses and are fundamental for directing
immune cells to sites of inflammation (1). Chemokines are chemoattractant molecules 8–10 kDa in
size that can induce directed migration in nearby cells. They bind to G-protein coupled chemokine
receptors and can be divided into four families based on the pattern of their cysteine residues: CC,
CXC, CX3C, and C.

Chemokine receptor-ligand pairs play a key role in tumorigenesis in addition to infection and
inflammation (2–4). Within the tumor microenvironment, both host and cancer cells can release
a range of chemokines, leading to recruitment and activation of different immune cell subsets that
can either enhance or inhibit anti-tumor immunity (5–9). These subsets include tumor infiltrating
lymphocytes and cells of the innate immune system such as neutrophils, dendritic cells (DCs)
and monocyte/macrophages.

Tumors can be broadly divided into T cell-inflamed and non-inflamed tumors (10). T
cell-flamed tumors are characterized by type 1 interferon expression and chemokines that attract
T cells and antigen presenting cells (10). T cell infiltration of tumors has been associated with
improved survival and response to immunotherapy (11). However, in some cases infiltrating
cytotoxic T cells can be functionally exhausted, whereas recruitment of regulatory T cells (Tregs)
promotes tumor growth by suppressing anti-tumor responses (12). Innate immune cells including
macrophages and neutrophils, which can have either pro- or anti-tumor functions, also contribute
to the outcome of the tumor immune response (13–15). Thus, the potential exists to manipulate
chemokine signaling in such a way as to enhance recruitment of cytotoxic cells into non-inflamed
tumors or to shift the balance in inflamed tumors in favor of effector rather than regulatory cells.

In addition to their primary role as chemoattractants, chemokines are involved in other
tumor-related processes and may be exploited by tumors to promote tumor cell growth
(2), angiogenesis (16), and metastasis (17). A comprehensive discussion of the role of
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chemokines in cancer has been the subject of several recent
reviews (18–20). Here we shall, therefore, focus on the part played
by chemokines and their receptors in immune cell recruitment in
skin cancers with specific emphasis on melanoma, since the vast
majority of the available data on skin cancer comes from studies
of patients with melanoma or murine models of melanoma.

CHEMOKINE–DRIVEN INNATE IMMUNE
CELL INFILTRATION IN SKIN CANCER

Innate immune cells, among them DCs, macrophages,
neutrophils and NK cells form an important part of the
tumor immune milieu. Their role in skin cancers can be 2-fold:
either they can mediate direct anti-tumor toxicity through
promoting cytotoxic T cell recruitment and activation or
they can contribute to inhibition of anti-tumor responses
through inhibitory interactions with other cells and secretion of
suppressive molecules (Table 1).

DCs
DCs are not only the professional APC responsible for activating
naïve T cells in secondary lymphoid tissue (45), but can
also influence cytotoxic T cell recruitment into tumors. Thus,
CXCL9/10, a chemokine associated with CD8+ T cell infiltration
(6, 46), was produced by Batf3-driven CD103+ DCs present
in the melanoma microenvironment (47). Consistent with
an important role for CD103+ DCs in trafficking antigen
and T cell activation in tumor draining lymph nodes (45),
depletion or lack of this subset prevented intrinsic and adoptive
T cell recruitment into tumors (47). However, since Tregs
also express CXCR3, the receptor for CXCL9/10 (48), this
may also promote recruitment of immunosuppressive cells.
Expression of the DC chemoattractant CCL20 led to DC
recruitment and T cell-dependent inhibition of B16 murine
syngeneic melanoma (31). Similarly, the positive association of
CXCL12 with cytotoxic T cell recruitment was related to the
presence of DCs within melanoma. Transfection of CXCL12
into B16 melanoma cells induced DC accumulation within
the tumor and reduced tumor growth in a CD8+ T cell-
dependent manner (43). Likewise, recruitment of conventional
DCs into melanoma by CCL5 and XCL1, whose production
was dependent on NK cells, promoted tumor growth control
(5). Supporting this data, the combination of NK and DC
tumor gene signatures from The Cancer Genome Atlas
correlated with melanoma patient survival (5), while NK cells
in melanoma predicted response to anti-PD1 by regulating
the DC abundance in tumors through secretion of cytokine
FLT3LG (49).

Macrophages
Macrophages are also frequently found in solid tumors including
melanomas where they may have dual roles leading to
their classification into anti-tumor M1 and inhibitory M2
subtypes (14). M2 macrophages preferentially express pro-
angiogenic factors and metalloproteinases, which contribute to a
microenvironment conducive to tumor growth (14, 50). CCL20-
producing tumor associated macrophages were associated with

tumor progression and worse survival possibly because they
co-expressed pro-tumor cytokine TNF and pro-angiogenic
VEGF-A (30).

