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MicroRNAs (miRNAs) contribute to plant defense responses by increasing the overall
genetic diversity; however, their origins and functional importance in plant defense
remain unclear. Here, we employed Illumina sequencing technology to assess how
miRNA and messenger RNA (mRNA) populations vary in the Chinese white poplar
(Populus tomentosa) during a leaf black spot fungus (Marssonina brunnea) infection.
We sampled RNAs from infective leaves at conidia germinated stage [12 h post-
inoculation (hpi)], infective vesicles stage (24 hpi), and intercellular infective hyphae
stage (48 hpi), three essential stages associated with plant colonization and biotrophic
growth in M. brunnea fungi. In total, 8,938 conserved miRNA-target gene pairs and
3,901 Populus-specific miRNA-target gene pairs were detected. The result showed
that Populus-specific miRNAs (66%) were more involved in the regulation of the disease
resistance genes. By contrast, conserved miRNAs (>80%) target more whole-genome
duplication (WGD)-derived transcription factors (TFs). Among the 1,023 WGD-derived
TF pairs, 44.9% TF pairs had only one paralog being targeted by a miRNA that could
be due to either gain or loss of a miRNA binding site after the WGD. A conserved
hierarchical regulatory network combining promoter analyses and hierarchical clustering
approach uncovered a miR164–NAM, ATAF, and CUC (NAC) transcription factor–mRNA
regulatory module that has potential in Marssonina defense responses. Furthermore,
analyses of the locations of miRNA precursor sequences reveal that pseudogenes and
transposon contributed a certain proportion (∼30%) of the miRNA origin. Together, these
observations provide evolutionary insights into the origin and potential roles of miRNAs
in plant defense and functional innovation.
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INTRODUCTION

MicroRNAs (miRNAs) are∼21 to 24-nucleotide (nt) non-coding
endogenous small RNAs that can regulate gene expression,
maintain genome integrity and chromatin structure, and
influence plant development and stress response (Carrington
and Ambros, 2003; Jones-Rhoades et al., 2006; Voinnet, 2009;
Sunkar et al., 2012; Meyers and Axtell, 2019). Under pathogen
stress, basal defense and resistance gene-mediated resistance are
the two well-defined defense responses carried out by plants.
Innate immunity is an evolutionarily ancient mechanism that
protects plants from a wide range of pathogens (Peláez and
Sanchez, 2013). Many lines of evidence have confirmed that
miRNAs contribute to plant defenses against pathogens (Li et al.,
2012; Pumplin and Voinnet, 2013; Thiebaut et al., 2015; Yang
and Huang, 2015). Evolutionary analyses revealed that a miRNA
superfamily composed of the miR482 and miR2118 families
targets the plant nucleotide-binding leucine-rich-repeat (NB-
LRR) defense genes (Zhao et al., 2015). Moreover, miRNAs–
transcription factor (TFs) regulation module was proposed
to be ubiquitous in plant defense and plays key roles in
regulation networks controlling many biological processes,
including responses to biotic and abiotic stresses (Seo et al., 2015;
Thiebaut et al., 2015).

As we know, the Populus genus consists of many important
woody species, such as the western balsam poplar (Populus
trichocarpa) (Tuskan et al., 2006), the desert poplar (Populus
euphratica) (Ma et al., 2013), and the Chinese white poplar
(Populus tomentosa) (Du et al., 2014). Several species have
been selected as model tree species for their small genome
size and rapid growth. The availability of reference genome
sequences for Populus species thus makes them important
model systems for the investigation of miRNA functions during
pathogen infections. To date, hundreds of miRNAs have been
identified in Populus, and the function of several well-known
miRNAs has been clarified in literatures (Zhang et al., 2010;
Kozomara and Griffiths-Jones, 2014). During the infection of
bacterial or fungal pathogens, the transcription patterns of poplar
miRNAs were highly associated with the disease resistance (DR)
response (Zhao et al., 2012; Li et al., 2016). An economically
important group of poplar pathogens, Marssonina brunnea, is
a typical hemibiotrophic fungal pathogen, which can cause
disease Marssonina leaf spot of poplars (MLSP) (Zhang et al.,
2018). Although MLSP has been studied for over 30 years,
the key non-coding RNAs that function during M. brunnea
infection and their effects on plant defense are poorly understood.
Therefore, increasing molecular understanding of the plant-
M. brunnea interaction will be helpful for the development of
control strategies against MLSP.

