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INTRODUCTION
Apoptosis and NETosis, two important
pathways of programed cell death, differ
in their morphologic features and their
effects on the immune system. In apop-
tosis, nuclear chromatin compacts as it
is packaged into nuclear fragments and
apoptotic blebs (1), and uptake of apop-
totic cells by phagocytes generally sup-
presses the immune response (2). In NETo-
sis, named after neutrophil extracellular
traps (NETs), nuclear chromatin relaxes
and forms a fibrous meshwork upon release
from the cell (3). In general, NETosis is
induced by infection, inflammation, or
trauma and represents a mechanism of
innate immune activation (4). Neutrophils,
the most abundant type of white blood
cells, migrate toward a stimulus in coor-
dinated fashion, and NETs may synchro-
nize such neutrophil swarms (5). Despite
the structural and functional differences
between apoptosis and NETosis, signifi-
cant aspects of their clearance pathways
likely overlap, as specific serum proteins
participate in the recognition and uptake
of remnants from either cell death path-
way. In vivo, it is likely that both cell death
pathways are concurrently present and that
apoptotic bodies and NETs entangle (6).
Yet, a third type of DNA may intertwine
with DNA from apoptotic and NETotic
cells, as certain bacteria and fungi release
extracellular DNA that is used to con-
struct biofilms (7). How apoptotic bod-
ies, NETs, and biofilm DNA (Figure 1)
are safely cleared is of great interest,
because incomplete clearance leads to
systemic inflammation and autoantibody
production.

SYSTEMIC AUTOIMMUNE DISEASES
AND AUTOANTIBODIES TO NUCLEAR
ANTIGENS
Molecular structures associated with dying
cells are targets of autoantibodies in
autoimmune diseases such as systemic
lupus (SLE) (8), antiphospholipid syn-
drome (APS) (9), as well as other muscu-
loskeletal/rheumatoid disorders (10). The
resulting autoreactivities are idiosyncratic
for each condition and thus are useful
for clinical diagnosis. However, the anti-
gens recognized by the autoantibodies are
also involved in pathogenesis, as they accu-
mulate at the sites of tissue damage and
contribute to immune complex deposi-
tion (11). Tissue damage may worsen in
the absence of serum nucleases such as
DNAse I (12). Furthermore, the interac-
tions between dying cells and the adaptive

FIGURE 1 | Self and foreign antigens that may induce autoantibodies in autoimmunity. The
potential contribution of apoptotic bodies, NETs, and bacterial biofilms to immune tolerance versus
stimulation is indicated. The distribution and content of self (green) and foreign (red) antigens is
diagrammed. In apoptotic bodies, “foreign” structures may include post-translational modifications that
are present only during late stages of apoptosis (orange). NETs, in addition to modified chromatin
(orange), may also contain bacterial adjuvants, whereas biofilms may incorporate host DNA. Short red
rods indicate bacteria in NETs and biofilms. For details, see text.

immune system strengthen over time, as
somatic mutations and antigen selection
optimize antibodies for improved bind-
ing (13). In SLE, antibodies to nuclear or
plasma membrane antigens arise in the
course of disease (14, 15). These anti-
bodies avidly bind to apoptotic cells (16).
Classical studies recognized that apoptotic
cells are far better substrates for autoanti-
body binding than viable cells (17). How-
ever, monoclonal antibodies from mouse
lupus models that bind to apoptotic blebs
(16) also tightly bind to NETs released
in response to bacterial pathogens (18).
Our laboratory showed that NETotic cells
provide suitable targets for autoantibodies
from diverse human autoimmune disor-
ders (19). Whether apoptotic or NETotic
cell death, or both, provide antigens
that induce autoantibody production is
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essential information for understanding
the etiopathogenesis of autoimmune dis-
eases (20).

APOPTOTIC AND NETotic CELL DEATH
Apoptosis is characterized by dramatic
morphologic changes that are orchestrated
by a family of specific proteases called cas-
pases (21). The chromatin in the nucleus
condenses tightly despite the fact that
caspase-activated DNAse cleaves certain
regions of genomic DNA to produce an
oligonucleosome “ladder” (22). Curiously,
the diameter (and thus the permeability) of
nuclear pores transiently increases during
this stage of apoptosis (23), and oligonu-
cleosomes pass through the pores into the
cytoplasm (16). The chromatin fragments
associate with the outer nuclear envelope,
the nucleus breaks up, and nuclear frag-
ments migrate toward the cellular plasma
membrane. These nuclear fragments form
“blebs”at the cell surface, which are charac-
teristic protrusions that give apoptotic cells
their typical “grape cluster” appearance.
Blebs display DNA,chromatin,and ribonu-
cleoproteins at the cell surface (16, 24)
such that these autoantigens become acces-
sible to antibodies and pattern recognition
receptors.