The macrophage chemoattractant CCL2 is expressed on
melanoma cells (22) and its effect on macrophage function
in melanoma is concentration-dependent (23). Low levels
of CCL2 led to modest macrophage infiltration and tumor
formation by promoting angiogenesis, whilst higher levels were
associated with increased macrophage infiltration and tumor
regression. Furthermore, expression of CCL2 in human IIB-
MEL-J melanoma increased intra-tumor macrophage infiltration
and tumor growth while macrophage-depleted mice developed
smaller tumors (51). CCL2 macrophage recruitment into
melanoma was associated with higher-grade melanoma (31) and
promotion of tumor growth through increased TNF-α dependent
vascularization (23, 51).

Neutrophils
Neutrophils are the third member of the innate immune cell
repertoire to play a vital role in skin cancer (52, 53). The full
extent of neutrophil functions in skin cancers is yet to be revealed
as several studies suggested that like macrophages, neutrophils
can be tumor-promoting or anti-tumor (13, 15). Neutrophils
migrate into melanoma using the CXCR2 chemokine receptor in
response to its ligands CXCL1, CXCL2, and CXCL5 expressed
in melanoma (7). CXCL5 was upregulated in human stage T4
melanoma biopsies, which correlated with greater neutrophil
infiltration and locoregional metastasis, when compared to stage
T1 human melanomas (34). Furthermore, in a metastatic murine
xenograft model, overexpression of CXCL5 in human melanoma
cells elicited increased neutrophil recruitment and neutrophil
dependent tumor cell migration into lymphatic vessels leading to
lymph node metastasis (34).

Melanoma grown in mice lacking CXCR2 display reduced
inflammation, neutrophil recruitment and tumor growth (54).
Notably IFN-β knockout mice had increased CXCL1 and CXCL2
expression, suggesting that IFN-β is likely to be an intrinsic
regulator of neutrophil infiltration (7, 55). In another model of
melanoma, CXCL6 was shown to be important for neutrophil
infiltration into tumor. Moreover, anti-CXCL6 monoclonal
antibodies reduced neutrophil recruitment, which had an effect
of inhibiting melanoma growth (56).

NK Cells
NK cells are innate lymphocytes with a crucial role in anti-viral
and tumor defense (57–59). Their homing to melanomas, where
they mediated growth regression, was dependent on CXCR3
as CXCR3-deficient NK cells failed to migrate into melanoma
(60). Furthermore, higher levels of CCL5 in melanoma increased
NK cell infiltration, reduced tumor size and could be used as a
predictor for patient survival (28).

CHEMOKINE-DRIVEN EFFECTOR T CELL
RECRUITMENT IN SKIN CANCER

T cells have crucial roles to play in controlling certain
infections and cancers including those located in the skin.
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TABLE 1 | Chemokines implicated in regulating immune responses in melanoma.

Chemokines Cellular sources Regulation Effect on innate immunity Effect on adaptive immunity

CCL2 Stromal/Immune cells (21)

Melanoma (22)

Activation

TNF (23)

Low levels of CCL2: recruitment

of macrophages and enhanced

angiogenesis and tumor

formation (23)

High levels of CCL2: infiltration of

anti-tumor macrophages leading

to tumor regression (23)

Expression correlated with increased

tumor CD3+, CD8+ T cell infiltration

(6, 24, 25), improved response to

checkpoint inhibitors (25) and survival (24)

Lack of CCL2 or CCR2 reduced γδ T cell

infiltration and increased tumor growth (26)

CCL3-4 Intratumoral myeloid derived

suppressor cells (MDSCs) (8)

CCL3-4 in melanoma correlated with

increased CD3+, CD8+ T cell infiltration

(6, 24), and improved survival (24).