In the present study, we combined transcriptome and genomic
analyses to explore the origin, evolution, functional innovation,
and plant defense effects of the poplar miRNAs during the three
essential stages of MLSP fungus (M. brunnea) infection, including
conidia germinated stage [12 h post-inoculation (hpi)], infective
vesicle stage (24 hpi), and intercellular infective hyphae stage
(48 hpi), as described in Chen et al. (2020). By exploring the
origin and evolutionary patterns of poplar miRNAs, our study

provides new insight into the feedback regulation mechanism
of miRNAs. Besides, our study attempts to compare the
regulation mechanism between conserved and Populus-specific
miRNA to achieve a better understanding of the coevolution
between miRNAs and target genes. Finally, a conserved
hierarchical regulatory network combining promoter analyses
and hierarchical clustering approach reveals a miR164–NAM,
ATAF, and CUC (NAC) transcription factor–messenger RNA
(mRNA) regulatory module that has potential in Marssonina
defense responses. Overall, this study reveals the evolutionary
patterns and illustrates the functional novelty of lineage-specific
miRNAs in DR processes.

MATERIALS AND METHODS

Plant Materials and Fungal Treatments
The Chinese white poplar (P. tomentosa cv. “LM50” clones) was
planted in pots under natural light conditions (12 h of 1,250 µmol
m−2 s−1 photosynthetically active radiation) at 25◦C± 2◦C (day
and night) and 50% ± 1% relative humidity (day and night) in
an air-conditioned glasshouse using soilless culture technology.
The infection experiments were performed using M. brunnea f.
sp. Monogermtubi strain bj01. Six inoculation spots per poplar
leaf were each inoculated with 5 µl of 105 condia ml−1, with
three biological replicates per treatment. The spore suspension
was sprayed onto the abaxial surfaces of the leaves in vitro,
and the inoculated leaves were incubated in an artificial climate
incubator (LT36VL, Percival Scientific, Inc., Perry, United States)
under 25◦C and 95% relative humidity and harvested at 12, 24,
and 48 hpi. In the control group, the leaves were sprayed with
sterile tap water and harvested at 12 hpi. The samples from
leaves exposed to the same treatment were pooled and treated as
one biological repeat, and two independent experimental repeats
were performed for each treatment (CK, 12, 24, and 48 hpi). All
samples were immediately frozen in liquid nitrogen and stored
at –80◦C for RNA extraction.

MicroRNA Library Construction
Total RNA was extracted from inoculated leaf samples using
a TRIzol reagent (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions. Additional on-
column DNase digestion was performed during the RNA
purification using RNase-Free DNase (Qiagen). The total RNAs
were ligated with 3′ and 5′ adapters using a Small RNA Sample
Prep Kit (Illumina). sRNAs with adapters on both ends were
used as templates to create cDNA constructs using reverse
transcription PCR. After being purified and quantified using a
Qubit dsDNA HS (Qubit 2.0 Fluorometer) and Agilent 2100, the
PCR products were used for cluster generation and sequencing
on an Illumina HiSeq 4000 according to the cBot and Hiseq 4000
user guides, respectively.

Messenger RNA Sequencing, Alignment,
and Normalization
mRNA reads were aligned using TopHat2 (Kim et al., 2013)
using—read-mismatches 2-p-G to generate read alignments for
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each sample. Up to two mismatches were permitted in each
read alignment. The transcript abundance was calculated, and
differential transcript expression was computed using CuffDiff
with the parameters-p-b (Ghosh and Chan, 2016).

Small RNAome Analysis
The sequences generated from the leaves exposed to the three
infection treatments were used to detect the transcript abundance
of mature sRNAs. All sRNA reads, referred to as raw reads,
were processed to remove adaptors, low-quality tags, and
contaminants. Clean reads were then mapped to version 3.0 of
P. trichocarpa genome with no more than one mismatch. These
perfectly aligned sequences were annotated by BLAST-searching
them against the GenBank and Rfam databases (version 131),
allowing one mismatch. The tRNAs, rRNAs, snRNAs, snoRNAs,
and scRNAs were removed from the sequencing reads. The
remaining unannotated sRNAs were searched against the known
miRNAs from miRBase version 22.12, allowing a maximum
of two mismatches. Then, the remaining unannotated unique
sequences were mapped to the P. trichocarpa genome to uncover
novel miRNAs from poplar, according to the established criteria
(Meyers et al., 2008), using Mireap software3. Finally, only
miRNAs with high expression levels (actual count of reads exceed
10 in at least one sample) and loci that could produce both
mature miRNAs and antisense miRNA (miRNA∗) sequences
were kept in our study.