An alternative form of cell death was dis-
covered by Brinkmann et al. (18). These
authors reported that, upon exposure to
bacteria, LPS, or PMA, neutrophils dis-
solve nuclear and cytoplasmic granule
membranes, relax nuclear chromatin, asso-
ciate the chromatin with granule com-
ponents such as myeloperoxidase or elas-
tase, and release the relaxed chromatin
across the plasma membrane (4). The chro-
matin appears as disorganized fibers that
spread widely to form an extracellular net-
work. The authors named the fibers“NETs”
because this chromatin could immobilize
or “trap” bacteria. Mouse anti-chromatin
antibodies were used to demonstrate that
the NETs consisted of DNA and histones.
These results immediately suggested that a
tangle of bacteria and nuclear chromatin
should be viewed as a “dangerous liaison”
between lupus autoantigens and bacter-
ial adjuvants that, by acting as a mole-
cular complex, could trigger an adaptive
immune response (25).

Follow-up studies revealed that NETs
are not always an impediment to microbes.
Proliferation assays identified certain

species of bacteria that are resistant to any
bactericidal effects of the released neu-
trophil chromatin (26), even though NETs
organize bactericidal granule contents such
as peroxidase and serine proteases (27),
and even though histones also exhibit bac-
tericidal activity (28). In fact, NET chro-
matin has found a novel use for certain
bacteria that can incorporate NET chro-
matin into their extracellular matrix (29,
30). Such biofilms protect the microbes
from physiological and pharmaceutical
antibiotics and help to colonize various
host tissues (7). DNA gives biofilms their
structural integrity because nuclease treat-
ment efficiently dissolves biofilms (31).
The biofilms can also incorporate micro-
bial DNA, as particular bacteria and fungi
have mechanisms to release sections of
genomic DNA for use in forming biofilms.
Such DNA could be of particular signif-
icance in inducing anti-DNA responses
because bacterial DNA has hypomethy-
lated CpG motifs that directly stimulate
toll-like receptors (32) and other DNA
receptors (33) in B cells and other antigen-
presenting cells.

EVIDENCE FOR APOPTOSIS AND
NETosis IN THE INDUCTION OF
AUTOIMMUNITY
Evidence supporting apoptotic cells as the
source of autoantigens that induce and pro-
mote the development of autoimmunity
derives from a close inspection of autoan-
tibody specificities. The observation that
lupus serum IgG bind to apoptotic cells
(17) initiated an active area of research.
Because apoptotic cells externalize phos-
phatidylserine at the cell surface, bind-
ing of serum factors or lupus antibodies
to phosphatidylserine could interfere with
clearance in a way that would alter recog-
nition of apoptotic cells and potentially
induce disease. This view is consistent with
genetic defects in cell clearance that in
many instances recreate the full set of lupus
manifestations (8).

Completion of the apoptotic program
without adequate clearance may lead to the
exposure of highly modified autoantigens
(34). Autoantibodies to apoptotic cells may
be induced by unique antigenic structures
that are produced by enzymatic reactions
in apoptotic cells. Granzyme B activation
in apoptosis was identified as one possible
mechanism whereby apoptosis generates

novel self antigens that stimulate autoan-
tibody binding (35). Importantly, char-
acteristic post-translational modifications
(PTM) of histones are induced during
apoptosis. These include the acetylation of
lysine 12 in the H2B core histone, a PTM
that was shown to enhance the binding of
lupus autoantibodies (36). However, lysine
12 acetylation also occurs in NETosis, and
tri-acetylated histone H4, a specific target
of the KM-2 murine lupus autoantibody, is
more abundant in NETs from SLE patients
than in controls (37). Therefore, antibody
reactivity against any single histone PTM
may not unambiguously establish which
biological process supplies nuclear antigens
in autoimmunity (38).

The generation of apoptotic cells dur-
ing development and under conditions of
rapid cell turnover, such as exist physio-
logically in primary lymphoid organs, sug-
gests that apoptotic lymphocytes provide a
steady supply of tolerogenic autoantigens
(39). The idea that apoptosis provides self
antigens that maintain tolerance is sup-
ported by immune suppression following
injection of apoptotic cells (40). Immune
suppression by apoptotic cells can also be
recreated in vitro (41) and can be converted
to immune activation by opsonization of
apoptotic cells with antibodies (42). On
balance, NETosis is a more likely alterna-
tive source of autoantigens that stimulate
autoreactive B cells. This follows directly
from the observation that, in autoimmu-
nity, autoantibodies arise to various known
NET components (43, 44). These include
the proteases cathepsin G, proteinase 3, and
elastase, as well as granule peptides, includ-
ing LL37 and other defensins that have
bactericidal properties.