Increased CCL4 in melanoma pre- and

post- anti-CTLA4 (ipilimumab) treatment

was associated with T cell infiltration and

response to treatment (27)

CCL5 Inhibition

BECN1 autophagy gene (28)

NK cell recruitment into

melanoma, associated with

tumor regression (28)

CCL5 synergized with CXCL9 to recruit T

cells into melanoma (29)

CCL5, XCL1 NK cells (5) Inhibition

PGE2 (5)

DC recruitment into melanoma

and tumor growth inhibition (5)

CCL20 Tumor macrophages (30) Activation

TNF (30)

DC recruitment into melanoma

and T cell-dependent inhibition

of tumor growth (31)

CCL21 Melanoma cell lines

MDA-MB-435S (32) and B16F10

(9)

Increased Treg infiltration and tumor

growth (9)

CCL22 Melanoma cell line B16F10 (33) Overexpression of CCL22 in skin diverted

Treg cells from lung metastasis leading to

inhibition of metastatic growth in the lung

(33)

CXCL1,2,5 Tumor neutrophils (7) Inhibition

IFN-β (7)

Neutrophil recruitment into

melanoma leading to

angiogenesis and tumor growth

(7). CXCL5 promoted neutrophil

dependent tumor cell migration

into lymphatic vessels (34).

CCL5,

CXCL9 - 11

CCL5: Intratumoral MDSCs (8)

CXCL9-10: CD103+ DC (5)

CXCL9-11: Tumor endothelial

cells (35)

CXCL9-10:

Activation

IFN (36)

Inhibition

Adenosine (37)

CCL5 and CXCL9-11 expression in

melanoma correlated with increased

CD8+ T cell infiltration (6), improved

survival (24) and response to adoptive T

cell therapy (38)

CCL5, CXCL9-10 were associated with

response to MAGE-A3 vaccine (39)

CXCL9-11 recruited γδ T cells into

melanoma (40)

CXCL12 Tumor macrophage (41)

Tumor endothelium (42)

DC recruitment into melanoma,

CD8+ T cell dependent tumor

growth reduction (43)

CXCL12 recruited CTLs into melanoma

(44)

The presence of CD8+ T cells in melanomas (61–63) as well
as in other cancers (64–66) is associated with better clinical
outcomes. Furthermore, patients with advanced melanomas
have benefited from therapies designed to increase T cell
infiltration of tumors including checkpoint inhibitors, T cell
modulating cytokines (IL-2, IFN-γ) and adoptive T cell transfer.
Therefore, a thorough understanding of chemokine-mediated T
cell trafficking in skin cancer (Table 1) is crucial for achieving
better treatment outcomes.

One of the earliest studies to link chemokine expression
in human melanoma to CD8+ T cell infiltration used

gene expression arrays to identify CCL2-5 and CXCL9 as
preferentially expressed in T cell rich patients’ tumors (6, 29).
Their corresponding chemokine receptors were upregulated
on effector compared to naïve CD8+ T cells from normal
controls (6). In another study higher expression of CCL3-5
and CXCL9-11 in human melanoma tissue was associated
with increased CD8+ T cell recruitment and patient survival
(24, 67). Furthermore, analysis of chemokines in melanoma
prior to treatment identified CCL2 and CXCL9-12 as elevated in
responding patients compared to non-responding patients
(25). Tumor samples from patients with better clinical
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responses also had higher T cell counts around the invasive
margins (25).

Expression of CCR5 and CXCR3 (receptors for CCL3-5
and CXCL9-11, respectively) on CD8+ T cells has emerged
as another important regulator of effector T cell recruitment
and prognosis in melanoma. For instance, higher expression
of CCR5 and CXCR3 was associated with increased T cell
infiltration of tumors, lower relapse rates (38) and increased
survival in patients with advanced stage III disease (68). In
mice CXCR3 deficiency led to faster growth of B16 melanoma
(69), while loss of CXCR3 on circulating T cells from patients
with melanoma was associated with metastases (70). Notably,
CXCR3 signaling appears to be non-redundant and critical for
CD8+ T cell trafficking across the endothelium of blood vessels
supplying both B16 melanomas and melanoma xenografts (46).
Therefore, modulating the CCR5/CCL3-5 and CXCR3/CXCL9-
11 chemokine axes can potentially improve CD8+ T cell
infiltration of tumors. However, Tregs also express the same
receptors and may suppress cytotoxic T cell function.

The role of other chemokines involved in T cell migration into
melanoma is less well defined. On the one hand, CXCL12 has
been detected in normal and neoplastic tissue (71) and loss of T
cells expressing its receptor, CXCR4, was linked to development
of lung metastases (70). On the other hand, cytotoxic T cells
expressing CXCR4 could migrate into melanoma in response
to low concentrations of CXCL12 whereas a high concentration
of this chemokine caused T cells to undergo fugetaxis (44, 71–
73), highlighting a complex concentration-dependent role for
CXCL12 at least in this form of skin cancer.