Genomic Locations of MicroRNAs in the
P. trichocarpa Genome
The pre-miRNAs were screened for their localization within the
transposons, introns, exons, pseudogenes, intergenic regions, 5′
untranslated region (UTR), 3′ UTR, coding sequence (CDS),
and promoter (upstream 2 kb of coding genes) region of the
P. trichocarpa genome v3.0 (Phytozome version 12), with an
overlapping rate of above 80%.

Target Prediction and Functional
Annotation
Targets of each miRNA were predicted using Web server
psRNATarget4, with P. trichocarpa transcript (phytozome v10.0,
genome V3.0, internal number 210) as target gene search scope,
the expectation is less than 5, and other parameters as default. The
functional annotation and categorization of candidate miRNA
targets were performed using the AgriGO software suite v2.05

with default parameter (Tian et al., 2017). Regulatory networks
were drawn using Cytoscape version 3.8.0 (Shannon, 2003).

Transposon Element Annotation
The transposon element (TE) annotations used in this study were
obtained from the outputs of the RepeatMasker (RM) software

1http://rfam.xfam.org/
2http://www.mirbase.org/
3https://sourceforge.net/projects/mireap/
4http://plantgrn.noble.org/psRNATarget/
5http://systemsbiology.cau.edu.cn/agriGOv2

version 4.0.7 combined with the database (Dfam_Consensus-
20170127, RepBase-20170127; -species parameter: Populus).
These RM outputs were filtered to remove non-TE elements, such
as satellites, simple repeats, low complexity sequences, and rRNA.

Pseudogene Annotation
The intergenic sequences of the P. trichocarpa genome were used
to identify the putative pseudogenes. The overall pipeline used
for this identification was generally based on the PlantPseudo
workflow (Xie et al., 2019) and consisted of four major steps: (1)
identify the masked intergenic regions with sequence similarity
to known proteins using BLAST; (2) eliminate redundant and
overlapping BLAST hits in places where a given chromosomal
segment has multiple hits; (3) link homologous segments into
contigs; and (4) realign sequences using tfasty to identify features
that disrupt contiguous protein sequences.

Real-Time Quantitative PCR
RT-qPCR was performed on a 7,500 Fast Real-Time PCR System
(Applied Biosystems, Waltham, MA, United States) using the
SYBR Green Premix Ex Taq II (TaKaRa). All primer pairs for
the candidate genes were designed by an online tool provided
by Integrated DNA Technologies6, as shown in Supplementary
Data 1. Poplar 18S rRNA was used as an internal control for gene
expression measurements for target genes. The Mir-XTM miRNA
qRT-PCR SYBR Kit (Clontech, Mountain View, CA) was used.
The relative expression level of each miRNA was measured and
standardized to 5.8S rRNA. The relative expression of miRNAs
and target genes was calculated using the 2−MMCt method.

RESULTS

Expression Dynamics of Poplar
MicroRNAs During the Marssonina
Infection
To study the posttranscriptional regulation associated with
poplar defense to Marssonina, we inoculated the leaves of
P. tomentosa LM50 clones with M. brunnea f. sp. Monogermtubi
bj01 conidial suspension, and the expression pattern of miRNAs
was investigated by small RNA sequencing. Specifically, we
prepared a library of RNAs of 18–30 nucleotides (nt) from
each sample (CK, 12, 24, and 48, two biological repeats),
generating 17.5 million reads in total; 83–86.7% of the total
reads could be aligned perfectly (no more than one mismatch)
to the P. trichocarpa genome (version 3.0) (Supplementary
Data 2; Tuskan et al., 2006). In total, we identified 131 miRNA
precursors by alignment to miRbase v22.1, which were grouped
into 37 miRNA families containing an average of 3.5 genes per
family (Supplementary Data 3). A total of 21 sequences were
identified as potential novel miRNAs, with average minimum
free energy (MFE) of -58.4 kal/mol (Supplementary Figure 1
and Supplementary Data 3). Compared to known miRNAs, the
expression of novel miRNAs was generally low (Figure 1A and