Detailed analysis revealed that neu-
trophils from autoimmune patients are
more prone to NETosis than controls and
that NETosis is associated with partic-
ular autoantigen modifications (45, 46).
Such autoantigen PTM may arise through
reactive oxygen species liberated in NETo-
sis or through enzymes that are acti-
vated during the progression of NETosis.
Amino acids such as tryptophan and tyro-
sine are modified by oxidation or reac-
tions with hypochlorous acid and perox-
ynitrite (47). NETosis also activates pep-
tidylarginine deiminases (PADs), enzymes
that convert arginine residues in proteins
to citrulline residues. Our laboratory was
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first to link deimination (also known as
“citrullination”) of nucleohistones to steps
that are set in motion during NETosis
(25). Importantly, we also showed that his-
tone deimination is independent of cas-
pase activity and that induction of apop-
tosis prevents PAD activation. Thus, deim-
ination of histones clearly distinguishes
NETosis from apoptosis.

In subsequent studies, we showed that
citrullinated histones, including core and
linker histones, are recognized in prefer-
ence over non-modified histones by anti-
bodies from patients with various autoim-
mune diseases, including SLE and Felty’s
syndrome, a more severe form of rheuma-
toid arthritis (10). In confirming our
results, others have shown that autoanti-
bodies to deiminated histones are remark-
ably useful in the diagnosis of rheuma-
toid arthritis (48). In earlier studies, it
was reported that citrullinated proteins are
frequently targets of IgG antibodies from
patients with arthritis (49), and antibodies
to citrullinated antigens have been a focus
of a growing number of research studies
(50, 51). These observations represent a
solid link between NETosis and the induc-
tion of disease-specific autoantibodies.

CLEARANCE MECHANISMS
Clearance of apoptotic cells has been a
focus of research for more than two decades
(52), and a bewildering complexity of path-
ways has emerged (53). Different cell types
participate in the uptake of apoptotic cells,
the cells employ different combinations of
receptors, and clearance may be enhanced
or suppressed by various plasma proteins.
Soluble plasma proteins that participate in
apoptotic cell clearance include members
of the pentraxin (54) and collectin fami-
lies (55), the complement protein C1q (56),
and milk fat globule epidermal growth
factor 8 (MFG-E8) (57). An important
“eat-me” signal is generated by the endo-
plasmic reticulum chaperone calreticulin.
Apoptotic cells release calreticulin from the
endoplasmic reticulum into the cytoplasm
(58). The cytoplasmic calreticulin binds to
phosphatidylserine in the inner leaflet of
the plasma membrane from where it is
externalized as the plasma membrane loses
its asymmetry. At the cell surface, calretic-
ulin combines with C1q and binds CD91
on the surface of the macrophage, leading
to the phagocytosis of the apoptotic cell

(59). Other receptors for uptake of apop-
totic cells include SCARF1, a highly con-
served receptor for C1q (60), and the inte-
grin βVα5, a receptor for MFG-E8 (61). The
importance of C1q, MFG-E8, and SCARF1
for tissue homeostasis is emphasized by the
fact that mice deficient for any of these mol-
ecules show a reduced capacity for apop-
totic cell clearance and exhibit a concomi-
tant induction of autoantibodies (60, 62,
63). In SLE, altered levels of MFG-E8 in
the serum and impaired C1q recognition
of apoptotic cells correlate with the severity
of disease manifestations (64, 65).

Additional receptors for the recognition
and clearance of apoptotic cells are the Mer,
Axl, and Tyro3 receptor tyrosine kinases
(66). Mice deficient in any of these recep-
tors manifest symptoms of autoimmune
disease (67), and patients show altered
serum levels of Mer family ligands GAS6
and protein S (68). Whereas Axl deter-
mines apoptotic cell clearance by dendritic
cells (69), Mer is induced by C1q and
serves to enhance apoptotic cell uptake by
macrophage (70). It is important to note
that several of these receptor–ligand sys-
tems are not specific for apoptotic cells but
instead participate in the clearance of infec-
tious microbes such as bacteria, fungi, and
viruses (53). Possibly, some of these clear-
ance pathways also serve to eliminate other
cellular remnants.

Little is known about the clearance of
NETotic cells, although a systematic analy-
sis of the relevant mechanisms for NET
clearance is urgently needed. Good start-
ing points would be proteins and recep-
tors that bind DNA or chromatin and that
participate in the clearance of apoptotic
cells. For example, several pentraxins (71)
and collectins (55) bind to nucleic acids
and chromatin, and calreticulin exhibits
high affinity for chromatin and nucleo-
somes (72). It is likely that these proteins
and receptors also bind NETs, although
NETs are not efficiently recognized by the
pentraxin C-reactive protein, or the com-
plement protein C3b (73). In contrast,
C1q binds NETs and activates the com-
plement cascade (74, 75). The search for
additional factors that regulate NET clear-
ance is timely because NETosis has been
linked to atherosclerosis (76), small vessel
vasculitis (77), deep vein thrombosis (78),
and various autoimmune conditions (79).
Conversely, autoimmune diseases show an

aberrant persistence of NETs, and NET
clearance is impaired in APS (80), SLE
(81), and gout (82). A better knowledge
of NET clearance is expected to lead to
new treatments for autoimmune diseases,
as inhibitors of PAD4 show promise in
various animal models of autoimmune
disorders (83–86).
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