CCL5 expression in a murine model of spontaneous
melanoma correlated with CD3γ expression and T cell
recruitment, while increased level of CCR5, the receptor for
CCL5, was associated with positive outcomes in melanoma
models due to T cell retention in tumors (29). Furthermore,
the naturally occurring CCR5132 polymorphism appears to be
linked to decreased survival in response to administration of IFN,
IL-2, and/or chemotherapy (74). In contrast to these findings,
pre-treatment assessment of tumor-infiltrating lymphocytes in
patients receiving adoptive T cell therapy showed that patients
with the CCR5132 polymorphism displayed an improved
response to that therapy (38).

While CD8+ T cell infiltration of solid tumors is generally
associated with improved outcomes, other T cell subsets can
play dual roles in tumor immunity. For instance, γδ T cells
possess both cytotoxic and tumor protective properties (75, 76).
CCL2/CCR2 receptor ligand pair has been implicated in γδ

T cell recruitment in B16 melanoma where they may exert a
cytotoxic effect mediated by IFN-γ, perforin and granzyme B
(26). Mycobacterium bovis bacillus Calmette-Guérin injection
in melanoma patients increased recruitment of γδ T cells via
CXCL9-11 and CXCR3 (40). Despite this and evidence that γδ T
cells are capable of lysing melanoma cells (77), other studies have
shown a negative association of increased γδ T cells in circulation
in melanoma patients with survival (78). γδ T cells in patients’
cutaneous SCC expressed CXCR2-4, CCR2-5, while ligands for
these receptors were expressed in cultured SCC supporting a role
for these chemokines in γδ T cell recruitment (79).

Another largely overlooked aspect of T cell recruitment is that
tumor infiltration is not necessarily a “one-way trip.” Our group
has recently demonstrated that effector T cells recruited to solid
tumors in the skin can also leave tumors and migrate to tumor
draining lymph nodes (80). Thus, the extent of their egress vs.
retention may influence the magnitude and nature of the anti-
tumor response. Although little is known about the molecular
mechanisms guiding these processes, it is likely that chemokines
play an important contributory role.

SYSTEMIC THERAPY AND IMMUNE
CELL INFILTRATION

Systemic therapy can influence the composition of the tumor
microenvironment. For instance, chemotherapy causes tumor
cell apoptosis, which can in turn induce chemoattractant
stress signals. Moreover, therapies such as dacarbazine and
temozolomide induce the CD8+ T cell chemoattractants
CCL5, CXCL9, and CXCL10 in human melanoma cell lines
(29). Consistent with this finding, transcriptomic analysis
of 33 cutaneous melanoma metastases resected before or
after dacarbazine treatment showed a positive correlation
between CCL5, CXCL9 and CXCL10 and CD4, CD8A and
CD3Z expression. Thus, patients with high expression of
these chemokines after chemotherapy survived longer possibly
due to increased T cell recruitment (29). Furthermore, IFN-
γ treatment induced chemokines CXCL9 and CXCL10 in
melanoma potentially facilitating T cell infiltration (36). Tumors
that developed resistance to IFN-γ ceased CXCL9 production
and became more tumorigenic (81). Notably, gene expression
sequences from melanoma biopsies also revealed a positive
correlation between CCL5, CXCL2, CXCL9, and CXCL10
and clinical benefit in a phase II trial of a MAGE-A3
vaccine (39).

Inhibitors of MAPK signaling, such as BRAF and MEK
inhibitors, are used to treat BRAF mutated melanoma (82) and
can alter the melanoma immune landscape leading to increased
T cell infiltration (83–87). When combined with checkpoint
inhibitors, BRAF inhibitors enhanced anti-tumor response and
improved overall survival (83). These effects may be mediated
by altering chemokine-induced immune migration into tumors
since BRAF inhibition in melanoma increased serum levels of
CCL2, CCL4, and decreased CXCL8 (86), which correlated with
increased CD8+ T cell infiltration.

Checkpoint inhibitor therapy in melanoma represents
another example where modulation of the chemokine tumor
microenvironment occurs as a result of anti-cancer intervention.
Administration of anti-PD-1 antibody enhanced migration of
the adoptively transferred T cells into B16 melanoma followed
by greater tumor regression (88). The tumors had higher
expression of IFN-γ and CXCL10 while IFN-γR−/− mice
and CXCL10−/− mice showed reduced T cell infiltration.
Immunochemical analysis of primary tumor biopsies from
patients demonstrated a relationship between higher type 1
IFN expression and higher intratumoral CXCL10 as well as
increased numbers of CXCR3+ and granzyme B+ lymphocytes
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(89). Furthermore, analysis of gene expression profiles of
biopsies collected from 45 melanoma patients before and
after commencing anti-CTLA4 (ipilimumab) therapy, showed
that in patients with clinical responses to ipilimumab there
was increased expression pre- and post-treatment of CXCL9-
11, CCL4 and CCL5, chemokines associated with T cell
trafficking into melanoma (27). However, some of the above
chemokines affect not only T cell recruitment but also innate
immune cells.