6https://sg.idtdna.com/Scitools/Applications/RealTimePCR/
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FIGURE 1 | Expression and classification of microRNAs (miRNAs). (A) Expression of known and novel miRNAs. hpi, hours post-inoculation. (B) The species-specific
miRNA families of nine plant species. ptc, Populus trichocarpa; mtr, Medicago truncatula; bra, Brassica rapa; sbi, Sorghum bicolor; osa, Oryza sativa; vvi, Vitis
vinifera; ath, Arabidopsis thaliana; bdi, Brachypodium distachyon; gma, Glycine max. (C) The distribution of 110 conserved miRNA members in 23 miRNA families.
(D) Nine clusters were obtained by K-means clustering with Euclidean distance as the distance metric.

Supplementary Data 4). Some novel miRNAs were discovered
in only one of the libraries partly because the sequencing
depth provided insufficient coverage of all the miRNAs or
some miRNA expressions are specifically turned on or turned
off by pathogen stress. A total of 110 conserved miRNAs
belonging to 23 miRNA families and 42 Populus-specific miRNAs
belonging to 34 miRNA families were identified (Figures 1B,C
and Supplementary Data 5).

To study the global expression patterns, we also performed
k-means clustering to describe the expression of miRNA during
poplar response to M. brunnea. We detected nine co-expression
clusters (Figure 1D and Supplementary Data 6). Cluster 1 and
cluster 8 contained 18 and 25 miRNAs, respectively, showing
a consistent increase during defense response. While cluster 3
showed a reverse trend. Cluster 9 contained 21 miRNAs, which
show their expression peaks at 48 hpi. MiRNAs of cluster 4
and cluster 5 showed their expression peaks at 12 and 24 hpi,
respectively (Figure 1D and Supplementary Data 6). Gene
Ontology (GO) enrichment analysis showed that most of the
target genes of cluster 1 and cluster 8 are involved in cell adenyl
ribonucleotide binding, ATP binding, and protein kinase activity.
Targets from miRNAs in Cluster 3 were significantly enriched

in the biological process of regulating the primary metabolism,
biosynthesis, and transcription (P < 1× 10−4). Overall, miRNAs
play essential roles in stress response by activating or suppressing
the expression of their target genes.

Pseudogenes and Transposons Act as
Catalysts for the Formation of MicroRNA
To elucidate the underlying mechanism of emergence of
(conserved and Populus-specific) miRNAs, we examined the
locations of miRNA precursor sequences (MIRs) in the regions
of P. trichocarpa genome, including intragenic regions (exons,
introns, CDS, and UTRs) and intergenic regions (Supplementary
Data 7). These conserved or Populus-specific miRNAs were
extensively distributed in poplar genomes (Figure 2A). Of these
miRNAs, 52 (34.21%) were located within protein-encoding
genes (PEGs), five (3.29%) were in unclassified sequences
(scaffold), and 95 (62.50%) were in the intergenic region
(Figure 2B). Of the 52 miRNAs within PEGs, 11 (7.24%)
were in intron regions, 20 (13.16%) were in CDS regions, 18
(11.84%) were in 5′ UTR regions, three (1.97%) were in 3′ UTR
regions (Figure 2B). Notably, nearly half of these intragenic-
derived miRNAs (24 out of 52) showed the same transcriptional
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FIGURE 2 | Genomic locations of microRNAs (miRNAs) in Populus trichocarpa genome. (A) Genomic distribution of 152 Marssonina brunnea responsive miRNAs.
Chromosomes are represented by the circle, and the inner circles (short orange lines) represent the location of miRNAs at the genome. The central colorful lines
represent lines that connect syntenic block across chromosomes. (B) miRNA locations at the intergenic and protein-encoding genes (PEGs) region. The two charts
on the top right indicate the locations of miRNA precursor sequences (MIRs) in the regions of PEGs. The two charts on the bottom left indicate the detailed
classifications of MIRs overlapping with transposon, pseudogenes, and promoter region. (C) miRNA origin from pseudogenes and targeted parent gene. miR393c
and miR6438b were selected as representative miRNAs. (D) Mechanism of miRNA gene origin from transposon. (E) Mechanism of miRNA gene origin from
pseudogenes and feedback regulated the parent gene.

orientation as their host genes, indicating that the transcription
of the miRNAs may associate with the host genes.

Moreover, we further examined the location of MIRNA
precursors in relation to transposon region, pseudogenes, and
promoter region (2-kb sequences of genes upstream) in poplar
genome. As a result, we detected 24 (15.79%) miRNAs in
the transposon region, 22 (14.47%) were in pseudogenes, and
23 (15.13%) were in the promoter region (Figure 2B and
Supplementary Data 7). Notably, the proportions of miRNAs
located in pseudogenes and transposons were significantly larger
than expected by chance (P < 1 × 10−3, one-sided z test).
This suggests that pseudogenes and TEs may contribute to

the origin of Populus miRNAs. A careful examination of their
precursor sequences revealed that Populus-specific miR478e
and miR6427 were transposons-derived miRNAs; conserved
miR393c and Populus-specific miR6438b were pseudogenes-
derived miRNAs (Figure 2C). The Populus-specific miR6438b
was derived from upstream 192–215 bp of pseudogene Chr13|
15188492-15190233 and targeted the 5′ UTR of its parent
gene (Potri.005G015300); and conserved miR393c were derived
from 2 to 23 bp of pseudogene Chr04| 22273397-22273670
and targeted the CDS of its parent gene (Potri.012G141900)
(Figure 2C). Together, the strong association of miRNAs
with pseudogenes and TE provides an important mechanism
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FIGURE 3 | Analysis of the target of conserved and Populus-specific miRNAs. (A) Significantly enriched Gene Ontology biological processes for target genes of
conserved and Populus-specific miRNAs, respectively (Top 15; P < 1 × 10-2). (B) Expression of the miRNA/target genes with negatively correlated expression
patterns (r < –9 × 10-1, P < 5 × 10-2; Pearson correlation). (C) The number of transcription factor (TF) targets of conserved and Populus-specific miRNAs,
respectively.

for the origin and posttranscriptional regulation of miRNAs
(Figures 2D,E).

The Populus MicroRNAs Fine-Tune the
Expression of Disease Resistance Genes
To investigate the regulatory networks associated with these
M. brunnea-responsive miRNAs, 12,839 predicted miRNA-
target gene pairs were identified by using psRNATarget (Dai
and Zhao, 2011). It contains 8,938 conserved miRNA-target
gene pairs and 3,901 Populus-specific miRNA-target gene
pairs (Supplementary Data 8). The results of GO functional
enrichment showed that target genes of conserved miRNA were
mainly concentrated on regulating metabolism and transcription,
whereas Populus-specific miRNAs were significantly enriched
in the process of signaling and programmed cell death
(P < 1 × 10−2; Figure 3A). An examination of the expression
of the miRNA/target genes revealed 321 pairs with negatively
correlated expression patterns (r < –9 × 10−1, P < 5 × 10−2;
Pearson correlation; Figure 3B and Supplementary Data 9).
Using the publicly available degradome library (Xie et al., 2017),
we identified 247 miRNA/target pairs (Supplementary Data 10),
of which several conserved miRNA/target pairs (miR156-SPL,
miR164-NAC, and miR172-RAP) were observed in our dataset
(Wang et al., 2009, 2015, 2020).

Next, we performed target prediction analyses. As a result,
a total of 114 DR genes and 123 DR genes were predicted to

be the targets of the conserved and Populus-specific miRNAs,
respectively. Notably, a larger proportion of Populus-specific
miRNAs (28 of 42) was found to target DR genes than that of
conserved miRNAs (60 of 110). The results suggest that Populus-
specific miRNAs were more involved in the regulation of the DR
genes (P = 1.07× 10−11; Fisher’s exact test; Supplementary Data
8). For instance, a 22-nt Populus-specific ptc-miRN11 and a 23-nt
Populus-specific ptc-miR6478 were predicted to target 35 and 11
DR genes, respectively (Figure 4). To gain a better understanding
of the functional roles of miRNAs, we next performed a pfam
domain analysis of DR targets. A total of 48 TIR-NBS-LRR
(TNL), 19 CC-NBS-LRR (CNL), 99 NBS (N), 61 NBS-LRR (NL),
one TIR, and two LRR family proteins were detected. Among
them, two 24-nt Populus-specific families, ptc-miR6445 and ptc-
miR1447, were predicted to target a TNL (Potri.019G069200)
and an N (Potri.012G123000) DR gene, respectively. Notably, an
examination of the expression patterns of the DR genes showed
that these genes were expressed at a very low level at all-time
points. Thus, these results indicated that susceptibility genotype
increased the resistance partly by fine-tuning the DR genes.