Recent studies have demonstrated the immense potential
of transcriptomics and single-cell RNA-sequencing (RNA-seq)
in uncovering chemokine-mediated cellular interactions in
melanoma and mechanisms of resistance to immunotherapy
(90–93). For instance, transcriptomic studies have identified
a checkpoint inhibitor resistance signature, which included
monocyte and macrophage chemotactic genes (CCL2,
CCL7, CCL8, and CCL13) (90). A recent study uncovered
a tumor resistance program that was associated with T cell
exclusion and immune evasion, predicted clinical response
to checkpoint therapy in melanoma patients. This program
could be repressed by cyclin dependent kinase (CDK) 4/6
inhibition suggesting new strategies to negate immunotherapy
resistance (91).

IMMUNE EVASION BY
CHEMOKINE AUGMENTATION

Immune evasion by skin cancers like melanoma represents one
of the mechanisms whereby they proliferate and metastasize
(94). Immunosuppressive cells of the innate (discussed above)
and adaptive immune systems are recruited to the tumor
microenvironment by a range of chemokines. In the case of
immunogenic tumors like melanoma, Tregs have the potential
to dampen the tumor-specific T cell response. Cutaneous
overexpression of CCL22 led to diversion of Tregs from
pulmonary melanoma metastases to the skin, leading to
inhibition of metastatic growth in the lungs (33). Other
studies have shown CCR5-dependent recruitment of Tregs
into melanoma and SCC (8, 95), while the ligands for this
receptor were produced by MDSCs (8). Consistent with this,
CCR5-deficient mice demonstrated slower rate of melanoma
growth (8, 95). In another study, B16 melanoma cells
overexpressing CCL21 displayed increased growth potential and
on injection induced a more suppressive tumor environment
containing increased Tregs and TGFβ but decreased IFN-γ
levels (9). However, not all retrospective studies of clinical
melanoma samples supported the importance of Tregs in
modulating anti-tumor responses, indicating the need for
more research.

Blocking infiltration of cytotoxic effector cells into tumors
is another possible mechanism of evasion and may be one of
the reasons why checkpoint inhibitors are not always effective
for melanoma treatment (96). Evidence for T cell blockade
comes from analysis of a metastatic model of B16 melanoma.
In this model, CD8+ T cell infiltration was dependent on
the two CXCR3-cognate ligands, CXCL9 and CXCL10, but

once metastatic spread had occurred both chemokines were
decreased in metastatic lesions (37, 97). Furthermore, CXCL9
and CXCL10 expression in primary melanoma samples from
patients was associated with greater CD8+ T cell infiltration
whereas biopsies taken from metastatic lesions were lower
(97). CXCL9 and CXCL10 expression was decreased by
adenosine signaling as metastatic melanoma developed in the
lungs indicative of the ability of the tumor to suppress the
chemokines responsible for attracting the CD8+ T cells (37).
Notably, adoptively transferred CXCR3+ tumor-specific CD8+
T cells were capable of infiltrating metastatic tumors in the
lungs (37).

CONCLUDING REMARKS

The clinical importance of chemokine-dependent immune cell
recruitment into tumors is illustrated by the most recent
advances in cancer immunotherapy, in particular checkpoint
inhibitor therapy (88, 98), which has been very effective
in about a third of patients with melanoma while the
remainder have not responded. It is possible that differential
chemokine expression may partially explain this all-or-none
effect. Manipulating chemokine levels in primary tumors
offers the opportunity for selective control of immune cell
recruitment into tumors, thereby increasing the therapeutic
efficacy of immunotherapy. However, many variables currently
prevent the targeting of chemokines from becoming a realistic
therapeutic approach. For example, chemokines play a complex
multifunctional role in tumor development, growth and
metastasis and their effect can be either pro-tumor or anti-
tumor. Cells of the innate and adaptive immune systems with
opposing functions in tumor immunity can respond to the
same chemokines and be recruited into the tumor. Thus,
optimization of immunotherapy will depend on further studies
of the chemokine receptor-ligand pairs operating in the tumor
microenvironment–likewise for anti-cancer vaccines the efficacy
of which relies on recruitment of antigen-specific T cells
to tumors.
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