The Conserved MicroRNA–Transcription
Factor Model Supports the Gene Dosage
Balance Hypothesis
To explore the role of miRNA–TF pairs in fungi pathogen-stress
response, we next analyzed the posttranscriptional regulation of
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FIGURE 4 | Network of Populus-specific miRNA/disease resistance (DR) target gene pairs. The nodes with yellow circles are miRNAs. The nodes with violet
hexagon are DR genes. The lines between miRNAs and DR genes represent the targeting relationship.

152 miRNAs. A total of 1,603 miRNA–TF pairs were detected,
including 1,384 conserved miRNA–TF pairs and 219 Populus-
specific miRNA–TF pairs (Supplementary Data 11). Here, we
observed that miRNAs target numerous TFs that associated with
defense response during the M. brunnea infection, such as SBP,
NAC, NF-YA, ARF, and MYB (Figure 3C). SBP is a well-known
TF family in plants, which is involved in various stress response
networks (Liu et al., 2019). In total, 152 conserved miRNA–
SBP regulation pairs were detected; 83 miRNA–NAC regulation
pairs (78 conserved and five Populus-specific) were detected,
for example, NAC1 and NAC100 (NAC1: Potri.007G065400;
NAC100: Potri.012G001400) were negatively correlated with
miR164a-d; 82 miRNA–ARF regulation pairs were detected; 110
miRNA-MYB regulation pairs were detected. Thus, this implied
that miRNAs might play important roles in regulating a wide
range of molecular events during the M. brunnea infection.

To study the evolutionary effects of polyploidy on a
transcriptional network, we reanalyzed the functional genomic
and transcriptome data for numerous duplicated gene pairs
formed by ancient polyploidy events in poplar (Rodgers-Melnick
et al., 2012). A total of 5,931 “salicoid duplications” targeted

by miRNAs were detected, including 1,023 WGD-derived TF
pairs (Supplementary Datas 12, 13). Notably, of these TF
pairs, 459 (∼44.9%) have only one paralog being targeted by a
miRNA. This could be due to either gain or loss of the miRNA
binding sites of one of the duplicates after WGD. Furthermore,
detailed analysis revealed that 83.7% of the TF WGDs were
targeted by conserved miRNAs. This could be explained by
gene balance hypothesis. Under the hypothesis, we expected
that more conserved miRNAs would target genes of central
roles in networks such as functional TFs. Overall, miRNAs play
important roles in biological regulating network, with conserved
miRNAs regulating central biological nodes, supporting the gene
balance hypothesis.

MiR164–NAC–mRNA Regulatory Network
in Response to Biotic Stress in Populus
To further study the complexity of the transcription regulatory
network in response to biotic stress, we carried out motif
occurrence analysis of five groups of disease-resistant related
genes, including signaling cascades, TFs, reactive oxygen,
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pathogen-related, and NBS. As a result, 52,164 TF binding
sites were enriched in the promoters of detected genes with a
frequency that exceeds 85% (Supplementary Data 14). Many
DR-related genes were predicted to be the upstream TFs in our
data set, such as NAC, MYB, WRKY, ERF, and bZIP. In particular,
plant NAC domain protein may serve as a convergent node
in developmental processes and stress response. For instance,
NAC was found to increase necrotrophic/biotrophic pathogen
tolerance, which could be induced by wounding and defense-
related hormones (Galle et al., 2013). Also, overexpression
of NAC4 (ANAC079/080) in Arabidopsis could increase the
pathogen stress tolerance (Lee et al., 2017).

To further study the regulatory network of miRNAs involved
in DR, we next performed hierarchical clustering analysis on
TFs (targets of conserved miRNAs) and DR genes. We thus
constructed a three-layer network uncovering the module of
miR164–NAC–mRNA, with an important role in the fungal
pathogen infection (Figure 5A). This module includes three NAC
genes (NAC1: Potri.007G065400; NAC100: Potri.012G001400;
NAC1: Potri.005G098200) whose expressions were negatively
correlated with miRNA164a (Figures 5A,B). This was also
supported by the real-time quantitative PCR analyses (P < 0.05;
Supplementary Figure 2). Sequence conservation analyses
showed that the mature regions of miR164a were completely
conserved in Arabidopsis, rice, maize, Medicago, Brassica,
Sorghum, Vitis, Brachypodium, and Glycine, and the precursor
sequences of miR164a show an extensive similarity (41.76%)
in eight plants (Figure 5C). Moreover, analysis of the genomic
and protein sequences of the three NAC genes showed that
all of them were composed of three exons and two introns
and evolutionarily conserved (Figures 5D–H). In total, 134
genes were predicted to be the downstream targets of the
three NAC (Supplementary Data 14). Functional enrichment
analysis showed that these genes were mainly involved in
biological processes such as apoptosis and innate immune
response (P < 1e-56). Taken together, a multilayered hierarchical
gene regulation network provides opportunities to investigate
transcriptome dynamics and identifies key genes involved in
specific pathways.

DISCUSSION

Pseudogenes and Posttranscriptional
Regulation
The origins of miRNA genes have attracted wide attention
in recent years. In plants, there are at least four hypotheses,
for instance, according to sequence homology between
MIR genes and target genes, Allen et al. (2004) proposed
the inverted duplication hypothesis. Under the hypothesis,
these young miRNA genes were supposedly generated from
inverted duplication events of one of their target genes by
forming two adjacent gene segments in either convergent
or divergent orientation. Genome-wide analysis of miRNA
genes in A. thaliana further revealed that some genomic
repeats (including WGDs, tandem duplications, and segmental
duplications) and following dispersal and diversification were

also an essential pathway for the origin of miRNAs (Smalheiser
and Torvik, 2005). Moreover, another potential source of
miRNAs is random sequences and spontaneously formed from
foldback sequences (Fenselau et al., 2008). As a large proportion
of miRNA genes were laying within TEs or pseudogenes, the
hypothesis of miRNA originating from TEs or pseudogenes has
been proposed by researchers recently (Piriyapongsa and Jordan,
2008; Sasidharan and Gerstein, 2008).

Despite previously being referred to as junk DNA (Zhang
et al., 2003), pseudogenes are now known to be essential
elements of most eukaryotic genomes, making important
contributions to their structure, diversity, capacity, and
adaptation (Balasubramanian et al., 2009; Poliseno et al., 2015).
The widely distributed pseudogenes are a rapidly evolving part
of the genome because they have the potential for incorporating
new functions into DNA sequences by mutant alleles (Balakirev
and Ayala, 2003; Zhang et al., 2003). Here, when exploring the
distribution of poplar miRNAs in different parts of genome
regions, including the 5′ UTRs, CDS, 3′ UTRs, introns, exons,
promoters, transposons, pseudogenes, and intergenic regions, we
determined that pseudogenes contributed a certain proportion
(14.47%) of the miRNAs. Owing to their origin as gene copies,
pseudogenes typically exhibit a high sequence homology to their
parent gene. Consequently, it is possible that some pseudogene-
derived miRNA may be implicated in repressing transcription
of their parental gene. This strong association of miRNAs with
pseudogenes provides an important mechanism for the origin
and posttranscriptional regulation of miRNAs (Guo et al., 2009;
Xie et al., 2019).

MicroRNA Mediated Defense Against
Pathogen Stress
The plant NB-LRR genes mediate effector-triggered immunity
by acting as key receptors during the innate immunity response
against a wide range of pests and diseases. The NB-LRR genes
are generally grouped into two subclasses: the toll/interleukin-1
receptor-like group (TIR-NB-LRRs) and a coiled-coil domain-
containing group (CC-NB-LRRs) (Jones and Dangl, 2006). Both
classes can be triggered by miRNAs to generate phasiRNAs,
which can reduce the levels of the transcripts of their targets in cis
and trans (Zhai et al., 2011). In contrast to low-copy genes, many
NB-LRR genes have undergone dramatic duplications and losses,
domain architecture variations, the partitioning of subfamilies,
and copy number variation among species (Karasov et al., 2014).
Thus, the NB-LRR genes are highly variable, lineage-specific, and
associated with the plant immune response, providing material to
allow rapid adaptative evolution.

The target sites of conserved miRNAs are often located within
the highly conserved domains of the target genes (Rhoades et al.,
2002). Unlike conserved miRNAs, newly evolved miRNAs tend
not to target these conserved functional domains and may instead
target mRNAs simply by chance (Chen and Rajewsky, 2007).
Indeed, the target genes of the newly emerged miRNAs in Populus
were found to have various functions, including numerous DR
NB-LRR genes and few TFs. Our analysis demonstrated that
more Populus-specific miRNAs target the NB-LRR genes than
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FIGURE 5 | Conserved miR164–NAC–mRNA regulatory network in response to fungi pathogen stress in Populus. (A) The three-layered gene regulatory network
(GRN) was constructed with the backward elimination random forest (BWERF) algorithm. The nodes with red color highlighted the key regulatory transcription factors
(TFs). (B) The expression value of miR164 and NAC1/100 genes. (C) Sequence logo view of the mature miR164 sequence. (D–F) Conserved domains of
ptc-NAC1/100 protein sequence, gene structure of ptc-NAC1/100, and predicted base-pairing interaction between ptc-miR164 and ptc-NAC1/100. Exons are
shown as black boxes and introns as lines. The 5′ UTR and 3′ UTR are shown as purple boxes. (G,H) Phylogenetic analysis of NAC targets of miR164 in Populus.
Phylogenetic analysis of ptc-NAC1/NAC100 homologous genes in eight other plant species.

conserved miRNAs. Considering that this de novo diversity may
be associated with plant defense, the Populus-specific miRNAs
have a greater potential to target newly evolved plant DR genes,

further contributing to the phenotypic innovation of the host.
Once the newly emerged miRNAs become fixed in the regulatory
modules, they may gradually evolve to target more genes
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linked to their specific function (Chen and Rajewsky, 2007;
Xie et al., 2017).

Populus MicroRNA/Target Patterns
Support the Gene Dosage Balance
Hypothesis
Gene duplication is one of the primary driving forces in
the evolution of genomes and genetic systems (Moore and
Purugganan, 2003). Duplicated genes were classified into
five types, including WGD, proximal duplication, tandem
duplication, transposed duplication, and dispersed duplication.
As an extreme gene replication mechanism, WGD results in
a sudden increase in the size of the genome and entire gene
set. In contrast to small-scale duplicates, duplicates created by
WGD (also called homologs) tend to be retained at much higher
fractions (Rodgers-Melnick et al., 2012). Also, gene duplicability
or the ability of genes to be retained following duplication is
often biased. As we all know, three WGD events occurred during
Populus evolution: an ancient duplication event, a middle event
shared among the Eurosids, and a recent event shared among
the Salicaceae (Tuskan et al., 2006). The modern poplar genome
began to diverge around 6 million years after the “Salicoid”
duplication, and retained WGD genes are biased toward more
central roles in networks, such as members of signal transduction
cascades and TFs (Freeling, 2009; Rodgers-Melnick et al., 2012).
Therefore, genes retained as duplicate pairs following WGDs
are disproportionately likely to encode TFs and components of
multi-protein complexes, with a potential explanation for this
phenomenon given by the gene balance hypothesis (Birchler and
Veitia, 2007, 2012; Edger and Pires, 2009; Liang and Schnable,
2018).

The role of miRNAs was potentially important in terms of
modulating the expression of TFs because miRNAs can operate in
a dosage-sensitive manner (Guo et al., 2010). Besides, the target
sites of conserved miRNAs are often located within the highly
conserved domains of the target genes (Rhoades et al., 2002).
Following WGDs, many of these duplicated TFs evolved separate
functions in divergent ways, such as non-functionalization
(Ohno, 1971), subfunctionalization (Lynch and Force, 2000) or
neofunctionalization, to adapt growth/development and stress
response. In this case, only one of the duplicates is targeted
by miRNA, indicating a gain or loss of miRNA target site
after the WGD event. Also, the evolution of miRNA binding
sites suggests a coevolution between miRNAs and their targets
tending to preserve core duplicates in adapting to the change
of environment. Together, our study provides insights into the
regulation of miRNAs and target functional evolution in the
defense process.
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